1
|
Sonett D, Brown T, Bengtsson-Palme J, Padilla-Gamiño JL, Zaneveld JR. Organelles in the ointment: improved detection of cryptic mitochondrial reads resolves many unknown sequences in cross-species microbiome analyses. ISME COMMUNICATIONS 2024; 4:ycae114. [PMID: 39660011 PMCID: PMC11631352 DOI: 10.1093/ismeco/ycae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/19/2024] [Accepted: 09/23/2024] [Indexed: 12/12/2024]
Abstract
The genomes of mitochondria and chloroplasts contain ribosomal RNA (rRNA) genes, reflecting their ancestry as free-living bacteria. These organellar rRNAs are often amplified in microbiome studies of animals and plants. If identified, they can be discarded, merely reducing sequencing depth. However, we identify certain high-abundance organeller RNAs not identified by common pipelines, which may compromise statistical analysis of microbiome structure and diversity. We quantified this by reanalyzing 7459 samples from seven 16S rRNA studies, including microbiomes from 927 unique animal genera. We find that under-annotation of cryptic mitochondrial and chloroplast reads affects multiple of these large-scale cross-species microbiome comparisons, and varies between host species, biasing comparisons. We offer a straightforward solution: supplementing existing taxonomies with diverse organelle rRNA sequences. This resolves up to 97% of unique unclassified sequences in some entire studies as mitochondrial (14% averaged across all studies), without increasing false positive annotations in mitochondria-free mock communities. Improved annotation decreases the proportion of unknown sequences by ≥10-fold in 2262 of 7459 samples (30%), spanning five of seven major studies examined. We recommend leveraging organelle sequence diversity to better identify organelle gene sequences in microbiome studies, and provide code, data resources and tutorials that implement this approach.
Collapse
Affiliation(s)
- Dylan Sonett
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Tanya Brown
- University of Washington, Division of Biological Sciences, School of Science, Technology, Engineering, and Mathematics, Bothell, WA, United States
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Gothenburg, Sweden
| | | | - Jesse R Zaneveld
- University of Washington, Division of Biological Sciences, School of Science, Technology, Engineering, and Mathematics, Bothell, WA, United States
| |
Collapse
|
2
|
Donath A, Jühling F, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, Middendorf M, Bernt M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res 2020; 47:10543-10552. [PMID: 31584075 PMCID: PMC6847864 DOI: 10.1093/nar/gkz833] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 08/30/2019] [Accepted: 09/29/2019] [Indexed: 11/13/2022] Open
Abstract
With the rapid increase of sequenced metazoan mitochondrial genomes, a detailed manual annotation is becoming more and more infeasible. While it is easy to identify the approximate location of protein-coding genes within mitogenomes, the peculiar processing of mitochondrial transcripts, however, makes the determination of precise gene boundaries a surprisingly difficult problem. We have analyzed the properties of annotated start and stop codon positions in detail, and use the inferred patterns to devise a new method for predicting gene boundaries in de novo annotations. Our method benefits from empirically observed prevalances of start/stop codons and gene lengths, and considers the dependence of these features on variations of genetic codes. Albeit not being perfect, our new approach yields a drastic improvement in the accuracy of gene boundaries and upgrades the mitochondrial genome annotation server MITOS to an even more sophisticated tool for fully automatic annotation of metazoan mitochondrial genomes.
Collapse
Affiliation(s)
- Alexander Donath
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, D-53113 Bonn, Germany
| | - Frank Jühling
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, F-67000 Strasbourg, France.,Université de Strasbourg, 4 Rue Blaise Pascal, F-67081 Strasbourg, France
| | - Marwa Al-Arab
- Bioinformatics, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.,Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon
| | - Stephan H Bernhart
- Bioinformatics, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Franziska Reinhardt
- Bioinformatics, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.,Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, German Centre for Integrative Biodiversity Research (iDiv), and Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.,Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1, D-04103 Leipzig, Germany.,Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.,Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Martin Middendorf
- Swarm Intelligence and Complex Systems, Department of Computer Science, Universität Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany
| | - Matthias Bernt
- Swarm Intelligence and Complex Systems, Department of Computer Science, Universität Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Young Investigators Group Bioinformatics and Transcriptomics Permoserstraße 15, D-04318 Leipzig, Germany
| |
Collapse
|
3
|
Yao H, Xie Z, Dong J, Sun X. The complete mitochondrial genome of Orthonychiurus folsomi (Collembola: Onychiuridae). Mitochondrial DNA B Resour 2019; 5:340-341. [PMID: 33366547 PMCID: PMC7748525 DOI: 10.1080/23802359.2019.1703581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The complete mitochondrial genome of Orthonychiurus folsomi (Schäffer 1900) was sequenced, assembled, and annotated. The mitochondrial genome of O. folsomi has a length of 15,283bp and comprises 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. Two tRNA genes trnS(uga) and trnQ have changed position. A phylogenetic tree of Onychiuridae species showed the polyphyly of this family.
Collapse
Affiliation(s)
- Haifeng Yao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhijing Xie
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,University of Chinese Academy of Sciences, Beijing, China.,J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Jie Dong
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xin Sun
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,University of Chinese Academy of Sciences, Beijing, China.,J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Al Arab M, Höner Zu Siederdissen C, Tout K, Sahyoun AH, Stadler PF, Bernt M. Accurate annotation of protein-coding genes in mitochondrial genomes. Mol Phylogenet Evol 2016; 106:209-216. [PMID: 27693569 DOI: 10.1016/j.ympev.2016.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/29/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022]
Abstract
Mitochondrial genome sequences are available in large number and new sequences become published nowadays with increasing pace. Fast, automatic, consistent, and high quality annotations are a prerequisite for downstream analyses. Therefore, we present an automated pipeline for fast de novo annotation of mitochondrial protein-coding genes. The annotation is based on enhanced phylogeny-aware hidden Markov models (HMMs). The pipeline builds taxon-specific enhanced multiple sequence alignments (MSA) of already annotated sequences and corresponding HMMs using an approximation of the phylogeny. The MSAs are enhanced by fixing unannotated frameshifts, purging of wrong sequences, and removal of non-conserved columns from both ends. A comparison with reference annotations highlights the high quality of the results. The frameshift correction method predicts a large number of frameshifts, many of which are unknown. A detailed analysis of the frameshifts in nad3 of the Archosauria-Testudines group has been conducted.
Collapse
Affiliation(s)
- Marwa Al Arab
- Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon.
| | - Christian Höner Zu Siederdissen
- Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
| | - Kifah Tout
- Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon.
| | - Abdullah H Sahyoun
- Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon; TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria; Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany; Fraunhofer Institut für Zelltherapie und Immunologie, Perlickstraße 1, D-04103 Leipzig, Germany; Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, United States.
| | - Matthias Bernt
- Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04103 Leipzig, Germany.
| |
Collapse
|
5
|
Maddock ST, Briscoe AG, Wilkinson M, Waeschenbach A, San Mauro D, Day JJ, Littlewood DTJ, Foster PG, Nussbaum RA, Gower DJ. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny. PLoS One 2016; 11:e0156757. [PMID: 27280454 PMCID: PMC4900593 DOI: 10.1371/journal.pone.0156757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 05/19/2016] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent) to produce seven (near-) complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing) using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case.
Collapse
Affiliation(s)
- Simon T. Maddock
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
- Department of Animal Management, Reaseheath College, Nantwich, CW5 6DF, United Kingdom
| | - Andrew G. Briscoe
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom
| | - Mark Wilkinson
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom
| | - Andrea Waeschenbach
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom
| | - Diego San Mauro
- Department of Zoology and Physical Anthropology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Julia J. Day
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| | - D. Tim J. Littlewood
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom
| | - Peter G. Foster
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom
| | - Ronald A. Nussbaum
- Museum of Zoology, University of Michigan, Ann Arbor, MI, 48109–1079, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109–1079, United States of America
| | - David J. Gower
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom
| |
Collapse
|
6
|
Guo A. The complete mitochondrial genome of Anoplocephala perfoliata, the first representative for the family Anoplocephalidae. Parasit Vectors 2015; 8:549. [PMID: 26490141 PMCID: PMC4618346 DOI: 10.1186/s13071-015-1172-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/15/2015] [Indexed: 12/02/2022] Open
Abstract
Background Mitochondrial (mt) genome sequences are widely used to understand phylogenetic relationships among parasites. However, no complete mt genome sequence is available in the family Anoplocephalidae to date. This study sequenced and annotated the complete mt genome of Anoplocephala perfoliata (Anoplocephalidae), and investigated its phylogenetic relationships with other species from the families Hymenolepididae, Dipylidiidae and Taeniidae of the order Cyclophyllidea using the amino acid sequences of the 12 proteins in their mt genomes. Methods The complete mt genome of A. perfoliata was amplified by Long-range PCR, sequenced using primer walking and annotated by comparing with those of other cestodes. Its phylogenetic relationship with the species from the families Hymenolepididae, Dipylidiidae and Taeniidae was inferred using the 12 protein sequences based on Maximum likelihood and Bayesian methods. Results The complete circular mt genome sequence for A. perfoliata is 14,459 bp in size, and includes 12 protein-coding genes, 2 rRNA genes and 22 tRNA genes. The mt gene arrangement of A. perfoliata is identical to those of previously reported Hymenolepis diminuta (Hymenolepididae) and Dipylidium caninum (Dipylidiidae), but slightly different from those of other taeniids due to an order switch between tRNA(S2) and tRNA(L1). The phylogenetic analyses showed that the Dipylidiidae was more closely related to Anoplocephalidae and Hymenolepididae than to Taeniidae. The relationship among the four families obtained by Maximum likelihood and Bayesian inferences based on predicted amino acid sequences of protein-coding genes is consistent with that based on their mt gene arrangement similarities. Conclusions This study determined the first mt genome for the family Anoplocephalidae, providing rich sources for selecting useful molecular markers for ecological and phylogenetic studies. Analyses on mt genome sequences of the four families of cestodes provide novel insights into their phylogenetic relationships. Of couse, more taxon sampling is necessary for future phylogenetic studies of these cestodes using mt genome sequences. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1172-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions. PLoS One 2015; 10:e0135405. [PMID: 26285039 PMCID: PMC4540416 DOI: 10.1371/journal.pone.0135405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/21/2015] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I.
Collapse
|
8
|
Dickey AM, Kumar V, Morgan JK, Jara-Cavieres A, Shatters RG, McKenzie CL, Osborne LS. A novel mitochondrial genome architecture in thrips (Insecta: Thysanoptera): extreme size asymmetry among chromosomes and possible recent control region duplication. BMC Genomics 2015; 16:439. [PMID: 26055161 PMCID: PMC4460840 DOI: 10.1186/s12864-015-1672-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Background Multipartite mitochondrial genomes are very rare in animals but have been found previously in two insect orders with highly rearranged genomes, the Phthiraptera (parasitic lice), and the Psocoptera (booklice/barklice). Results We provide the first report of a multipartite mitochondrial genome architecture in a third order with highly rearranged genomes: Thysanoptera (thrips). We sequenced the complete mitochondrial genomes of two divergent members of the Scirtothrips dorsalis cryptic species complex. The East Asia 1 species has the single circular chromosome common to animals while the South Asia 1 species has a genome consisting of two circular chromosomes. The fragmented South Asia 1 genome exhibits extreme chromosome size asymmetry with the majority of genes on the large, 14.28 kb, chromosome and only nad6 and trnC on the 0.92 kb mini-circle chromosome. This genome also features paralogous control regions with high similarity suggesting a very recent origin of the nad6 mini-circle chromosome in the South Asia 1 cryptic species. Conclusions Thysanoptera, along with the other minor paraenopteran insect orders should be considered models for rapid mitochondrial genome evolution, including fragmentation. Continued use of these models will facilitate a greater understanding of recombination and other mitochondrial genome evolutionary processes across eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1672-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron M Dickey
- Subtropical Insects Research Unit, US Horticultural Research Laboratory, Fort Pierce, USA. .,Mid-Florida Research & Education Center, University of Florida, Apopka, USA. .,Present Address: Agricultural Research Service, US Department of Agriculture, Clay Center, USA.
| | - Vivek Kumar
- Subtropical Insects Research Unit, US Horticultural Research Laboratory, Fort Pierce, USA. .,Mid-Florida Research & Education Center, University of Florida, Apopka, USA.
| | - J Kent Morgan
- Subtropical Insects Research Unit, US Horticultural Research Laboratory, Fort Pierce, USA. .,Present Address: J. Kent Morgan Consulting, Fort Pierce, USA.
| | | | - Robert G Shatters
- Subtropical Insects Research Unit, US Horticultural Research Laboratory, Fort Pierce, USA. .,US Department of Agriculture, Agricultural Research Service, Fort Pierce, USA.
| | - Cindy L McKenzie
- Subtropical Insects Research Unit, US Horticultural Research Laboratory, Fort Pierce, USA. .,US Department of Agriculture, Agricultural Research Service, Fort Pierce, USA.
| | - Lance S Osborne
- Mid-Florida Research & Education Center, University of Florida, Apopka, USA.
| |
Collapse
|
9
|
Xia Y, Zheng Y, Miura I, Wong PBY, Murphy RW, Zeng X. The evolution of mitochondrial genomes in modern frogs (Neobatrachia): nonadaptive evolution of mitochondrial genome reorganization. BMC Genomics 2014; 15:691. [PMID: 25138662 PMCID: PMC4153901 DOI: 10.1186/1471-2164-15-691] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 08/12/2014] [Indexed: 11/25/2022] Open
Abstract
Background Although mitochondrial (mt) gene order is highly conserved among vertebrates, widespread gene rearrangements occur in anurans, especially in neobatrachians. Protein coding genes in the mitogenome experience adaptive or purifying selection, yet the role that selection plays on genomic reorganization remains unclear. We sequence the mitogenomes of three species of Glandirana and hot spots of gene rearrangements of 20 frog species to investigate the diversity of mitogenomic reorganization in the Neobatrachia. By combing these data with other mitogenomes in GenBank, we evaluate if selective pressures or functional constraints act on mitogenomic reorganization in the Neobatrachia. We also look for correlations between tRNA positions and codon usage. Results Gene organization in Glandirana was typical of neobatrachian mitogenomes except for the presence of pseudogene trnS (AGY). Surveyed ranids largely exhibited gene arrangements typical of neobatrachian mtDNA although some gene rearrangements occurred. The correlation between codon usage and tRNA positions in neobatrachians was weak, and did not increase after identifying recurrent rearrangements as revealed by basal neobatrachians. Codon usage and tRNA positions were not significantly correlated when considering tRNA gene duplications or losses. Change in number of tRNA gene copies, which was driven by genomic reorganization, did not influence codon usage bias. Nucleotide substitution rates and dN/dS ratios were higher in neobatrachian mitogenomes than in archaeobatrachians, but the rates of mitogenomic reorganization and mt nucleotide diversity were not significantly correlated. Conclusions No evidence suggests that adaptive selection drove the reorganization of neobatrachian mitogenomes. In contrast, protein-coding genes that function in metabolism showed evidence for purifying selection, and some functional constraints appear to act on the organization of rRNA and tRNA genes. As important nonadaptive forces, genetic drift and mutation pressure may drive the fixation and evolution of mitogenomic reorganizations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-691) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
10
|
Moritz RLV, Bernt M, Middendorf M. Local similarity search to find gene indicators in mitochondrial genomes. BIOLOGY 2014; 3:220-242. [PMID: 24833343 PMCID: PMC4009762 DOI: 10.3390/biology3010220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
Given a set of nucleotide sequences we consider the problem of identifying conserved substrings occurring in homologous genes in a large number of sequences. The problem is solved by identifying certain nodes in a suffix tree containing all substrings occurring in the given nucleotide sequences. Due to the large size of the targeted data set, our approach employs a truncated version of suffix trees. Two methods for this task are introduced: (1) The annotation guided marker detection method uses gene annotations which might contain a moderate number of errors; (2) The probability based marker detection method determines sequences that appear significantly more often than expected. The approach is successfully applied to the mitochondrial nucleotide sequences, and the corresponding annotations that are available in RefSeq for 2989 metazoan species. We demonstrate that the approach finds appropriate substrings.
Collapse
Affiliation(s)
- Ruby L V Moritz
- Department of Computer Science, University of Leipzig, Postfach 100920, Leipzig D-04009, Germany.
| | - Matthias Bernt
- Department of Computer Science, University of Leipzig, Postfach 100920, Leipzig D-04009, Germany.
| | - Martin Middendorf
- Department of Computer Science, University of Leipzig, Postfach 100920, Leipzig D-04009, Germany.
| |
Collapse
|
11
|
San Mauro D, Gower DJ, Müller H, Loader SP, Zardoya R, Nussbaum RA, Wilkinson M. Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Mol Phylogenet Evol 2014; 73:177-89. [PMID: 24480323 DOI: 10.1016/j.ympev.2014.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 11/27/2022]
Abstract
We analyze mitochondrial genomes to reconstruct a robust phylogenetic framework for caecilian amphibians and use this to investigate life-history evolution within the group. Our study comprises 45 caecilian mitochondrial genomes (19 of them newly reported), representing all families and 27 of 32 currently recognized genera, including some for which molecular data had never been reported. Support for all relationships in the inferred phylogenetic tree is high to maximal, and topology tests reject all investigated alternatives, indicating an exceptionally robust molecular phylogenetic framework of caecilian evolution consistent with current morphology-based supraspecific classification. We used the mitogenomic phylogenetic framework to infer ancestral character states and to assess correlation among three life-history traits (free-living larvae, viviparity, specialized pre-adult or vernal teeth), each of which occurs only in some caecilian species. Our results provide evidence that an ancestor of the Seychelles caecilians abandoned direct development and re-evolved a free-living larval stage. This study yields insights into the concurrent evolution of direct development and of vernal teeth in an ancestor of Teresomata that likely gave rise to skin-feeding (maternal dermatophagy) behavior and subsequently enabled evolution of viviparity, with skin feeding possibly a homologous precursor of oviduct feeding in viviparous caecilians.
Collapse
Affiliation(s)
- Diego San Mauro
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Hendrik Müller
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Simon P Loader
- University of Basel, Biogeography Research Group, Department of Environmental Sciences, Basel 4056, Switzerland
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Ronald A Nussbaum
- Museum of Zoology, University of Michigan, 1109 Geddes Ave., Ann Arbor, MI 48109-1079, United States
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| |
Collapse
|
12
|
Vanhove MPM, Tessens B, Schoelinck C, Jondelius U, Littlewood DTJ, Artois T, Huyse T. Problematic barcoding in flatworms: A case-study on monogeneans and rhabdocoels (Platyhelminthes). Zookeys 2013:355-79. [PMID: 24453567 PMCID: PMC3890687 DOI: 10.3897/zookeys.365.5776] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/02/2013] [Indexed: 11/12/2022] Open
Abstract
Some taxonomic groups are less amenable to mitochondrial DNA barcoding than others. Due to the paucity of molecular information of understudied groups and the huge molecular diversity within flatworms, primer design has been hampered. Indeed, all attempts to develop universal flatworm-specific COI markers have failed so far. We demonstrate how high molecular variability and contamination problems limit the possibilities for barcoding using standard COI-based protocols in flatworms. As a consequence, molecular identification methods often rely on other widely applicable markers. In the case of Monogenea, a very diverse group of platyhelminth parasites, and Rhabdocoela, representing one-fourth of all free-living flatworm taxa, this has led to a relatively high availability of nuclear ITS and 18S/28S rDNA sequences on GenBank. In a comparison of the effectiveness in species assignment we conclude that mitochondrial and nuclear ribosomal markers perform equally well. In case intraspecific information is needed, rDNA sequences can guide the selection of the appropriate (i.e. taxon-specific) COI primers if available.
Collapse
Affiliation(s)
- Maarten P M Vanhove
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium ; Present address: Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Bart Tessens
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Ulf Jondelius
- Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - D Tim J Littlewood
- Division of Parasites & Vectors, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Tom Artois
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tine Huyse
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium ; Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
13
|
Bernt M, Braband A, Middendorf M, Misof B, Rota-Stabelli O, Stadler PF. Bioinformatics methods for the comparative analysis of metazoan mitochondrial genome sequences. Mol Phylogenet Evol 2013; 69:320-7. [DOI: 10.1016/j.ympev.2012.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/31/2012] [Accepted: 09/17/2012] [Indexed: 01/25/2023]
|
14
|
Kurabayashi A, Sumida M. Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes. BMC Genomics 2013; 14:633. [PMID: 24053406 PMCID: PMC3852066 DOI: 10.1186/1471-2164-14-633] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus, Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids. RESULTS Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates. Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of triplicated 12S and 16S ribosomal RNA regions. CONCLUSIONS Phylogenetic analyses based on mitogenomic data support a close relationship between Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and second non-tandem duplication model for mt gene rearrangements and the recombination-based model for concerted evolution of duplicated mt regions. We also showed that specific nucleotide substitution and compositional patterns expected in duplicated and rearranged mt genes did not occur, suggesting no disadvantage in employing these genes for phylogenetic inference.
Collapse
Affiliation(s)
- Atsushi Kurabayashi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 739-8526 Hiroshima, Japan
| | - Masayuki Sumida
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 739-8526 Hiroshima, Japan
| |
Collapse
|
15
|
Geller J, Meyer C, Parker M, Hawk H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour 2013; 13:851-61. [PMID: 23848937 DOI: 10.1111/1755-0998.12138] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/22/2013] [Accepted: 06/05/2013] [Indexed: 11/30/2022]
Abstract
DNA barcoding is a powerful tool for species detection, identification and discovery. Metazoan DNA barcoding is primarily based upon a specific region of the cytochrome c oxidase subunit I gene that is PCR amplified by primers HCO2198 and LCO1490 ('Folmer primers') designed by Folmer et al. (Molecular Marine Biology and Biotechnology, 3, 1994, 294). Analysis of sequences published since 1994 has revealed mismatches in the Folmer primers to many metazoans. These sequences also show that an extremely high level of degeneracy would be necessary in updated Folmer primers to maintain broad taxonomic utility. In primers jgHCO2198 and jgLCO1490, we replaced most fully degenerated sites with inosine nucleotides that complement all four natural nucleotides and modified other sites to better match major marine invertebrate groups. The modified primers were used to amplify and sequence cytochrome c oxidase subunit I from 9105 specimens from Moorea, French Polynesia and San Francisco Bay, California, USA representing 23 phyla, 42 classes and 121 orders. The new primers, jgHCO2198 and jgLCO1490, are well suited for routine DNA barcoding, all-taxon surveys and metazoan metagenomics.
Collapse
Affiliation(s)
- J Geller
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95309, USA.
| | | | | | | |
Collapse
|
16
|
Pante E, Saucier EH, France SC. Molecular and morphological data support reclassification of the octocoral genus Isidoides. INVERTEBR SYST 2013. [DOI: 10.1071/is12053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The rare octocoral genus Isidoides Nutting, 1910 was originally placed in the Gorgonellidae (now the Ellisellidae), even though it showed a remarkable similarity to the Isidae (now the Isididae). Isidoides was not classified in the Isididae mostly because the type specimen lacked skeletal nodes, a defining characteristic of that family. The genus was later assigned to the Chrysogorgiidae based on sclerite morphology. Specimens were recently collected in the south-western Pacific, providing material for genetic analysis and detailed characterisation of the morphology, and allowing us to consider the systematic placement of this taxon within the suborder Calcaxonia. A previously reported phylogeny allowed us to reject monophyly with the Chrysogorgiidae, and infer a close relationship with the Isididae subfamily Keratoisidinae. While scanning for molecular variation across mitochondrial genes, we discovered a novel gene order that is, based on available data, unique among metazoans. Despite these new data, the systematic placement of Isidoides is still unclear, as (1) the phylogenetic relationships among Isididae subfamilies remain poorly resolved, (2) genetic distances between mitochondrial mtMutS sequences from Isidoides and Keratoisidinae are characteristic of intra-familial distances, and (3) mitochondrial gene rearrangements may occur among confamilial genera. For these reasons, and because a revision of the Isididae is beyond the scope of this contribution, we amend the familial placement of Isidoides to incertae sedis.
Collapse
|
17
|
Ghiselli F, Milani L, Guerra D, Chang PL, Breton S, Nuzhdin SV, Passamonti M. Structure, transcription, and variability of metazoan mitochondrial genome: perspectives from an unusual mitochondrial inheritance system. Genome Biol Evol 2013; 5:1535-54. [PMID: 23882128 PMCID: PMC3762199 DOI: 10.1093/gbe/evt112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 12/13/2022] Open
Abstract
Despite its functional conservation, the mitochondrial genome (mtDNA) presents strikingly different features among eukaryotes, such as size, rearrangements, and amount of intergenic regions. Nonadaptive processes such as random genetic drift and mutation rate play a fundamental role in shaping mtDNA: the mitochondrial bottleneck and the number of germ line replications are critical factors, and different patterns of germ line differentiation could be responsible for the mtDNA diversity observed in eukaryotes. Among metazoan, bivalve mollusc mtDNAs show unusual features, like hypervariable gene arrangements, high mutation rates, large amount of intergenic regions, and, in some species, an unique inheritance system, the doubly uniparental inheritance (DUI). The DUI system offers the possibility to study the evolutionary dynamics of mtDNAs that, despite being in the same organism, experience different genetic drift and selective pressures. We used the DUI species Ruditapes philippinarum to study intergenic mtDNA functions, mitochondrial transcription, and polymorphism in gonads. We observed: 1) the presence of conserved functional elements and novel open reading frames (ORFs) that could explain the evolutionary persistence of intergenic regions and may be involved in DUI-specific features; 2) that mtDNA transcription is lineage-specific and independent from the nuclear background; and 3) that male-transmitted and female-transmitted mtDNAs have a similar amount of polymorphism but of different kinds, due to different population size and selection efficiency. Our results are consistent with the hypotheses that mtDNA evolution is strongly dependent on the dynamics of germ line formation, and that the establishment of a male-transmitted mtDNA lineage can increase male fitness through selection on sperm function.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes. BMC Genomics 2012; 13:631. [PMID: 23153176 PMCID: PMC3533576 DOI: 10.1186/1471-2164-13-631] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. RESULTS We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. CONCLUSIONS Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda.
Collapse
|
19
|
Irisarri I, San Mauro D, Abascal F, Ohler A, Vences M, Zardoya R. The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics 2012; 13:626. [PMID: 23153022 PMCID: PMC3551647 DOI: 10.1186/1471-2164-13-626] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/04/2012] [Indexed: 01/20/2023] Open
Abstract
Background Understanding the causes underlying heterogeneity of molecular evolutionary rates among lineages is a long-standing and central question in evolutionary biology. Although several earlier studies showed that modern frogs (Neobatrachia) experienced an acceleration of mitochondrial gene substitution rates compared to non-neobatrachian relatives, no further characterization of this phenomenon was attempted. To gain new insights on this topic, we sequenced the complete mitochondrial genomes and nine nuclear loci of one pelobatoid (Pelodytes punctatus) and five neobatrachians, Heleophryne regis (Heleophrynidae), Lechriodus melanopyga (Limnodynastidae), Calyptocephalella gayi (Calyptocephalellidae), Telmatobius bolivianus (Ceratophryidae), and Sooglossus thomasseti (Sooglossidae). These represent major clades not included in previous mitogenomic analyses, and most of them are remarkably species-poor compared to other neobatrachians. Results We reconstructed a fully resolved and robust phylogeny of extant frogs based on the new mitochondrial and nuclear sequence data, and dated major cladogenetic events. The reconstructed tree recovered Heleophryne as sister group to all other neobatrachians, the Australasian Lechriodus and the South American Calyptocephalella formed a clade that was the sister group to Nobleobatrachia, and the Seychellois Sooglossus was recovered as the sister group of Ranoides. We used relative-rate tests and direct comparison of branch lengths from mitochondrial and nuclear-based trees to demonstrate that both mitochondrial and nuclear evolutionary rates are significantly higher in all neobatrachians compared to their non-neobatrachian relatives, and that such rate acceleration started at the origin of Neobatrachia. Conclusions Through the analysis of the selection coefficient (ω) in different branches of the tree, we found compelling evidence of relaxation of purifying selection in neobatrachians, which could (at least in part) explain the observed higher mitochondrial and nuclear substitution rates in this clade. Our analyses allowed us to discard that changes in substitution rates could be correlated with increased mitochondrial genome rearrangement or diversification rates observed in different lineages of neobatrachians.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Montagna M, Sassera D, Griggio F, Epis S, Bandi C, Gissi C. Tick-box for 3'-end formation of mitochondrial transcripts in Ixodida, basal chelicerates and Drosophila. PLoS One 2012; 7:e47538. [PMID: 23077630 PMCID: PMC3471875 DOI: 10.1371/journal.pone.0047538] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/12/2012] [Indexed: 01/01/2023] Open
Abstract
According to the tRNA punctuation model, the mitochondrial genome (mtDNA) of mammals and arthropods is transcribed as large polycistronic precursors that are maturated by endonucleolytic cleavage at tRNA borders and RNA polyadenylation. Starting from the newly sequenced mtDNA of Ixodes ricinus and using a combination of mitogenomics and transcriptional analyses, we found that in all currently-sequenced tick lineages (Prostriata, Metastriata and Argasidae) the 3'-end of the polyadenylated nad1 and rrnL transcripts does not follow the tRNA punctuation model and is located upstream of a degenerate 17-bp DNA motif. A slightly different motif is also present downstream the 3'-end of nad1 transcripts in the primitive chelicerate Limulus polyphemus and in Drosophila species, indicating the ancient origin and the evolutionary conservation of this motif in arthropods. The transcriptional analyses suggest that this motif directs the 3'-end formation of the nad1/rrnL mature RNAs, likely working as a transcription termination signal or a processing signal of precursor transcripts. Moreover, as most regulatory elements, this motif is characterized by a taxon-specific evolution. Although this signal is not exclusive of ticks, making a play on words it has been named "Tick-Box", since it is a check mark that has to be verified for the 3'-end formation of some mt transcripts, and its consensus sequence has been here carefully characterized in ticks. Indeed, in the whole mtDNA of all ticks, the Tick-Box is always present downstream of nad1 and rrnL, mainly in non-coding regions (NCRs) and occasionally within trnL(CUN). However, some metastriates present a third Tick-Box at an intriguing site--inside the small NCR located at one end of a 3.4 kb translocated region, the other end of which exhibits the nad1 Tick-Box--hinting that this motif could have been involved in metastriate gene order rearrangements.
Collapse
Affiliation(s)
- Matteo Montagna
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy
| | - Davide Sassera
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy
| | - Francesca Griggio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Sara Epis
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy
| | - Claudio Bandi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy
| | - Carmela Gissi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
21
|
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 2012; 69:313-9. [PMID: 22982435 DOI: 10.1016/j.ympev.2012.08.023] [Citation(s) in RCA: 3664] [Impact Index Per Article: 281.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/11/2012] [Accepted: 08/27/2012] [Indexed: 11/16/2022]
Abstract
About 2000 completely sequenced mitochondrial genomes are available from the NCBI RefSeq data base together with manually curated annotations of their protein-coding genes, rRNAs, and tRNAs. This annotation information, which has accumulated over two decades, has been obtained with a diverse set of computational tools and annotation strategies. Despite all efforts of manual curation it is still plagued by misassignments of reading directions, erroneous gene names, and missing as well as false positive annotations in particular for the RNA genes. Taken together, this causes substantial problems for fully automatic pipelines that aim to use these data comprehensively for studies of animal phylogenetics and the molecular evolution of mitogenomes. The MITOS pipeline is designed to compute a consistent de novo annotation of the mitogenomic sequences. We show that the results of MITOS match RefSeq and MitoZoa in terms of annotation coverage and quality. At the same time we avoid biases, inconsistencies of nomenclature, and typos originating from manual curation strategies. The MITOS pipeline is accessible online at http://mitos.bioinf.uni-leipzig.de.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University Leipzig, Augustusplatz 10-11, 04109 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nardi F, Carapelli A, Frati F. Repeated regions in mitochondrial genomes: Distribution, origin and evolutionary significance. Mitochondrion 2012; 12:483-91. [DOI: 10.1016/j.mito.2012.07.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 04/05/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|
23
|
The mitogenome of Gammarus duebeni (Crustacea Amphipoda): A new gene order and non-neutral sequence evolution of tandem repeats in the control region. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:201-11. [DOI: 10.1016/j.cbd.2012.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 11/23/2022]
|
24
|
Brabec J, Scholz T, Králová-Hromadová I, Bazsalovicsová E, Olson PD. Substitution saturation and nuclear paralogs of commonly employed phylogenetic markers in the Caryophyllidea, an unusual group of non-segmented tapeworms (Platyhelminthes). Int J Parasitol 2012; 42:259-67. [DOI: 10.1016/j.ijpara.2012.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 11/24/2022]
|
25
|
Webster BL, Littlewood DTJ. Mitochondrial gene order change in Schistosoma (Platyhelminthes: Digenea: Schistosomatidae). Int J Parasitol 2012; 42:313-21. [DOI: 10.1016/j.ijpara.2012.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
San Mauro D, Gower DJ, Cotton JA, Zardoya R, Wilkinson M, Massingham T. Experimental Design in Phylogenetics: Testing Predictions from Expected Information. Syst Biol 2012; 61:661-74. [DOI: 10.1093/sysbio/sys028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Diego San Mauro
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - David J. Gower
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - James A. Cotton
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales—CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Mark Wilkinson
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Tim Massingham
- EMBL—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
27
|
Advances in the study of helminth mitochondrial genomes and their associated applications. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-011-4748-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Nardi F, Carapelli A, Frati F. Internal consistency as a method to assess the quality of dating estimates using multiple markers. Mol Phylogenet Evol 2011; 62:874-9. [PMID: 22155713 DOI: 10.1016/j.ympev.2011.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/10/2011] [Accepted: 11/27/2011] [Indexed: 10/14/2022]
Abstract
Multiple tools are available to infer time in phylogentic reconstructions and multiple markers/genes are generally used to obtain more solid reconstructions, opening to the issue of which marker performs better in dating. Following the observation that multiple markers, applied to the same group of taxa or even to the same topology, generally produce different time estimates, we suggest two new estimators: DD(jk) to quantify the discordance between two ultrametric dated trees with identical topology and ID(j) to quantify the discordance of one tree with respect to a study-set of trees in terms of their date estimates. Furthermore we suggest a procedure based on a stepwise exclusion algorithm to rank trees from the most to the least consistent with the study-set of trees based on their time estimates. We name the quality of a tree of having time estimates that agree with the majority of other trees as 'internal consistency'. We applied this procedure to assess the internal consistency of trees individually obtained from 14 mitochondrial markers in 5 insect orders and to test whether one or more markers repeatedly produce dates that are more consistent. Three genes (nad4, nad5 and cytb) repeatedly perform better than others, one (cox2) worse. We suggest this method could be applied in evaluating the performance of different markers preliminary to a dating analysis.
Collapse
Affiliation(s)
- Francesco Nardi
- Dept. of Evolutionary Biology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | | | | |
Collapse
|
29
|
D'Onorio de Meo P, D'Antonio M, Griggio F, Lupi R, Borsani M, Pavesi G, Castrignanò T, Pesole G, Gissi C. MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids Res 2011; 40:D1168-72. [PMID: 22123747 PMCID: PMC3245153 DOI: 10.1093/nar/gkr1144] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The MITOchondrial genome database of metaZOAns (MitoZoa) is a public resource for comparative analyses of metazoan mitochondrial genomes (mtDNA) at both the sequence and genomic organizational levels. The main characteristics of the MitoZoa database are the careful revision of mtDNA entry annotations and the possibility of retrieving gene order and non-coding region (NCR) data in appropriate formats. The MitoZoa retrieval system enables basic and complex queries at various taxonomic levels using different search menus. MitoZoa 2.0 has been enhanced in several aspects, including: a re-annotation pipeline to check the correctness of protein-coding gene predictions; a standardized annotation of introns and of precursor ORFs whose functionality is post-transcriptionally recovered by RNA editing or programmed translational frameshifting; updates of taxon-related fields and a BLAST sequence similarity search tool. Database novelties and the definition of standard mtDNA annotation rules, together with the user-friendly retrieval system and the BLAST service, make MitoZoa a valuable resource for comparative and evolutionary analyses as well as a reference database to assist in the annotation of novel mtDNA sequences. MitoZoa is freely accessible at http://www.caspur.it/mitozoa.
Collapse
Affiliation(s)
- Paolo D'Onorio de Meo
- CASPUR, Consorzio interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Passamonti M, Ricci A, Milani L, Ghiselli F. Mitochondrial genomes and Doubly Uniparental Inheritance: new insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae). BMC Genomics 2011; 12:442. [PMID: 21896183 PMCID: PMC3176263 DOI: 10.1186/1471-2164-12-442] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doubly Uniparental Inheritance (DUI) is a fascinating exception to matrilinear inheritance of mitochondrial DNA (mtDNA). Species with DUI are characterized by two distinct mtDNAs that are inherited either through females (F-mtDNA) or through males (M-mtDNA). DUI sex-linked mitochondrial genomes share several unusual features, such as additional protein coding genes and unusual gene duplications/structures, which have been related to the functionality of DUI. Recently, new evidence for DUI was found in the mytilid bivalve Musculista senhousia. This paper describes the complete sex-linked mitochondrial genomes of this species. RESULTS Our analysis highlights that both M and F mtDNAs share roughly the same gene content and order, but with some remarkable differences. The Musculista sex-linked mtDNAs have differently organized putative control regions (CR), which include repeats and palindromic motifs, thought to provide sites for DNA-binding proteins involved in the transcriptional machinery. Moreover, in male mtDNA, two cox2 genes were found, one (M-cox2b) 123bp longer. CONCLUSIONS The complete mtDNA genome characterization of DUI bivalves is the first step to unravel the complex genetic signals allowing Doubly Uniparental Inheritance, and the evolutionary implications of such an unusual transmission route in mitochondrial genome evolution in Bivalvia. The observed redundancy of the palindromic motifs in Musculista M-mtDNA may have a role on the process by which sperm mtDNA becomes dominant or exclusive of the male germline of DUI species. Moreover, the duplicated M-COX2b gene may have a different, still unknown, function related to DUI, in accordance to what has been already proposed for other DUI species in which a similar cox2 extension has been hypothesized to be a tag for male mitochondria.
Collapse
Affiliation(s)
- Marco Passamonti
- Department of Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
31
|
Bengtsson J, Eriksson KM, Hartmann M, Wang Z, Shenoy BD, Grelet GA, Abarenkov K, Petri A, Rosenblad MA, Nilsson RH. Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Antonie van Leeuwenhoek 2011; 100:471-5. [PMID: 21674231 DOI: 10.1007/s10482-011-9598-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/27/2011] [Indexed: 12/22/2022]
Abstract
The ribosomal small subunit (SSU) rRNA gene has emerged as an important genetic marker for taxonomic identification in environmental sequencing datasets. In addition to being present in the nucleus of eukaryotes and the core genome of prokaryotes, the gene is also found in the mitochondria of eukaryotes and in the chloroplasts of photosynthetic eukaryotes. These three sets of genes are conceptually paralogous and should in most situations not be aligned and analyzed jointly. To identify the origin of SSU sequences in complex sequence datasets has hitherto been a time-consuming and largely manual undertaking. However, the present study introduces Metaxa ( http://microbiology.se/software/metaxa/ ), an automated software tool to extract full-length and partial SSU sequences from larger sequence datasets and assign them to an archaeal, bacterial, nuclear eukaryote, mitochondrial, or chloroplast origin. Using data from reference databases and from full-length organelle and organism genomes, we show that Metaxa detects and scores SSU sequences for origin with very low proportions of false positives and negatives. We believe that this tool will be useful in microbial and evolutionary ecology as well as in metagenomics.
Collapse
Affiliation(s)
- Johan Bengtsson
- Department of Plant and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Castellana S, Vicario S, Saccone C. Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein coding genes. Genome Biol Evol 2011; 3:1067-1079. [PMID: 21551352 PMCID: PMC3229188 DOI: 10.1093/gbe/evr040] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The mitochondrial genome is a fundamental component of the eukaryotic domain of life, encoding for several important subunits of the respiratory chain, the main energy production system in cells. The processes by means of which mitochondrial DNA (mtDNA) replicates, expresses itself and evolves have been explored over the years, although various aspects are still debated. In this review, we present several key points in modern research on the role of evolutionary forces in affecting mitochondrial genomes in Metazoa. In particular, we assemble the main data on their evolution, describing the contributions of mutational pressure, purifying, and adaptive selection, and how they are related. We also provide data on the evolutionary fate of the mitochondrial synonymous variation, related to the nonsynonymous variation, in comparison with the pattern detected in the nucleus. Elevated mutational pressure characterizes the evolution of the mitochondrial synonymous variation, whereas purging selection, physiologically due to phenomena such as cell atresia and intracellular mtDNA selection, guarantees coding sequence functionality. This enables mitochondrial adaptive mutations to emerge and fix in the population, promoting mitonuclear coevolution.
Collapse
Affiliation(s)
- S Castellana
- Department of Genetics and Microbiology, University of Bari 'Aldo Moro', Bari, Italy
| | | | | |
Collapse
|
33
|
Irisarri I, Vences M, San Mauro D, Glaw F, Zardoya R. Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae. BMC Evol Biol 2011; 11:114. [PMID: 21524293 PMCID: PMC3111386 DOI: 10.1186/1471-2148-11-114] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/27/2011] [Indexed: 11/24/2022] Open
Abstract
Background Evolutionary novelties often appear by conferring completely new functions to pre-existing structures or by innovating the mechanism through which a particular function is performed. Sound production plays a central role in the behavior of frogs, which use their calls to delimit territories and attract mates. Therefore, frogs have evolved complex vocal structures capable of producing a wide variety of advertising sounds. It is generally acknowledged that most frogs call by moving an air column from the lungs through the glottis with the remarkable exception of the family Pipidae, whose members share a highly specialized sound production mechanism independent of air movement. Results Here, we performed behavioral observations in the poorly known African pipid genus Pseudhymenochirus and document that the sound production in this aquatic frog is almost certainly air-driven. However, morphological comparisons revealed an indisputable pipid nature of Pseudhymenochirus larynx. To place this paradoxical pattern into an evolutionary framework, we reconstructed robust molecular phylogenies of pipids based on complete mitochondrial genomes and nine nuclear protein-coding genes that coincided in placing Pseudhymenochirus nested among other pipids. Conclusions We conclude that although Pseudhymenochirus probably has evolved a reversal to the ancestral non-pipid condition of air-driven sound production, the mechanism through which it occurs is an evolutionary innovation based on the derived larynx of pipids. This strengthens the idea that evolutionary solutions to functional problems often emerge based on previous structures, and for this reason, innovations largely depend on possibilities and constraints predefined by the particular history of each lineage.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
Klimov PB, Knowles LL. Repeated parallel evolution of minimal rRNAs revealed from detailed comparative analysis. ACTA ACUST UNITED AC 2011; 102:283-93. [PMID: 21422103 DOI: 10.1093/jhered/esr005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The concept of a minimal ribosomal RNA-containing ribosome, a structure with a minimal set of elements capable of providing protein biosynthesis, is essential for understanding this fundamental cellular process. Nematodes and trypanosomes have minimal mitochondrial rRNAs and detailed reconstructions of their secondary structures indicate that certain conserved helices have been lost in these taxa. In contrast, several recent studies on acariform mites have argued that minimal rRNAs may evolve via shortening of secondary structure elements but not the loss of these elements as shown for trypanosomes and nematodes. Based on extensive structural analysis of chelicerate arthropods, we demonstrate that extremely short rRNAs of acariform mites share certain structural modifications with nematodes and trypanosomes: loss of helices of the GTPase region and divergence in the evolutionarily conserved connecting loop between helices H1648 and H1764 of the large subunit rRNA. These highly concerted parallel modifications indicate that minimal rRNAs were generated under the strong selection that favored or tolerated reductions of helices in particular locations while maintaining the functionality of the rRNA molecules throughout evolution. We also discuss potential evolution of minimal rRNAs and atypical transfer RNAs.
Collapse
Affiliation(s)
- Pavel B Klimov
- University of Michigan, Museum of Zoology, 1109 Geddes Avenue, Ann Arbor, MI 48109-1079, USA.
| | | |
Collapse
|
35
|
Irisarri I, San Mauro D, Green DM, Zardoya R. The complete mitochondrial genome of the relict frog Leiopelma archeyi: insights into the root of the frog Tree of Life. ACTA ACUST UNITED AC 2011; 21:173-82. [PMID: 20958226 DOI: 10.3109/19401736.2010.513973] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Determining the root of the anuran Tree of Life is still a contentious and open question in frog systematics. Two genera with disjunct distributions have been traditionally considered the most basal among extant frogs: Leiopelma, which is endemic to New Zealand, and Ascaphus, which lives in North America. However, their specific phylogenetic position is rather elusive because each genus shows many autapomorphies, and together they retain many symplesiomorphic characters. Therefore, several alternative hypotheses have been proposed regarding the relative phylogenetic position of both Leiopelma and Ascaphus. In order to distinguish among these competing phylogenetic hypotheses, we sequenced the complete mitochondrial (mt) genome of Leiopelma archeyi and used it along with previously reported frog mt genomes (including that of Ascaphus truei) to infer a robust phylogeny of major anuran lineages. The reconstructed maximum likelihood and Bayesian inference phylogenies recovered identical topology, which supports the sister group relationship of Ascaphus and Leiopelma, and the placement of this clade at the base of the anuran tree. Interestingly, the mt genome of L. archeyi displays a novel gene arrangement in frog mt genomes affecting the relative position of cytochrome b, trnT, NADH dehydrogenase subunit 6, trnE, and trnP genes. The tandem duplication-random loss model of gene order change explains the origin of this novel frog mt genome arrangement, which is convergent with others reported in some fishes and salamanders. These results, together with comparative data for other available vertebrate mt genomes, provide evidence that the 5' end of the control region is a hot spot for gene order rearrangement.
Collapse
Affiliation(s)
- Iker Irisarri
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain.
| | | | | | | |
Collapse
|
36
|
Jia WZ, Yan HB, Guo AJ, Zhu XQ, Wang YC, Shi WG, Chen HT, Zhan F, Zhang SH, Fu BQ, Littlewood DTJ, Cai XP. Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics 2010; 11:447. [PMID: 20649981 PMCID: PMC3091644 DOI: 10.1186/1471-2164-11-447] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 07/22/2010] [Indexed: 11/23/2022] Open
Abstract
Background Mitochondrial genomes provide a rich source of molecular variation of proven and widespread utility in molecular ecology, population genetics and evolutionary biology. The tapeworm genus Taenia includes a diversity of tapeworm parasites of significant human and veterinary importance. Here we add complete sequences of the mt genomes of T. multiceps, T. hydatigena and T. pisiformis, to a data set of 4 published mtDNAs in the same genus. Seven complete mt genomes of Taenia species are used to compare and contrast variation within and between genomes in the genus, to estimate a phylogeny for the genus, and to develop novel molecular markers as part of an extended mitochondrial toolkit. Results The complete circular mtDNAs of T. multiceps, T. hydatigena and T. pisiformis were 13,693, 13,492 and 13,387 bp in size respectively, comprising the usual complement of flatworm genes. Start and stop codons of protein coding genes included those found commonly amongst other platyhelminth mt genomes, but the much rarer initiation codon GTT was inferred for the gene atp6 in T. pisiformis. Phylogenetic analysis of mtDNAs offered novel estimates of the interrelationships of Taenia. Sliding window analyses showed nad6, nad5, atp6, nad3 and nad2 are amongst the most variable of genes per unit length, with the highest peaks in nucleotide diversity found in nad5. New primer pairs capable of amplifying fragments of variable DNA in nad1, rrnS and nad5 genes were designed in silico and tested as possible alternatives to existing mitochondrial markers for Taenia. Conclusions With the availability of complete mtDNAs of 7 Taenia species, we have shown that analysis of amino acids provides a robust estimate of phylogeny for the genus that differs markedly from morphological estimates or those using partial genes; with implications for understanding the evolutionary radiation of important Taenia. Full alignment of the nucleotides of Taenia mtDNAs and sliding window analysis suggests numerous alternative gene regions are likely to capture greater nucleotide variation than those currently pursued as molecular markers. New PCR primers developed from a comparative mitogenomic analysis of Taenia species, extend the use of mitochondrial markers for molecular ecology, population genetics and diagnostics.
Collapse
Affiliation(s)
- Wan-Zhong Jia
- Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province 730046, The People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rawlings TA, MacInnis MJ, Bieler R, Boore JL, Collins TM. Sessile snails, dynamic genomes: gene rearrangements within the mitochondrial genome of a family of caenogastropod molluscs. BMC Genomics 2010; 11:440. [PMID: 20642828 PMCID: PMC3091637 DOI: 10.1186/1471-2164-11-440] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Widespread sampling of vertebrates, which comprise the majority of published animal mitochondrial genomes, has led to the view that mitochondrial gene rearrangements are relatively rare, and that gene orders are typically stable across major taxonomic groups. In contrast, more limited sampling within the Phylum Mollusca has revealed an unusually high number of gene order arrangements. Here we provide evidence that the lability of the molluscan mitochondrial genome extends to the family level by describing extensive gene order changes that have occurred within the Vermetidae, a family of sessile marine gastropods that radiated from a basal caenogastropod stock during the Cenozoic Era. RESULTS Major mitochondrial gene rearrangements have occurred within this family at a scale unexpected for such an evolutionarily young group and unprecedented for any caenogastropod examined to date. We determined the complete mitochondrial genomes of four species (Dendropoma maximum, D. gregarium, Eualetes tulipa, and Thylacodes squamigerus) and the partial mitochondrial genomes of two others (Vermetus erectus and Thylaeodus sp.). Each of the six vermetid gastropods assayed possessed a unique gene order. In addition to the typical mitochondrial genome complement of 37 genes, additional tRNA genes were evident in D. gregarium (trnK) and Thylacodes squamigerus (trnV, trnLUUR). Three pseudogenes and additional tRNAs found within the genome of Thylacodes squamigerus provide evidence of a past duplication event in this taxon. Likewise, high sequence similarities between isoaccepting leucine tRNAs in Thylacodes, Eualetes, and Thylaeodus suggest that tRNA remolding has been rife within this family. While vermetids exhibit gene arrangements diagnostic of this family, they also share arrangements with littorinimorph caenogastropods, with which they have been linked based on sperm morphology and primary sequence-based phylogenies. CONCLUSIONS We have uncovered major changes in gene order within a family of caenogastropod molluscs that are indicative of a highly dynamic mitochondrial genome. Studies of mitochondrial genomes at such low taxonomic levels should help to illuminate the dynamics of gene order change, since the telltale vestiges of gene duplication, translocation, and remolding have not yet been erased entirely. Likewise, gene order characters may improve phylogenetic hypotheses at finer taxonomic levels than once anticipated and aid in investigating the conditions under which sequence-based phylogenies lack resolution or prove misleading.
Collapse
Affiliation(s)
- Timothy A Rawlings
- Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, CANADA
| | - Martin J MacInnis
- Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, CANADA
- University of British Columbia, 2239 West Mall, Vancouver, BC V6T 1Z4, CANADA
| | - Rüdiger Bieler
- Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago, IL 60605-2496, USA
| | - Jeffrey L Boore
- Genome Project Solutions, Inc.,1024 Promenade Street, Hercules, CA 94547, USA
| | - Timothy M Collins
- Florida International University, 11200 SW 8th Street, University Park, Miami, FL 33199, USA
- National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, USA
| |
Collapse
|