1
|
Wang Q, Li M, Zeng N, Zhou Y, Yan J. Succinate dehydrogenase complex subunit C: Role in cellular physiology and disease. Exp Biol Med (Maywood) 2023; 248:263-270. [PMID: 36691338 PMCID: PMC10107392 DOI: 10.1177/15353702221147567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Succinate dehydrogenase complex subunit C (SDHC) is a subunit of mitochondrial complex II (MCII), which is also known as succinate dehydrogenase (SDH) or succinate: ubiquinone oxidoreductase. Mitochondrial complex II is the smallest respiratory complex in the respiratory chain and contains four subunits. SDHC is a membrane-anchored subunit of SDH, which connects the tricarboxylic acid cycle and the electron transport chain. SDH regulates several physiological processes within cells, plays an important role in generating energy to maintain normal cell growth, and is involved in apoptosis. Currently, SDHC is generally recognized as a tumor-suppressor gene. SDHC mutations can cause oxidative damage in the body. It is closely related to the occurrence and development of cancer, neurodegenerative diseases, and aging-related diseases. Here, we review studies on the structure, biological function, related diseases of SDHC, and the mev-1 Animal Model of SDHC Mutation and its potential use as a therapeutic target of certain human diseases.
Collapse
Affiliation(s)
- Qi Wang
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Mao Li
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Nannan Zeng
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
2
|
Succinate Dehydrogenase Subunit C Contributes to Mycelial Growth and Development, Stress Response, and Virulence in the Insect Parasitic Fungus Beauveria bassiana. Microbiol Spectr 2022; 10:e0289122. [PMID: 35972281 PMCID: PMC9602434 DOI: 10.1128/spectrum.02891-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Succinate dehydrogenase (SDH), also known as respiratory chain complex II, plays a crucial role in energy production in which SdhC functions as an anchored subunit in the inner membrane of mitochondria. In this study, domain annotation analyses revealed that two SdhC domain-containing proteins were present in the filamentous insect-pathogenic fungus Beauveria bassiana, and they were named BbSdhC1 and BbSdhC2, respectively. Only BbSdhC1 localized to mitochondria; hence, this protein is considered the ortholog of SdhC in B. bassiana. Ablation of BbSdhC1 led to significantly reduced vegetative growth on various nutrients. The ΔBbsdhc1 mutant displayed the significantly reduced ATP synthesis and abnormal differentiation under aerial and submerged conditions. Notably, the BbSdhC1 loss resulted in enhanced intracellular levels of reactive oxygen species (ROS) and impaired growth of mycelia under oxidative stress. Finally, insect bioassays (via cuticle and intrahemocoel injection infection) revealed that disruption of BbSdhC1 significantly attenuated fungal virulence against the insect hosts. These findings indicate that BbSdhC1 contributes to vegetative growth, resistance to oxidative stress, differentiation, and virulence of B. bassiana due to its roles in energy generation and maintaining the homeostasis of the intracellular ROS levels. IMPORTANCE The electron transport chain (ETC) is critical for energy supply by mediating the electron flow along the mitochondrial membrane. Succinate dehydrogenase (SDH) is also known as complex II in the ETC, in which SdhC is a subunit anchored in mitochondrial membrane. However, the physiological roles of SdhC remain enigmatic in filamentous fungi. In filamentous insect-pathogenic fungus B. bassiana, SdhC is required for maintaining mitochondrial functionality, which is critical for fungal stress response, development, and pathogenicity. These findings improve our understanding of physiological mechanisms of ETC components involved in pathogenicity of the entomopathogenic fungi.
Collapse
|
3
|
Toda T, Ito M, Takeda JI, Masuda A, Mino H, Hattori N, Mohri K, Ohno K. Extremely low-frequency pulses of faint magnetic field induce mitophagy to rejuvenate mitochondria. Commun Biol 2022; 5:453. [PMID: 35552531 PMCID: PMC9098439 DOI: 10.1038/s42003-022-03389-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Humans are frequently exposed to time-varying and static weak magnetic fields (WMF). However, the effects of faint magnetic fields, weaker than the geomagnetic field, have been scarcely reported. Here we show that extremely low-frequency (ELF)-WMF, comprised of serial pulses of 10 µT intensity at 1–8 Hz, which is three or more times weaker than the geomagnetic field, reduces mitochondrial mass to 70% and the mitochondrial electron transport chain (ETC) complex II activity to 88%. Chemical inhibition of electron flux through the mitochondrial ETC complex II nullifies the effect of ELF-WMF. Suppression of ETC complex II subsequently induces mitophagy by translocating parkin and PINK1 to the mitochondria and by recruiting LC3-II. Thereafter, mitophagy induces PGC-1α-mediated mitochondrial biogenesis to rejuvenate mitochondria. The lack of PINK1 negates the effect of ELF-WMF. Thus, ELF-WMF may be applicable for the treatment of human diseases that exhibit compromised mitochondrial homeostasis, such as Parkinson’s disease. The effect of extremely low-frequency pulses of faint magnetic field on mitochondria is investigated, where it led to reduced mitochondrial mass, membrane potential and electron transport chain activity, and induced mitophagy.
Collapse
Affiliation(s)
- Takuro Toda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Mino
- Division of Material Science, Nagoya University Graduate School of Science, Nagoya, Japan
| | | | - Kaneo Mohri
- Nagoya Industrial Science Research Institute, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
4
|
Wang X, Ji Y, Jin D, Qi J, Hou X, Zhao W, Zhou S, Zhang C, Luo Y, An P, Luo J. Natural Polysaccharide β-Glucan Protects against Doxorubicin-Induced Cardiotoxicity by Suppressing Oxidative Stress. Nutrients 2022; 14:906. [PMID: 35215555 PMCID: PMC8878312 DOI: 10.3390/nu14040906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Doxorubicin (DOXO) can be used to treat a variety of human tumors, but its clinical application is limited due to severe cardiotoxic side effect. Here, we explore the role of β-glucan in DOXO-induced cardiotoxicity in mice and study its underlying mechanism. When co-administered with DOXO, β-glucan was observed to prevent left ventricular dilation and fibrosis. In fact, DOXO reduces the activity of mitochondrial respiratory chain complex and enhances oxidative stress, which in turn impairs heart function. DOXO decreases the ATP production capacity of the heart and increases the ROS content, while β-glucan can restore the heart capacity and reduce oxidative stress. β-glucan also increases the activity of antioxidant enzymes GSH-PX and SOD, and reduces the level of MDA in the serum. In addition, the mRNAs of cardiac dysfunction marker genes ANP, BNP and Myh7 were significantly increased after DOXO induction, however, they did not increase when combined with β-glucan administration. In conclusion, our results indicate that β-glucan can improve the antioxidant capacity of the heart, thereby serving as a potential therapeutic strategy to prevent DOXO-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Yuting Ji
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Dekui Jin
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China;
| | - Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Xuening Hou
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Wenting Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Shuaishuai Zhou
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Chengying Zhang
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China;
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| |
Collapse
|
5
|
Mohammadnejad L, Soltaninejad K, Seyedabadi M, Ghasem Pouri SK, Shokrzadeh M, Mohammadi H. Evaluation of mitochondrial dysfunction due to oxidative stress in therapeutic, toxic and lethal concentrations of tramadol. Toxicol Res (Camb) 2021; 10:1162-1170. [PMID: 34956619 DOI: 10.1093/toxres/tfab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tramadol (TR) is a centrally acting analgesic drug that is used to relieve pain. The therapeutic (0.1-0.8 mg/l), toxic (1-2 mg/l) and lethal (>2 mg/l) ranges were reported for TR. The present study was designed to evaluate which doses of TR can induce liver mitochondrial toxicity. Mitochondria were isolated from the five rats' liver and were incubated with therapeutic to lethal concentrations (1.7-600 μM) of TR. Biomarkers of oxidative stress including: reactive oxygen species (ROS), lipid peroxidation (LPO), protein carbonyl content, glutathione (GSH) content, mitochondrial function, mitochondrial membrane potential (MMP) and mitochondrial swelling were assessed. Our results showed that ROS and LPO at 100 μM and protein carbonylation at 600 μM concentrations of TR were significantly increased. GSH was decreased specifically at 600 μM concentration. Mitochondrial function, MMP and mitochondrial swelling decreased in isolated rat liver mitochondria after exposure to 100 and 300 μM, respectively. This study suggested that TR at therapeutic and toxic levels by single exposure could not induce mitochondrial toxicity. But, in lethal concentration (≥100 μM), TR induced oxidative damage and mitochondria dysfunction. This study suggested that ROS overproduction by increasing of TR concentration induced mitochondrial dysfunction and caused mitochondrial damage via Complex II and membrane permeability transition pores disorders, MMP collapse and mitochondria swelling.
Collapse
Affiliation(s)
- Leila Mohammadnejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Kambiz Soltaninejad
- Department of Forensic Toxicology, Legal Medicine Research Center, Legal Medicine Organization, Tehran 48157-33971, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Seyed Khosro Ghasem Pouri
- Department of Emergency Medicine, School of Medicine, Antimicrobial Resistance Research Center, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| |
Collapse
|
6
|
Khatmi A, Eskandarian Boroujeni M, Ezi S, Hamidreza Mirbehbahani S, Aghajanpour F, Soltani R, Hossein Meftahi G, Abdollahifar MA, Hassani Moghaddam M, Toreyhi H, Khodagholi F, Aliaghaei A. Combined molecular, structural and memory data unravel the destructive effect of tramadol on hippocampus. Neurosci Lett 2021; 771:136418. [PMID: 34954113 DOI: 10.1016/j.neulet.2021.136418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Tramadol is a synthetic analogue of codeine and stimulates neurodegeneration in several parts of the brain that leads to various behavioral impairments. Despite the leading role of hippocampus in learning and memory as well as decreased function of them under influence of tramadol, there are few studies analyzing the effect of tramadol administration on gene expression profiling and structural consequences in hippocampus region. Thus, we sought to determine the effect of tramadol on both PC12 cell line and hippocampal tissue, from gene expression changes to structural alterations. In this respect, we investigated genome-wide mRNA expression using high throughput RNA-seq technology and confirmatory quantitative real-time PCR, accompanied by stereological analysis of hippocampus and behavioral assessment following tramadol exposure. At the cellular level, PC12 cells were exposed to 600μM tramadol for 48 hrs, followed by the assessments of ROS amount and gene expression levels of neurotoxicity associated with neurodegenerative pathways such as apoptosis and autophagy. Moreover, the structural and functional alteration of the hippocampus under chronic exposure to tramadol was also evaluated. In this regard, rats were treated with tramadol at doses of 50 mg/kg for three consecutive weeks. In vitro data revealed that tramadol provoked ROS production and caused the increase in the expression of autophagic and apoptotic genes in PC12 cells. Furthermore, in-vivo results demonstrated that tramadol not only did induce hippocampal atrophy, but it also triggered microgliosis and microglial activation, causing upregulation of apoptotic and inflammatory markers as well as over-activation of neurodegeneration. Tramadol also interrupted spatial learning and memory function along with long-term potentiation (LTP). Taken all together, our data disclosed the neurotoxic effects of tramadol on both in vitro and in-vivo. Moreover, we proposed a potential correlation between disrupted biochemical cascades and memory deficit under tramadol administration.
Collapse
Affiliation(s)
- Aysan Khatmi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Samira Ezi
- Department of Anatomy, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Fakhroddin Aghajanpour
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Soltani
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Amin Abdollahifar
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Hossein Toreyhi
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ziemann M, Lim SC, Kang Y, Samuel S, Sanchez IL, Gantier M, Stojanovski D, McKenzie M. MicroRNA-101-3p Modulates Mitochondrial Metabolism via the Regulation of Complex II Assembly. J Mol Biol 2021; 434:167361. [PMID: 34808225 DOI: 10.1016/j.jmb.2021.167361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022]
Abstract
MicroRNA-101-3p (miR-101-3p) is a tumour suppressor that regulates cancer proliferation and apoptotic signalling. Loss of miR-101-3p increases the expression of the Polycomb Repressive Complex 2 (PRC2) subunit enhancer of zeste homolog 2 (EZH2), resulting in alterations to the epigenome and enhanced tumorigenesis. MiR-101-3p has also been shown to modulate various aspects of cellular metabolism, however little is known about the mechanisms involved. To investigate the metabolic pathways that are regulated by miR-101-3p, we performed transcriptome and functional analyses of osteosarcoma cells transfected with miR-101-3p. We found that miR-101-3p downregulates multiple mitochondrial processes, including oxidative phosphorylation, pyruvate metabolism, the citric acid cycle and phospholipid metabolism. We also found that miR-101-3p transfection disrupts the transcription of mitochondrial DNA (mtDNA) via the downregulation of the mitochondrial transcription initiation complex proteins TFB2M and Mic60. These alterations in transcript expression disrupt mitochondrial function, with significant decreases in both basal (54%) and maximal (67%) mitochondrial respiration rates. Native gel electrophoresis revealed that this diminished respiratory capacity was associated with reduced steady-state levels of mature succinate dehydrogenase (complex II), with a corresponding reduction of complex II enzymatic activity. Furthermore, miR-101-3p transfection reduced the expression of the SDHB subunit, with a concomitant disruption of the assembly of the SDHC subunit into mature complex II. Overall, we describe a new role for miR-101-3p as a modulator of mitochondrial metabolism via its regulation of multiple mitochondrial processes, including mtDNA transcription and complex II biogenesis.
Collapse
Affiliation(s)
- Mark Ziemann
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 3216 Geelong, Australia. https://twitter.com/@mdziemann
| | - Sze Chern Lim
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 3168 Melbourne, Australia
| | - Yilin Kang
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 3052 Melbourne, Australia
| | - Sona Samuel
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia
| | - Isabel Lopez Sanchez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia; Ophthalmology, University of Melbourne, Department of Surgery Melbourne, Victoria 3000, Australia. https://twitter.com/@DrIsabelLopez
| | - Michael Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 3168 Melbourne, Australia; Department of Molecular and Translational Science, Monash University, 3168 Melbourne, Australia. https://twitter.com/@GantierLab
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 3052 Melbourne, Australia
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 3216 Geelong, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 3168 Melbourne, Australia; Department of Molecular and Translational Science, Monash University, 3168 Melbourne, Australia.
| |
Collapse
|
8
|
Exploring the Leukemogenic Potential of GATA-1 S, the Shorter Isoform of GATA-1: Novel Insights into Mechanisms Hampering Respiratory Chain Complex II Activity and Limiting Oxidative Phosphorylation Efficiency. Antioxidants (Basel) 2021; 10:antiox10101603. [PMID: 34679737 PMCID: PMC8533167 DOI: 10.3390/antiox10101603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022] Open
Abstract
GATA-1 is a key regulator of hematopoiesis. A balanced ratio of its two isoforms, GATA-1FL and GATA-1S, contributes to normal hematopoiesis, whereas aberrant expression of GATA-1S alters the differentiation/proliferation potential of hematopoietic precursors and represents a poor prognostic factor in myeloid leukemia. We previously reported that GATA-1S over-expression correlates with high levels of the succinate dehydrogenase subunit C (SDHC). Alternative splicing variants of the SDHC transcript are over-expressed in several tumors and act as potent dominant negative inhibitors of SDH activity. With this in mind, we investigated the levels of SDHC variants and the oxidative mitochondrial metabolism in myeloid leukemia K562 cells over-expressing GATA-1 isoforms. Over-expression of SDHC variants accompanied by decreased SDH complex II activity and oxidative phosphorylation (OXPHOS) efficiency was found associated only with GATA-1S. Given the tumor suppressor role of SDH and the effects of OXPHOS limitations in leukemogenesis, identification of a link between GATA-1S and impaired complex II activity unveils novel pro-leukemic mechanisms triggered by GATA-1S. Abnormal levels of GATA-1S and SDHC variants were also found in an acute myeloid leukemia patient, thus supporting in vitro results. A better understanding of these mechanisms can contribute to identify novel promising therapeutic targets in myeloid leukemia.
Collapse
|
9
|
Hassabou NF, Elseweidy MM. Histopathological changes in submandibular gland and dorsal tongue of experimental rats due to prolonged tramadol intake focusing on novel modulatory effect of 10-dehydrogingerdione. Arch Oral Biol 2021; 130:105223. [PMID: 34371226 DOI: 10.1016/j.archoralbio.2021.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This project aims to develop a framework to illustrate the degenerative effects induced by prolonged tramadol intake in salivary glands and tongue tissues. We strive in this work to investigate the probable role of 10-dehydrogingerdione (10-DHGD) in regeneration of these tissues. DESIGN Forty male albino rats were designated for the study and categorized into four groups. Group (1) received no drugs and served as normal control group. Group (2) received tramadol intra peritoneal (20 mg /kg) body weight daily for 45 days. Group (3) received freshly prepared 10-DHGD orally in a dose level (10 mg /kg). Group (4) received combination of tramadol and 10 DHGD for 45 days. Histological examination is that routine testing that was done in all studied subjects to demonstrate any cytological changes with hematoxylin and eosin (H&E) in the submandibular glands and dorsal tongue tissues along with histochemical investigation using periodic acid-Schiff (PAS) and immunohistochemical presentation of Caspase-3. RESULTS Submandibular salivary glands and dorsal tongue tissues showed degenerative changes in tramadol treated group while control and 10-DHGD groups presented with no cytological or morphological changes. Histochemical investigation revealed marked reduction in PAS staining reaction in tramadol group as compared to other studied groups. Regarding to immunoreactivity of caspase-3 when all groups were compared, the differences in mean values of area percentage were statistically significant. CONCLUSIONS Tramadol provoked oxidative damage and apoptosis in oral tissues, which significantly decreased by 10-DHGD intake as it may exert an ameliorative effect that help alleviating these degenerative effects.
Collapse
Affiliation(s)
- Nadia Fathy Hassabou
- Oral and Maxillofacial Histopathology Department, Faculty of Dentistry, October 6 University, Giza, Egypt.
| | - Mohamed M Elseweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
10
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
11
|
Mukherjee S, Ghosh A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 2020; 53:1-20. [PMID: 32304865 DOI: 10.1016/j.mito.2020.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The mitochondrial respiratory chain (MRC) is comprised of ~92 nuclear and mitochondrial DNA-encoded protein subunits that are organized into five different multi-subunit respiratory complexes. These complexes produce 90% of the ATP required for cell sustenance. Specific sets of subunits are assembled in a modular or non-modular fashion to construct the MRC complexes. The complete assembly process is gradually chaperoned by a myriad of assembly factors that must coordinate with several other prosthetic groups to reach maturity, makingthe entire processextensively complicated. Further, the individual respiratory complexes can be integrated intovarious giant super-complexes whose functional roles have yet to be explored. Mutations in the MRC subunits and in the related assembly factors often give rise to defects in the proper assembly of the respiratory chain, which then manifests as a group of disorders called mitochondrial diseases, the most common inborn errors of metabolism. This review summarizes the current understanding of the biogenesis of individual MRC complexes and super-complexes, and explores how mutations in the different subunits and assembly factors contribute to mitochondrial disease pathology.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
12
|
Koohsari M, Ahangar N, Mohammadi E, Shaki F. Ameliorative Effect of Melatonin Against Reproductive Toxicity of Tramadol in Rats via the Regulation of Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis-related Gene Expression Signaling Pathway. ADDICTION & HEALTH 2020; 12:118-129. [PMID: 32782734 PMCID: PMC7395930 DOI: 10.22122/ahj.v12i2.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The aim of the present study was to investigate the protective properties of melatonin (MT) against oxidative stress, mitochondrial dysfunction, and apoptosis induced by tramadol-reproductive toxicity in male rats. METHODS The rats were divided into the 7 groups of control, melatonin (1.5 mg/kg), tramadol (50 mg/kg), and melatonin (1, 1.5 and 2.5 mg/kg) administered 30 minutes before tramadol and vitamin C group (100 mg/kg). All injections were performed intraperitoneally. After administration for 3 consecutive weeks, the animals were killed and testis tissues were used for assessment of oxidative stress markers including lipid peroxidation (LPO), glutathione (GSH) content and protein carbonyl (PrC), and sperm analysis. Mitochondria were isolated from rat's testis using differential centrifugation technique and were studied in terms of mitochondrial viability, mitochondrial membrane potential (MMP), and mitochondrial swelling. The other part of the tissue sample was placed in RNA protector solution for assessment of Bax and Bcl-2 gene expression through real-time polymerase chain reaction (real-time PCR) assay. FINDINGS Tramadol caused a significant decline in epidermal sperm count, motility, and morphology, as well as a significant decrease in GSH level and mitochondrial function, and a significant evaluation of LPO, PrC, MMP, and mitochondrial swelling. In addition, tramadol induced a significant decrease in Bcl-2 gene expression, and increase in Bax gene expression. However, pretreatment of rats with MT improved sperm analysis, and testicular antioxidative status, and mitochondrial function. Furthermore, MT pretreatment regulated testicular Bcl-2 and Bax expressions. CONCLUSION Considering the protective effects of MT against reproductive toxicity induced by tramadol, this compound can be used as a possible agent for the prevention and treatment of tramadol-induced reproductive toxicity.
Collapse
Affiliation(s)
- Motahareh Koohsari
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute AND Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute AND Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
13
|
Amiri A, Zuniga AI, Peres NA. Mutations in the Membrane-Anchored SdhC Subunit Affect Fitness and Sensitivity to Succinate Dehydrogenase Inhibitors in Botrytis cinerea Populations from Multiple Hosts. PHYTOPATHOLOGY 2020; 110:327-335. [PMID: 31502521 DOI: 10.1094/phyto-07-19-0240-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are an essential group of fungicides for managing gray mold, caused by Botrytis cinerea, in numerous crops. Resistance to boscalid, an early-generation SDHI, is widespread worldwide and was linked to mutations in the iron-sulfur protein encoding the SdhB subunit of the SDH complex. Herein, we report on four simultaneous dependent mutations at codons 85 (G85A), 93 (I93V), 158 (M158V), and 168 (V168I) of the membrane-anchored SdhC subunit of B. cinerea. Isolates without and with mutations in SdhC were referred to as C- and C+ genotypes, respectively. The C+ genotype was found in all the five surveyed hosts from different U.S. regions but its frequency was higher, 25 to 40%, in the tree fruit isolates compared with 12 to 25% in the small fruit populations. The four SdhC mutations were found in isolates without mutations in SdhB or with mutations known to confer resistance to the SDHIs in SdhB. However, the frequency of C+ isolates was significantly higher in the SdhB wild-type isolates, which suggests that SDHI sprays may have played a role in selecting for the C- over the C+ genotype. Field C+ isolates exhibited reduced sensitivity to fluopyram and increased sensitivity to boscalid and penthiopyrad in vitro and on detached fruit. Homology modeling confirmed the positioning of the four mutations in the ubiquinone-binding pocket. The SdhCG85A is found in the proximal ubiquinone binding site and SdhCM158V is positioned in the iron sulfur protein interface next to the [3Fe-4S] cluster, whereas SdhCI93V is positioned next to the heme b with vital functions in the SDH enzyme. Beside the differential sensitivity to the SDHIs, these mutations caused a significant fitness cost in the C+ isolates including sporulation and increased sensitivity to reactive oxygen species. The presence of Botrytis populations differentially sensitive to the SDHIs suggests increased risks for resistance development but also opens up new perspective for future gray mold management using different SDHI fungicides.
Collapse
Affiliation(s)
- Achour Amiri
- Washington State University, Tree Fruit Research and Education Center, Wenatchee, WA 98801
| | - Adrian I Zuniga
- University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| | - Natalia A Peres
- University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| |
Collapse
|
14
|
Barros MH, McStay GP. Modular biogenesis of mitochondrial respiratory complexes. Mitochondrion 2019; 50:94-114. [PMID: 31669617 DOI: 10.1016/j.mito.2019.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial function relies on the activity of oxidative phosphorylation to synthesise ATP and generate an electrochemical gradient across the inner mitochondrial membrane. These coupled processes are mediated by five multi-subunit complexes that reside in this inner membrane. These complexes are the product of both nuclear and mitochondrial gene products. Defects in the function or assembly of these complexes can lead to mitochondrial diseases due to deficits in energy production and mitochondrial functions. Appropriate biogenesis and function are mediated by a complex number of assembly factors that promote maturation of specific complex subunits to form the active oxidative phosphorylation complex. The understanding of the biogenesis of each complex has been informed by studies in both simple eukaryotes such as Saccharomyces cerevisiae and human patients with mitochondrial diseases. These studies reveal each complex assembles through a pathway using specific subunits and assembly factors to form kinetically distinct but related assembly modules. The current understanding of these complexes has embraced the revolutions in genomics and proteomics to further our knowledge on the impact of mitochondrial biology in genetics, medicine, and evolution.
Collapse
Affiliation(s)
- Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | - Gavin P McStay
- Department of Biological Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
15
|
Ragab IK, Mohamed HZ. Histological changes of the adult albino rats entorhinal cortex under the effect of tramadol administration: Histological and morphometric study. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Ibrahim K. Ragab
- Histology Department, Faculty of Medicine, AL-Azhar University in Assiut, Egypt
| | - Hala Z.E. Mohamed
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Egypt
| |
Collapse
|
16
|
Zhao H, Li T, Zhao Y, Tan T, Liu C, Liu Y, Chang L, Huang N, Li C, Fan Y, Yu Y, Li R, Qiao J. Single-Cell Transcriptomics of Human Oocytes: Environment-Driven Metabolic Competition and Compensatory Mechanisms During Oocyte Maturation. Antioxid Redox Signal 2019; 30:542-559. [PMID: 29486586 PMCID: PMC6338670 DOI: 10.1089/ars.2017.7151] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The mechanisms coordinating maturation with an environment-driven metabolic shift, a critical step in determining the developmental potential of human in vitro maturation (IVM) oocytes, remain to be elucidated. Here we explored the key genes regulating human oocyte maturation using single-cell RNA sequencing and illuminated the compensatory mechanism from a metabolic perspective by analyzing gene expression. RESULTS Three key genes that encode CoA-related enzymes were screened from the RNA sequencing data. Two of them, ACAT1 and HADHA, were closely related to the regulation of substrate production in the Krebs cycle. Dysfunction of the Krebs cycle was induced by decreases in the activity of specific enzymes. Furthermore, the activator of these enzymes, the calcium concentration, was also decreased because of the failure of influx of exogenous calcium. Although release of endogenous calcium from the endoplasmic reticulum and mitochondria met the requirement for maturation, excessive release resulted in aneuploidy and developmental incompetence. High nicotinamide nucleotide transhydrogenase expression induced NADPH dehydrogenation to compensate for the NADH shortage resulting from the dysfunction of the Krebs cycle. Importantly, high NADP+ levels activated DPYD to enhance the repair of DNA double-strand breaks to maintain euploidy. INNOVATION The present study shows for the first time that exposure to the in vitro environment can lead to the decline of energy metabolism in human oocytes during maturation but that a compensatory action maintains their developmental competence. CONCLUSION In vitro maturation of human oocytes is mediated through a cascade of competing and compensatory actions driven by genes encoding enzymes.
Collapse
Affiliation(s)
- Hongcui Zhao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Tianjie Li
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Yue Zhao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Tao Tan
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China .,2 Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology , Kunming, China
| | - Changyu Liu
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Yali Liu
- 3 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Liang Chang
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Ning Huang
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Chang Li
- 2 Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology , Kunming, China
| | - Yong Fan
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China .,3 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Yang Yu
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Rong Li
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Jie Qiao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| |
Collapse
|
17
|
Aboulhoda BE, Hassan SS. Effect of prenatal tramadol on postnatal cerebellar development: Role of oxidative stress. J Chem Neuroanat 2018; 94:102-118. [PMID: 30342117 DOI: 10.1016/j.jchemneu.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM The adverse neurological effects of tramadol have recently raised attention. The literature pertaining to studying postnatal cerebellar changes induced by prenatal tramadol is very scanty, thus the current study has been designed to improve understanding of the cerebellar oxidative stress-related alterations associated with tramadol administration during pregnancy in this critical period of neuronal differentiation and synaptic development, thereby highlighting the importance of controlling prenatal prescription of opioids and optimizing care for opioid-dependent pregnant women and their infants. MATERIAL AND METHODS Twenty pregnant female rats of Sprague Dawley strains were used in the study. Their offspring were divided into two groups: group I (control group) offspring of mothers given saline; group II offspring of mothers given tramadol from the 10th day (D10) of gestation till D21. The pups were sacrificed on the 7th, 14th and 21st postnatal days. Cerebellar specimens were processed for histomorphometric, immunohistochemical and electron microscopic assessment and were evaluated for various oxidative stress parameters. RESULTS Tramadol administration during pregnancy caused profound structural abnormalities on the post-natal cerebellar cortex and was associated with oxidative stress evidenced by elevation of lipid peroxidation products and inhibition of antioxidant enzyme activities.
Collapse
Affiliation(s)
- Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt.
| | - Sherif S Hassan
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt; Department of Medical Education, California University of Sciences and Medicine, School of medicine, San Bernardino, 92408 CA, USA
| |
Collapse
|
18
|
Signes A, Fernandez-Vizarra E. Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 2018; 62:255-270. [PMID: 30030361 PMCID: PMC6056720 DOI: 10.1042/ebc20170098] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023]
Abstract
The assembly of the five oxidative phosphorylation system (OXPHOS) complexes in the inner mitochondrial membrane is an intricate process. The human enzymes comprise core proteins, performing the catalytic activities, and a large number of 'supernumerary' subunits that play essential roles in assembly, regulation and stability. The correct addition of prosthetic groups as well as chaperoning and incorporation of the structural components require a large number of factors, many of which have been found mutated in cases of mitochondrial disease. Nowadays, the mechanisms of assembly for each of the individual complexes are almost completely understood and the knowledge about the assembly factors involved is constantly increasing. On the other hand, it is now well established that complexes I, III and IV interact with each other, forming the so-called respiratory supercomplexes or 'respirasomes', although the pathways that lead to their formation are still not completely clear. This review is a summary of our current knowledge concerning the assembly of complexes I-V and of the supercomplexes.
Collapse
Affiliation(s)
- Alba Signes
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K.
| |
Collapse
|
19
|
Lahiri A, Hedl M, Yan J, Abraham C. Human LACC1 increases innate receptor-induced responses and a LACC1 disease-risk variant modulates these outcomes. Nat Commun 2017; 8:15614. [PMID: 28593945 PMCID: PMC5472760 DOI: 10.1038/ncomms15614] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Functional consequences for most inflammatory disease-associated loci are incompletely defined, including in the LACC1 (C13orf31) region. Here we show that human peripheral and intestinal myeloid-derived cells express laccase domain-containing 1 (LACC1); LACC1 is expressed in both the cytoplasm and mitochondria. Upon NOD2 stimulation of human macrophages, LACC1 associates with the NOD2-signalling complex, and is critical for optimal NOD2-induced signalling, mitochondrial ROS (mtROS) production, cytokine secretion and bacterial clearance. LACC1 constitutively associates with succinate dehydrogenase (SDH) subunit A, and amplifies pattern recognition receptor (PRR)-induced SDH activity, an important contributor to mtROS production. Relative to LACC1 Ile254, cells transfected with Crohn's disease-risk LACC1 Val254 or LACC1 with mutations of the nearby histidines (249,250) have reduced PRR-induced outcomes. Relative to LACC1 Ile254 carriers, Val254 disease-risk carrier macrophages demonstrate decreased PRR-induced mtROS, signalling, cytokine secretion and bacterial clearance. Therefore, LACC1 is critical for amplifying PRR-induced outcomes, an effect that is attenuated by the LACC1 disease-risk variant.
Collapse
Affiliation(s)
- Amit Lahiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| | - Matija Hedl
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| | - Jie Yan
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| | - Clara Abraham
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| |
Collapse
|
20
|
Rizza S, Montagna C, Cardaci S, Maiani E, Di Giacomo G, Sanchez-Quiles V, Blagoev B, Rasola A, De Zio D, Stamler JS, Cecconi F, Filomeni G. S-nitrosylation of the Mitochondrial Chaperone TRAP1 Sensitizes Hepatocellular Carcinoma Cells to Inhibitors of Succinate Dehydrogenase. Cancer Res 2016; 76:4170-82. [PMID: 27216192 DOI: 10.1158/0008-5472.can-15-2637] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/20/2016] [Indexed: 11/16/2022]
Abstract
S-nitrosoglutathione reductase (GSNOR) represents the best-documented denitrosylase implicated in regulating the levels of proteins posttranslationally modified by nitric oxide on cysteine residues by S-nitrosylation. GSNOR controls a diverse array of physiologic functions, including cellular growth and differentiation, inflammation, and metabolism. Chromosomal deletion of GSNOR results in pathologic protein S-nitrosylation that is implicated in human hepatocellular carcinoma (HCC). Here we identify a metabolic hallmark of aberrant S-nitrosylation in HCC and exploit it for therapeutic gain. We find that hepatocyte GSNOR deficiency is characterized by mitochondrial alteration and by marked increases in succinate dehydrogenase (SDH) levels and activity. We find that this depends on the selective S-nitrosylation of Cys(501) in the mitochondrial chaperone TRAP1, which mediates its degradation. As a result, GSNOR-deficient cells and tumors are highly sensitive to SDH inhibition, namely to α-tocopheryl succinate, an SDH-targeting molecule that induced RIP1/PARP1-mediated necroptosis and inhibited tumor growth. Our work provides a specific molecular signature of aberrant S-nitrosylation in HCC, a novel molecular target in SDH, and a first-in-class therapy to treat the disease. Cancer Res; 76(14); 4170-82. ©2016 AACR.
Collapse
Affiliation(s)
- Salvatore Rizza
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Costanza Montagna
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Simone Cardaci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Emiliano Maiani
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Virginia Sanchez-Quiles
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Andrea Rasola
- CNR Institute of Neuroscience and Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Daniela De Zio
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Case Western Reserve University and Harrington Discovery Institute, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark. Department of Biology, University of Rome Tor Vergata, Rome, Italy. IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Filomeni
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark. Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
21
|
Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1086-1101. [PMID: 26971832 DOI: 10.1016/j.bbabio.2016.03.012] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/31/2022]
Abstract
Succinate is an important metabolite at the cross-road of several metabolic pathways, also involved in the formation and elimination of reactive oxygen species. However, it is becoming increasingly apparent that its realm extends to epigenetics, tumorigenesis, signal transduction, endo- and paracrine modulation and inflammation. Here we review the pathways encompassing succinate as a metabolite or a signal and how these may interact in normal and pathological conditions.(1).
Collapse
|
22
|
Omar NM. Nigella sativa oil alleviates ultrastructural alterations induced by tramadol in rat motor cerebral cortex. J Microsc Ultrastruct 2015; 4:76-84. [PMID: 30023213 PMCID: PMC6014209 DOI: 10.1016/j.jmau.2015.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/01/2015] [Accepted: 12/02/2015] [Indexed: 10/27/2022] Open
Abstract
Tramadol is an opioid analgesic used to alleviate acute and chronic pain. Nigella sativa oil is one of the traditional remedies with antioxidant activity. This study was designed in order to investigate the ultrastructural alterations induced by tramadol in the rat cerebral cortex and to find out any possible protective effect of N. sativa oil against these alterations. Twenty-four male albino rats were assigned to three groups. Group I received intraperitoneal and oral normal saline for 30 days. Group II received intraperitoneal injections of tramadol 20 mg/kg/day, 40 mg/kg/day and 80 mg/kg/day on the first, second and third 10 days of the study, respectively. Group III received intraperitoneal tramadol similar to Group II and oral N. sativa oil at a dose of 4 ml/kg/day for 30 days. Specimens from the motor area were obtained and processed for transmission electron microscopy. In the tramadol-treated group, pyramidal and granular cells appeared shrunken and showed ultrastructural features of apoptosis such as nuclear membrane invaginations, chromatin margination, dilated rough endoplasmic reticulum, dilated Golgi saccules, and mitochondria with disintegrated cristae. The myelinated axons showed disorganization and splitting of the myelin sheath and contained vacuoles and abnormal mitochondria. Administration of N. sativa oil partially protected the cortical neurons and myelinated axons against tramadol-induced changes. In conclusion, N. sativa oil alleviates ultrastructural apoptotic changes induced by tramadol in the rat motor cerebral cortex.
Collapse
Affiliation(s)
- Nesreen Moustafa Omar
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
23
|
Sesen J, Dahan P, Scotland SJ, Saland E, Dang VT, Lemarié A, Tyler BM, Brem H, Toulas C, Cohen-Jonathan Moyal E, Sarry JE, Skuli N. Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response. PLoS One 2015; 10:e0123721. [PMID: 25867026 PMCID: PMC4395104 DOI: 10.1371/journal.pone.0123721] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/05/2015] [Indexed: 01/08/2023] Open
Abstract
High-grade gliomas, glioblastomas (GB), are refractory to conventional treatment combining surgery, chemotherapy, mainly temozolomide, and radiotherapy. This highlights an urgent need to develop novel therapies and increase the efficacy of radio/chemotherapy for these very aggressive and malignant brain tumors. Recently, tumor metabolism became an interesting potential therapeutic target in various cancers. Accordingly, combining drugs targeting cell metabolism with appropriate chemotherapeutic agents or radiotherapy has become attractive. In light of these perspectives, we were particularly interested in the anti-cancer properties of a biguanide molecule used for type 2 diabetes treatment, metformin. In our present work, we demonstrate that metformin decreases mitochondrial-dependent ATP production and oxygen consumption and increases lactate and glycolytic ATP production. We show that metformin induces decreased proliferation, cell cycle arrest, autophagy, apoptosis and cell death in vitro with a concomitant activation of AMPK, Redd1 and inhibition of the mTOR pathway. Cell sensitivity to metformin also depends on the genetic and mutational backgrounds of the different GB cells used in this study, particularly their PTEN status. Interestingly, knockdown of AMPK and Redd1 with siRNA partially, but incompletely, abrogates the induction of apoptosis by metformin suggesting both AMPK/Redd1-dependent and –independent effects. However, the primary determinant of the effect of metformin on cell growth is the genetic and mutational backgrounds of the glioma cells. We further demonstrate that metformin treatment in combination with temozolomide and/or irradiation induces a synergistic anti-tumoral response in glioma cell lines. Xenografts performed in nude mice demonstrate in vivo that metformin delays tumor growth. As current treatments for GB commonly fail to cure, the need for more effective therapeutic options is overwhelming. Based on these results, metformin could represent a potential enhancer of the cytotoxic effects of temozolomide and/or radiotherapy.
Collapse
Affiliation(s)
- Julie Sesen
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | - Perrine Dahan
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | - Sarah J. Scotland
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Estelle Saland
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | - Van-Thi Dang
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | - Anthony Lemarié
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Christine Toulas
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | | | - Jean-Emmanuel Sarry
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | - Nicolas Skuli
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
24
|
Zhao X, Zhou P, Chen X, Li X, Ding L. Perchlorate-induced oxidative stress in isolated liver mitochondria. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1846-1853. [PMID: 25139032 DOI: 10.1007/s10646-014-1312-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
As a new threat to environment all through the world, perchlorate (ClO4(-)) was predominantly a thyrotoxin, and its toxic manifestations in non-thyroid were also documented. To date, little is known about the effect of ClO4(-) on cell and organelle. To reveal the toxicity of ClO4(-) on living organism in-depth, mitochondria isolated from liver of Carassius auratus were incubated with different concentrations of ClO4(-). The results demonstrated that ClO4(-)-induced mitochondrial oxidative stress, and subsequently caused a gradual opening of permeability transition pore leading to mitochondrial swelling and lipid peroxidative membrane damage. ClO4(-) has a conspicuous inhibition of electron transport chain activity which largely correlated to complexes I and IV. The investigations clearly demonstrated the oxidative stress of ClO4(-) in mitochondria, may well reveal cytotoxic effects in vitro that merit further investigation.
Collapse
Affiliation(s)
- Xiaohu Zhao
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, College of Resources and Environmental Sciences, Wuhan University, Wuhan, 430072, Hubei, China,
| | | | | | | | | |
Collapse
|
25
|
Mitochondrial Ca(2+) influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction. Cell Death Differ 2014; 21:1733-45. [PMID: 24948011 DOI: 10.1038/cdd.2014.84] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/23/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022] Open
Abstract
Massive Ca(2+) influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca(2+) influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca(2+)-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca(2+) binding. Cardiolipin is known to associate with complex II and upon Ca(2+) binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca(2+) binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction.
Collapse
|
26
|
Hwang MS, Rohlena J, Dong LF, Neuzil J, Grimm S. Powerhouse down: Complex II dissociation in the respiratory chain. Mitochondrion 2014; 19 Pt A:20-8. [PMID: 24933571 DOI: 10.1016/j.mito.2014.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022]
Abstract
Complex II of the respiratory chain (RC) recently emerged as a prominent regulator of cell death. In both cancer cells as well as neurodegenerative diseases, mutations in subunits have been found along with other genetic alterations indirectly affecting this complex. Anticancer compounds were developed that target complex II and cause cell death in a tumor-specific way. Our mechanistic understanding of how complex II is activated for cell death induction has recently been made clearer in recent studies, the results of which are covered in this review. This protein assembly is specifically activated for cell death via the dissociation of its SDHA and SDHB subunits from the membrane-anchoring proteins through pH change or mitochondrial Ca(2+) influx. The SDH activity contained in the SDHA/SDHB subcomplex remains intact and then generates, in an uncontrolled fashion, excessive amounts of reactive oxygen species (ROS) for cell death. Future studies on this mitochondrial complex will further elucidate it as a target for cancer treatments and reveal its role as a nexus for many diverse stimuli in cell death signaling.
Collapse
Affiliation(s)
- Ming-Shih Hwang
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Jakub Rohlena
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Lan-Feng Dong
- School of Medical Science, Griffith Health Institute, Griffith University, Southport Qld 4222, Australia
| | - Jiri Neuzil
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic; School of Medical Science, Griffith Health Institute, Griffith University, Southport Qld 4222, Australia
| | - Stefan Grimm
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
27
|
Korolnek T, Hamza I. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front Pharmacol 2014; 5:126. [PMID: 24926267 PMCID: PMC4045156 DOI: 10.3389/fphar.2014.00126] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022] Open
Abstract
Heme is an iron-containing porphyrin ring that serves as a prosthetic group in proteins that function in diverse metabolic pathways. Heme is also a major source of bioavailable iron in the human diet. While the synthesis of heme has been well-characterized, the pathways for heme trafficking remain poorly understood. It is likely that heme transport across membranes is highly regulated, as free heme is toxic to cells. This review outlines the requirement for heme delivery to various subcellular compartments as well as possible mechanisms for the mobilization of heme to these compartments. We also discuss how these trafficking pathways might function during physiological events involving inter- and intra-cellular mobilization of heme, including erythropoiesis, erythrophagocytosis, heme absorption in the gut, as well as heme transport pathways supporting embryonic development. Lastly, we aim to question the current dogma that heme, in toto, is not mobilized from one cell or tissue to another, outlining the evidence for these pathways and drawing parallels to other well-accepted paradigms for copper, iron, and cholesterol homeostasis.
Collapse
Affiliation(s)
- Tamara Korolnek
- Department of Animal & Avian Sciences, University of Maryland, College Park MD, USA ; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park MD, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park MD, USA ; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park MD, USA
| |
Collapse
|
28
|
|
29
|
Mohamed TM, Ghaffar HMA, El Husseiny RMR. Effects of tramadol, clonazepam, and their combination on brain mitochondrial complexes. Toxicol Ind Health 2013; 31:1325-33. [DOI: 10.1177/0748233713491814] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study is an unsubstantiated qualitative assessment of the abused drugs—tramadol and clonazepam. The aim of this study is to evaluate whether the effects of tramadol, clonazepam, and their combination on mitochondrial electron transport chain (ETC) complexes were influential at therapeutic or at progressively increasing doses. The study comprised of a total of 70 healthy male rats, aged 3 months. According to the drug intake regimen, animals were divided into seven groups: control, tramadol therapeutic, clonazepam therapeutic, combination therapeutic, tramadol abuse, clonazepam abuse, and combination abuse group. At the end of the experiment, brain mitochondrial ETC complexes (I, II, III, and IV) were evaluated. Histopathological examinations were also performed on brain tissues. The results showed that groups that received tramadol (therapeutic and abuse) suffered from weight loss. Tramadol abuse group and combination abuse group showed significant decrease in the activities of I, III, and IV complexes but not in the activity of complex II. In conclusion, tramadol but not clonazepam has been found to partially inhibit the activities of respiratory chain complexes I, III, and IV but not the activity of complex II and such inhibition occurred only at doses that exceeded the maximum recommended adult human daily therapeutic doses. This result explains the clinical and histopathological effects of tramadol, such as seizures and red neurons (marker for apoptosis), respectively.
Collapse
Affiliation(s)
- Tarek Mostafa Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hamdy M Abdel Ghaffar
- Forensic Medicine and Clinical toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rabee MR El Husseiny
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
30
|
Grimm S. Respiratory chain complex II as general sensor for apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:565-72. [DOI: 10.1016/j.bbabio.2012.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/09/2012] [Accepted: 09/10/2012] [Indexed: 01/05/2023]
|
31
|
Mitocans, Mitochondria-Targeting Anticancer Drugs. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b12308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Cardaci S, Rizza S, Filomeni G, Bernardini R, Bertocchi F, Mattei M, Paci M, Rotilio G, Ciriolo MR. Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1. Cancer Res 2012; 72:4526-36. [PMID: 22773663 DOI: 10.1158/0008-5472.can-12-1741] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anticancer drug efficacy might be leveraged by strategies to target certain biochemical adaptations of tumors. Here we show how depriving cancer cells of glutamine can enhance the anticancer properties of 3-bromopyruvate, a halogenated analog of pyruvic acid. Glutamine deprival potentiated 3-bromopyruvate chemotherapy by increasing the stability of the monocarboxylate transporter-1, an effect that sensitized cells to metabolic oxidative stress and autophagic cell death. We further elucidated mechanisms through which resistance to chemopotentiation by glutamine deprival could be circumvented. Overall, our findings offer a preclinical proof-of-concept for how to employ 3-bromopyruvate or other monocarboxylic-based drugs to sensitize tumors to chemotherapy.
Collapse
Affiliation(s)
- Simone Cardaci
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim HJ, Khalimonchuk O, Smith PM, Winge DR. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1604-16. [PMID: 22554985 DOI: 10.1016/j.bbamcr.2012.04.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Hyung J Kim
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
34
|
Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc Natl Acad Sci U S A 2012; 109:3808-13. [PMID: 22355128 DOI: 10.1073/pnas.1201089109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme is an iron-coordinated porphyrin that is universally essential as a protein cofactor for fundamental cellular processes, such as electron transport in the respiratory chain, oxidative stress response, or redox reactions in various metabolic pathways. Parasitic kinetoplastid flagellates represent a rare example of organisms that depend on oxidative metabolism but are heme auxotrophs. Here, we show that heme is fully dispensable for the survival of Phytomonas serpens, a plant parasite. Seeking to understand the metabolism of this heme-free eukaryote, we searched for heme-containing proteins in its de novo sequenced genome and examined several cellular processes for which heme has so far been considered indispensable. We found that P. serpens lacks most of the known hemoproteins and does not require heme for electron transport in the respiratory chain, protection against oxidative stress, or desaturation of fatty acids. Although heme is still required for the synthesis of ergosterol, its precursor, lanosterol, is instead incorporated into the membranes of P. serpens grown in the absence of heme. In conclusion, P. serpens is a flagellate with unique metabolic adaptations that allow it to bypass all requirements for heme.
Collapse
|
35
|
Abstract
Mutations in cancer cells affecting subunits of the respiratory chain (RC) indicate a central role of oxidative phosphorylation for tumourigenesis. Recent studies have suggested that such mutations of RC complexes impact apoptosis induction. We review here the evidence for this hypothesis, which in particular emerged from work on how complex I and II mediate signals for apoptosis. Both protein aggregates are specifically inhibited for apoptosis induction through different means by exploiting with protease activation and pH change, two widespread but independent features of dying cells. Nevertheless, both converge on forming reactive oxygen species for the demise of the cell. Investigations into these mitochondrial processes will remain a rewarding area for unravelling the causes of tumourigenesis and for discovering interference options.
Collapse
|
36
|
Dong LF, Jameson VJA, Tilly D, Cerny J, Mahdavian E, Marín-Hernández A, Hernández-Esquivel L, Rodríguez-Enríquez S, Stursa J, Witting PK, Stantic B, Rohlena J, Truksa J, Kluckova K, Dyason JC, Ledvina M, Salvatore BA, Moreno-Sánchez R, Coster MJ, Ralph SJ, Smith RAJ, Neuzil J. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 2011; 286:3717-28. [PMID: 21059645 PMCID: PMC3030374 DOI: 10.1074/jbc.m110.186643] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/28/2010] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC(50) of 80 μM, whereas the electron transfer from CII to CIII was inhibited with IC(50) of 1.5 μM. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser(68) within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug.
Collapse
Affiliation(s)
| | | | - David Tilly
- the Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan 4111, Queensland, Australia
| | | | - Elahe Mahdavian
- the Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115
| | - Alvaro Marín-Hernández
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Luz Hernández-Esquivel
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Sara Rodríguez-Enríquez
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Jan Stursa
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Paul K. Witting
- the Discipline of Pathology, Bosch Research Institute, Sydney Medical School, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Bela Stantic
- Institute for Integrated and Intelligent Systems, and
| | | | | | | | - Jeffrey C. Dyason
- Institute for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| | - Miroslav Ledvina
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Brian A. Salvatore
- the Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115
| | - Rafael Moreno-Sánchez
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Mark J. Coster
- the Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan 4111, Queensland, Australia
| | | | - Robin A. J. Smith
- the Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Jiri Neuzil
- From the School of Medical Science
- Institute for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| |
Collapse
|
37
|
Lemarie A, Huc L, Pazarentzos E, Mahul-Mellier AL, Grimm S. Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ 2010; 18:338-49. [PMID: 20706275 DOI: 10.1038/cdd.2010.93] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The formation of reactive oxygen species (ROS) and the change of the intracellular pH (pH(i)) are common phenomena during apoptosis. How they are interconnected, however, is poorly understood. Here we show that numerous anticancer drugs and cytokines such as Fas ligand and tumour necrosis factor α provoke intracellular acidification and cause the formation of mitochondrial ROS. In parallel, we found that the succinate:ubiquinone oxidoreductase (SQR) activity of the mitochondrial respiratory complex II is specifically impaired without affecting the second enzymatic activity of this complex as a succinate dehydrogenase (SDH). Only in this configuration is complex II an apoptosis mediator and generates superoxides for cell death. This is achieved by the pH(i) decline that leads to the specific dissociation of the SDHA/SDHB subunits, which encompass the SDH activity, from the membrane-bound components of complex II that are required for the SQR activity.
Collapse
Affiliation(s)
- A Lemarie
- Department of Experimental Medicine and Toxicology, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | | | | | | | | |
Collapse
|