1
|
Sharma A, Mehta S, Singh J, Lal V. Tremors with dystonia as a predominant manifestation of primary coenzyme Q10 deficiency. Neurol Sci 2025:10.1007/s10072-025-08126-6. [PMID: 40119238 DOI: 10.1007/s10072-025-08126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/14/2025] [Indexed: 03/24/2025]
Affiliation(s)
- Ashish Sharma
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sahil Mehta
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Jagdeep Singh
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Vivek Lal
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
2
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Wongkittichote P, Duque Lasio ML, Magistrati M, Pathak S, Sample B, Carvalho DR, Ortega AB, Castro MAA, de Gusmao CM, Toler TL, Bellacchio E, Dallabona C, Shinawi M. Phenotypic, molecular, and functional characterization of COQ7-related primary CoQ 10 deficiency: Hypomorphic variants and two distinct disease entities. Mol Genet Metab 2023; 139:107630. [PMID: 37392700 PMCID: PMC10995746 DOI: 10.1016/j.ymgme.2023.107630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Primary coenzyme Q10 (CoQ10) deficiency is a group of inborn errors of metabolism caused by defects in CoQ10 biosynthesis. Biallelic pathogenic variants in COQ7, encoding mitochondrial 5-demethoxyubiquinone hydroxylase, have been reported in nine patients from seven families. We identified five new patients with COQ7-related primary CoQ10 deficiency, performed clinical assessment of the patients, and studied the functional effects of current and previously reported COQ7 variants and potential treatment options. The main clinical features included a neonatal-onset presentation with severe neuromuscular, cardiorespiratory and renal involvement and a late-onset disease presenting with progressive neuropathy, lower extremity weakness, abnormal gait, and variable developmental delay. Baker's yeast orthologue of COQ7, CAT5, is required for growth on oxidative carbon sources and cat5Δ strain demonstrates oxidative growth defect. Expression of wild-type CAT5 could completely rescue the defect; however, yeast CAT5 harboring equivalent human pathogenic variants could not. Interestingly, cat5Δ yeast harboring p.Arg57Gln (equivalent to human p.Arg54Gln), p.Arg112Trp (equivalent to p.Arg107Trp), p.Ile69Asn (equivalent to p.Ile66Asn) and combination of p.Lys108Met and p.Leu116Pro (equivalent to the complex allele p.[Thr103Met;Leu111Pro]) partially rescued the growth defects, indicating these variants are hypomorphic alleles. Supplementation with 2,4 dihydroxybenzoic acid (2,4-diHB) rescued the growth defect of both the leaky and severe mutants. Overexpression of COQ8 and 2,4-diHB supplementation synergistically restored oxidative growth and respiratory defect. Overall, we define two distinct disease presentations of COQ7-related disorder with emerging genotype-phenotype correlation and validate the use of the yeast model for functional studies of COQ7 variants.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria Laura Duque Lasio
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sheel Pathak
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Daniel Rocha Carvalho
- SARAH Network Rehabilitation Hospitals, Genetic Unit, Brasilia, Federal District, Brazil
| | | | - Matheus Augusto Araújo Castro
- Mendelics Genomic Analyses, Sao Paulo, Brazil; Neurogenetics Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brazil
| | - Claudio M de Gusmao
- Mendelics Genomic Analyses, Sao Paulo, Brazil; Neurogenetics Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brazil
| | - Tomi L Toler
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Hojabri M, Gilani A, Irilouzadian R, Nejad biglari H, Sarmadian R. Adolescence Onset Primary Coenzyme Q10 Deficiency With Rare CoQ8A Gene Mutation: A Case Report and Review of Literature. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2023; 16:11795476231188061. [PMID: 37476682 PMCID: PMC10354825 DOI: 10.1177/11795476231188061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023]
Abstract
Background Primary deficiency of coenzyme Q10 deficiency-4 (CoQ10D4) is a heterogeneous disorder affecting different age groups. The main clinical manifestation consists of cerebellar ataxia, exercise intolerance, and dystonia. Case report We provide a case of adolescence-onset ataxia, head tremor, and proximal muscle weakness accompanied by psychiatric features and abnormal serum urea (49.4 mg/dL), lactate (7.5 mmol/L), and CoQ10 level (0.4 µg/mL). Brain-MRI demonstrated cerebellar atrophy, thinning of the corpus callosum, and loss of white matter. Whole exome sequencing showed a homozygous missense mutation (c.911C>T; p.A304V) in CoQ8A gene which is a rare mutation and responsible variant of CoQ10D4. After supplementary treatment with CoQ10 50 mg/twice a day for 2 months the clinical symptoms improved. Conclusion These observations highlight the significance of the early diagnosis of potentially treatable CoQ8A mutation as well as patient education and follow-up. Our findings widen the spectrum of CoQ8A phenotypic features so that clinicians be familiar with the disease not only in severe childhood-onset ataxia but also in adolescence with accompanying psychiatric problems.
Collapse
Affiliation(s)
- Mahsa Hojabri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Gilani
- Department of Pediatric Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habibe Nejad biglari
- Department of Pediatric Neurology, Kerman University of Medical Sciences, Kerman, Iran
| | - Roham Sarmadian
- Infectious Diseases Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
5
|
Paprocka J, Nowak M, Chuchra P, Śmigiel R. COQ8A-Ataxia as a Manifestation of Primary Coenzyme Q Deficiency. Metabolites 2022; 12:955. [PMID: 36295857 PMCID: PMC9608955 DOI: 10.3390/metabo12100955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
COQ8A-ataxia is a mitochondrial disease in which a defect in coenzyme Q10 synthesis leads to dysfunction of the respiratory chain. The disease is usually present as childhood-onset progressive ataxia with developmental regression and cerebellar atrophy. However, due to variable phenotype, it may be hard to distinguish from other mitochondrial diseases and a wide spectrum of childhood-onset cerebellar ataxia. COQ8A-ataxia is a potentially treatable condition with the supplementation of coenzyme Q10 as a main therapy; however, even 50% may not respond to the treatment. In this study we review the clinical manifestation and management of COQ8A-ataxia, focusing on current knowledge of coenzyme Q10 supplementation and approach to further therapies. Moreover, the case of a 22-month-old girl with cerebellar ataxia and developmental regression will be presented.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Magdalena Nowak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Piotr Chuchra
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Robert Śmigiel
- Department of Family and Pediatric Nursing, Wroclaw Medical University, 51-618 Wrocław, Poland
| |
Collapse
|
6
|
Hura AJ, Hawley HR, Tan WJ, Penny RJ, Jacobsen JC, Fitzsimons HL. Loss of Drosophila Coq8 results in impaired survival, locomotor deficits and photoreceptor degeneration. Mol Brain 2022; 15:15. [PMID: 35139868 PMCID: PMC8827264 DOI: 10.1186/s13041-022-00900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/23/2022] [Indexed: 12/04/2022] Open
Abstract
Coenzyme Q8A encodes the homologue of yeast coq8, an ATPase that is required for the biosynthesis of Coenzyme Q10, an essential component of the electron transport chain. Mutations in COQ8A in humans result in CoQ10 deficiency, the clinical features of which include early-onset cerebellar ataxia, seizures and intellectual disability. The rapid advancement of massively parallel sequencing has resulted in the identification of more than 40 new mutations in COQ8A and functional studies are required to confirm causality and to further research into determining the specific mechanisms through which the mutations result in loss of function. To that end, a Drosophila model of Coq8 deficiency was developed and characterized to determine its appropriateness as a model system to further explore the role of Coq8 in the brain, and for functional characterisation of Coq8 mutations. Pan-neuronal RNAi knockdown of Coq8 was largely lethal, with female escapers displaying severe locomotor deficits. Knockdown of Coq8 in the eye resulted in degeneration of photoreceptors, progressive necrosis and increased generation of reactive oxygen species. Reintroduction of wild-type Coq8 restored normal function, however expression of human wild-type COQ8A exacerbated the eye phenotype, suggesting it was acting as a dominant-negative. This model is therefore informative for investigating the function of Drosophila Coq8, however human COQ8A mutations cannot be assessed as hCOQ8A does not rescue Coq8 deficiency.
Collapse
Affiliation(s)
- Angelia J Hura
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Hannah R Hawley
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Wei Jun Tan
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Rebecca J Penny
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Jessie C Jacobsen
- Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Helen L Fitzsimons
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
7
|
Cellular Models for Primary CoQ Deficiency Pathogenesis Study. Int J Mol Sci 2021; 22:ijms221910211. [PMID: 34638552 PMCID: PMC8508219 DOI: 10.3390/ijms221910211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease’s onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.
Collapse
|
8
|
NGS in Hereditary Ataxia: When Rare Becomes Frequent. Int J Mol Sci 2021; 22:ijms22168490. [PMID: 34445196 PMCID: PMC8395181 DOI: 10.3390/ijms22168490] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The term hereditary ataxia (HA) refers to a heterogeneous group of neurological disorders with multiple genetic etiologies and a wide spectrum of ataxia-dominated phenotypes. Massive gene analysis in next-generation sequencing has entered the HA scenario, broadening our genetic and clinical knowledge of these conditions. In this study, we employed a targeted resequencing panel (TRP) in a large and highly heterogeneous cohort of 377 patients with a clinical diagnosis of HA, but no molecular diagnosis on routine genetic tests. We obtained a positive result (genetic diagnosis) in 33.2% of the patients, a rate significantly higher than those reported in similar studies employing TRP (average 19.4%), and in line with those performed using exome sequencing (ES, average 34.6%). Moreover, 15.6% of the patients had an uncertain molecular diagnosis. STUB1, PRKCG, and SPG7 were the most common causative genes. A comparison with published literature data showed that our panel would have identified 97% of the positive cases reported in previous TRP-based studies and 92% of those diagnosed by ES. Proper use of multigene panels, when combined with detailed phenotypic data, seems to be even more efficient than ES in clinical practice.
Collapse
|
9
|
Alcázar-Fabra M, Rodríguez-Sánchez F, Trevisson E, Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med 2021; 167:141-180. [PMID: 33677064 DOI: 10.1016/j.freeradbiomed.2021.02.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Primary Coenzyme Q (CoQ) deficiencies are clinically heterogeneous conditions and lack clear genotype-phenotype correlations, complicating diagnosis and prognostic assessment. Here we present a compilation of all the symptoms and patients with primary CoQ deficiency described in the literature so far and analyse the most common clinical manifestations associated with pathogenic variants identified in the different COQ genes. In addition, we identified new associations between the age of onset of symptoms and different pathogenic variants, which could help to a better diagnosis and guided treatment. To make these results useable for clinicians, we created an online platform (https://coenzymeQbiology.github.io/clinic-CoQ-deficiency) about clinical manifestations of primary CoQ deficiency that will be periodically updated to incorporate new information published in the literature. Since CoQ primary deficiency is a rare disease, the available data are still limited, but as new patients are added over time, this tool could become a key resource for a more efficient diagnosis of this pathology.
Collapse
Affiliation(s)
- María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain
| | | | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, 35128, Italy; Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, 35128, Italy.
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain.
| |
Collapse
|
10
|
Mitochondrial Syndromes Revisited. J Clin Med 2021; 10:jcm10061249. [PMID: 33802970 PMCID: PMC8002645 DOI: 10.3390/jcm10061249] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
In the last ten years, the knowledge of the genetic basis of mitochondrial diseases has significantly advanced. However, the vast phenotypic variability linked to mitochondrial disorders and the peculiar characteristics of their genetics make mitochondrial disorders a complex group of disorders. Although specific genetic alterations have been associated with some syndromic presentations, the genotype–phenotype relationship in mitochondrial disorders is complex (a single mutation can cause several clinical syndromes, while different genetic alterations can cause similar phenotypes). This review will revisit the most common syndromic pictures of mitochondrial disorders, from a clinical rather than a molecular perspective. We believe that the new phenotype definitions implemented by recent large multicenter studies, and revised here, may contribute to a more homogeneous patient categorization, which will be useful in future studies on natural history and clinical trials.
Collapse
|
11
|
Villalba JM, Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic Biol Med 2021; 165:312-323. [PMID: 33549646 DOI: 10.1016/j.freeradbiomed.2021.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, 41013, Spain.
| |
Collapse
|
12
|
Rossi M, van der Veen S, Merello M, Tijssen MAJ, van de Warrenburg B. Myoclonus-Ataxia Syndromes: A Diagnostic Approach. Mov Disord Clin Pract 2020; 8:9-24. [PMID: 33426154 DOI: 10.1002/mdc3.13106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
Background A myriad of disorders combine myoclonus and ataxia. Most causes are genetic and an increasing number of genes are being associated with myoclonus-ataxia syndromes (MAS), due to recent advances in genetic techniques. A proper etiologic diagnosis of MAS is clinically relevant, given the consequences for genetic counseling, treatment, and prognosis. Objectives To review the causes of MAS and to propose a diagnostic algorithm. Methods A comprehensive and structured literature search following PRISMA criteria was conducted to identify those disorders that may combine myoclonus with ataxia. Results A total of 135 causes of combined myoclonus and ataxia were identified, of which 30 were charted as the main causes of MAS. These include four acquired entities: opsoclonus-myoclonus-ataxia syndrome, celiac disease, multiple system atrophy, and sporadic prion diseases. The distinction between progressive myoclonus epilepsy and progressive myoclonus ataxia poses one of the main diagnostic dilemmas. Conclusions Diagnostic algorithms for pediatric and adult patients, based on clinical manifestations including epilepsy, are proposed to guide the differential diagnosis and corresponding work-up of the most important and frequent causes of MAS. A list of genes associated with MAS to guide genetic testing strategies is provided. Priority should be given to diagnose or exclude acquired or treatable disorders.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section Neuroscience Department Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| | - Sterre van der Veen
- Pontificia Universidad Católica Argentina (UCA) Buenos Aires Argentina.,Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Marcelo Merello
- Movement Disorders Section Neuroscience Department Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina.,Pontificia Universidad Católica Argentina (UCA) Buenos Aires Argentina
| | - Marina A J Tijssen
- Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands.,Expertise Center Movement Disorders Groningen University Medical Center Groningen (UMCG) Groningen The Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
13
|
Zhang L, Ashizawa T, Peng D. Primary coenzyme Q10 deficiency due to COQ8A gene mutations. Mol Genet Genomic Med 2020; 8:e1420. [PMID: 32743982 PMCID: PMC7549598 DOI: 10.1002/mgg3.1420] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Primary deficiency of coenzyme Q10 deficiency-4 (COQ10D4) is an autosomal recessive cerebellar ataxia with mitochondrial respiratory chain disfunction. The main clinical manifestation involves early-onset exercise intolerance, progressive cerebellar ataxia, and movement disorders. COQ8A gene mutations are responsible for this disease. Here, we provide clinical, laboratory, and genetic findings of a patient with cerebellar ataxia caused by compound heterozygous mutations in COQ8A gene. METHODS A male patient from a non-consanguineous Chinese family underwent detailed physical and auxiliary examination. After exclusion of acquired causes of ataxia, Friedreich's Ataxia, and common types of spinocerebellar ataxia, the patient was subjected to whole exome sequencing (WES) followed by confirmation of sequence variants using Sanger sequencing. His asymptomatic parents, two brothers and one sister were genotyped for these variants. RESULTS This patient showed early-onset exercise intolerance and progressive cerebellar ataxia, wide-based gait and tremor, accompanied by symptoms of dysautonomia. His serum lactate level was elevated and plasma total Coenzyme Q10 (CoQ10) was decreased. Brain MRI showed cerebellar atrophy, and X-ray of the spine revealed thoraco-lumbar scoliosis. Compound heterozygous mutations in the COQ8A gene were identified through WES: c.1844_1845insG, p.Ser616Leufs*114 and c.902G>A, p.Arg301Gln. After treatment with ubidecarenone, 40 mg three times per day for 2 years, the symptoms dramatically improved. CONCLUSIONS We identified a patient with COQ10D4 caused by novel COQ8A mutations. Our findings widen the spectrum of COQ8A gene mutations and clinical manifestations.
Collapse
Affiliation(s)
- Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Tetsuo Ashizawa
- Houston Methodist Research Institute and Department of Neurology, Houston Methodist Neurological Institute, Houston, Texas, USA
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
Galosi S, Barca E, Carrozzo R, Schirinzi T, Quinzii CM, Lieto M, Vasco G, Zanni G, Di Nottia M, Galatolo D, Filla A, Bertini E, Santorelli FM, Leuzzi V, Haas R, Hirano M, Friedman J. Dystonia-Ataxia with early handwriting deterioration in COQ8A mutation carriers: A case series and literature review. Parkinsonism Relat Disord 2019; 68:8-16. [DOI: 10.1016/j.parkreldis.2019.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
|
15
|
Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, González-García P, Battino M, López LC, Varela-López A. The Paradox of Coenzyme Q 10 in Aging. Nutrients 2019; 11:nu11092221. [PMID: 31540029 PMCID: PMC6770889 DOI: 10.3390/nu11092221] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential endogenously synthesized molecule that links different metabolic pathways to mitochondrial energy production thanks to its location in the mitochondrial inner membrane and its redox capacity, which also provide it with the capability to work as an antioxidant. Although defects in CoQ biosynthesis in human and mouse models cause CoQ deficiency syndrome, some animals models with particular defects in the CoQ biosynthetic pathway have shown an increase in life span, a fact that has been attributed to the concept of mitohormesis. Paradoxically, CoQ levels decline in some tissues in human and rodents during aging and coenzyme Q10 (CoQ10) supplementation has shown benefits as an anti-aging agent, especially under certain conditions associated with increased oxidative stress. Also, CoQ10 has shown therapeutic benefits in aging-related disorders, particularly in cardiovascular and metabolic diseases. Thus, we discuss the paradox of health benefits due to a defect in the CoQ biosynthetic pathway or exogenous supplementation of CoQ10.
Collapse
Affiliation(s)
- M Elena Díaz-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| | - Eliana Barriocanal-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Pilar González-García
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Luis C López
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| |
Collapse
|
16
|
Vázquez-Fonseca L, Schaefer J, Navas-Enamorado I, Santos-Ocaña C, Hernández-Camacho JD, Guerra I, Cascajo MV, Sánchez-Cuesta A, Horvath Z, Siendones E, Jou C, Casado M, Gutiérrez P, Brea-Calvo G, López-Lluch G, Fernández-Ayala DJM, Cortés-Rodríguez AB, Rodríguez-Aguilera JC, Matté C, Ribes A, Prieto-Soler SY, Dominguez-Del-Toro E, Francesco AD, Aon MA, Bernier M, Salviati L, Artuch R, Cabo RD, Jackson S, Navas P. ADCK2 Haploinsufficiency Reduces Mitochondrial Lipid Oxidation and Causes Myopathy Associated with CoQ Deficiency. J Clin Med 2019; 8:jcm8091374. [PMID: 31480808 PMCID: PMC6780728 DOI: 10.3390/jcm8091374] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/27/2023] Open
Abstract
Fatty acids and glucose are the main bioenergetic substrates in mammals. Impairment of mitochondrial fatty acid oxidation causes mitochondrial myopathy leading to decreased physical performance. Here, we report that haploinsufficiency of ADCK2, a member of the aarF domain-containing mitochondrial protein kinase family, in human is associated with liver dysfunction and severe mitochondrial myopathy with lipid droplets in skeletal muscle. In order to better understand the etiology of this rare disorder, we generated a heterozygous Adck2 knockout mouse model to perform in vivo and cellular studies using integrated analysis of physiological and omics data (transcriptomics–metabolomics). The data showed that Adck2+/− mice exhibited impaired fatty acid oxidation, liver dysfunction, and mitochondrial myopathy in skeletal muscle resulting in lower physical performance. Significant decrease in Coenzyme Q (CoQ) biosynthesis was observed and supplementation with CoQ partially rescued the phenotype both in the human subject and mouse model. These results indicate that ADCK2 is involved in organismal fatty acid metabolism and in CoQ biosynthesis in skeletal muscle. We propose that patients with isolated myopathies and myopathies involving lipid accumulation be tested for possible ADCK2 defect as they are likely to be responsive to CoQ supplementation.
Collapse
Affiliation(s)
- Luis Vázquez-Fonseca
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and IRP Città della Speranza, 35100 Padova, Italy
| | - Jochen Schaefer
- Department of Neurology, Carl Gustav Carus University Dresden, 01307 Dresden, Germany
| | - Ignacio Navas-Enamorado
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Boston University School of Medicine, Boston, MA 02118, USA
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Juan D Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Ignacio Guerra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - María V Cascajo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Zoltan Horvath
- Department of Neurology, Carl Gustav Carus University Dresden, 01307 Dresden, Germany
| | - Emilio Siendones
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - Cristina Jou
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Clinical Chemistry and Pathology Departments, Institut de Recerca Sant Joan de Déu, 08000 Barcelona, Spain
| | - Mercedes Casado
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Clinical Chemistry and Pathology Departments, Institut de Recerca Sant Joan de Déu, 08000 Barcelona, Spain
| | - Purificación Gutiérrez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Daniel J M Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Ana B Cortés-Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Juan C Rodríguez-Aguilera
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Cristiane Matté
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. CEP 90035-003, Porto Alegre, RS, Brazil
| | - Antonia Ribes
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Secciód'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica I Genètica Molecular, Hospital Clinic, 08000 Barcelona, Spain
| | | | | | - Andrea di Francesco
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and IRP Città della Speranza, 35100 Padova, Italy
| | - Rafael Artuch
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Clinical Chemistry and Pathology Departments, Institut de Recerca Sant Joan de Déu, 08000 Barcelona, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Sandra Jackson
- Department of Neurology, Carl Gustav Carus University Dresden, 01307 Dresden, Germany
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain.
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain.
| |
Collapse
|
17
|
Hajjari M, Tahmasebi-Birgani M, Mohammadi-asl J, Nasiri H, Kollaee A, Mahmoodi M, Ansari H. Exome sequencing found a novel homozygous deletion in ADCK3 gene involved in autosomal recessive spinocerebellar ataxia. Gene 2019; 708:10-13. [DOI: 10.1016/j.gene.2019.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 11/12/2022]
|
18
|
Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature. Neurochem Res 2019; 44:2372-2384. [PMID: 30968303 DOI: 10.1007/s11064-019-02786-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
Primary deficiency of coenzyme Q10 (CoQ10 ubiquinone), is classified as a mitochondrial respiratory chain disorder with phenotypic variability. The clinical manifestation may involve one or multiple tissue with variable severity and presentation may range from infancy to late onset. ADCK3 gene mutations are responsible for the most frequent form of hereditary CoQ10 deficiency (Q10 deficiency-4 OMIM #612016) which is mainly associated with autosomal recessive spinocerebellar ataxia (ARCA2, SCAR9). Here we provide the clinical, biochemical and genetic investigation for unrelated three nuclear families presenting an autosomal form of Spino-Cerebellar Ataxia due to novel mutations in the ADCK3 gene. Using next generation sequence technology we identified a homozygous Gln343Ter mutation in one family with severe, early onset of the disease and compound heterozygous mutations of Gln343Ter and Ser608Phe in two other families with variable manifestations. Biochemical investigation in fibroblasts showed decreased activity of the CoQ dependent mitochondrial respiratory chain enzyme succinate cytochrome c reductase (complex II + III). Exogenous CoQ slightly improved enzymatic activity, ATP production and decreased oxygen free radicals in some of the patient's cells. Our results are presented in comparison to previously reported mutations and expanding the clinical, molecular and biochemical spectrum of ADCK3 related CoQ10 deficiencies.
Collapse
|
19
|
Clinical syndromes associated with Coenzyme Q10 deficiency. Essays Biochem 2018; 62:377-398. [DOI: 10.1042/ebc20170107] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022]
Abstract
Primary Coenzyme Q deficiencies represent a group of rare conditions caused by mutations in one of the genes required in its biosynthetic pathway at the enzymatic or regulatory level. The associated clinical manifestations are highly heterogeneous and mainly affect central and peripheral nervous system, kidney, skeletal muscle and heart. Genotype–phenotype correlations are difficult to establish, mainly because of the reduced number of patients and the large variety of symptoms. In addition, mutations in the same COQ gene can cause different clinical pictures. Here, we present an updated and comprehensive review of the clinical manifestations associated with each of the pathogenic variants causing primary CoQ deficiencies.
Collapse
|
20
|
Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr 2018; 59:2240-2257. [DOI: 10.1080/10408398.2018.1442316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Francisco M. Gutierrez-Mariscal
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Chandran V, Gao K, Swarup V, Versano R, Dong H, Jordan MC, Geschwind DH. Inducible and reversible phenotypes in a novel mouse model of Friedreich's Ataxia. eLife 2017; 6:e30054. [PMID: 29257745 PMCID: PMC5736353 DOI: 10.7554/elife.30054] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Friedreich's ataxia (FRDA), the most common inherited ataxia, is caused by recessive mutations that reduce the levels of frataxin (FXN), a mitochondrial iron binding protein. We developed an inducible mouse model of Fxn deficiency that enabled us to control the onset and progression of disease phenotypes by the modulation of Fxn levels. Systemic knockdown of Fxn in adult mice led to multiple phenotypes paralleling those observed in human patients across multiple organ systems. By reversing knockdown after clinical features appear, we were able to determine to what extent observed phenotypes represent reversible cellular dysfunction. Remarkably, upon restoration of near wild-type FXN levels, we observed significant recovery of function, associated pathology and transcriptomic dysregulation even after substantial motor dysfunction and pathology were observed. This model will be of broad utility in therapeutic development and in refining our understanding of the relative contribution of reversible cellular dysfunction at different stages in disease.
Collapse
Affiliation(s)
- Vijayendran Chandran
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Kun Gao
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Revital Versano
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Hongmei Dong
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Maria C Jordan
- Department of Physiology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
22
|
Estimating the occurrence of primary ubiquinone deficiency by analysis of large-scale sequencing data. Sci Rep 2017; 7:17744. [PMID: 29255295 PMCID: PMC5735152 DOI: 10.1038/s41598-017-17564-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022] Open
Abstract
Primary ubiquinone (UQ) deficiency is an important subset of mitochondrial disease that is caused by mutations in UQ biosynthesis genes. To guide therapeutic efforts we sought to estimate the number of individuals who are born with pathogenic variants likely to cause this disorder. We used the NCBI ClinVar database and literature reviews to identify pathogenic genetic variants that have been shown to cause primary UQ deficiency, and used the gnomAD database of full genome or exome sequences to estimate the frequency of both homozygous and compound heterozygotes within seven genetically-defined populations. We used known population sizes to estimate the number of afflicted individuals in these populations and in the mixed population of the USA. We then performed the same analysis on predicted pathogenic loss-of-function and missense variants that we identified in gnomAD. When including only known pathogenic variants, our analysis predicts 1,665 affected individuals worldwide and 192 in the USA. Adding predicted pathogenic variants, our estimate grows to 123,789 worldwide and 1,462 in the USA. This analysis predicts that there are many undiagnosed cases of primary UQ deficiency, and that a large proportion of these will be in developing regions of the world.
Collapse
|
23
|
Jacobsen JC, Whitford W, Swan B, Taylor J, Love DR, Hill R, Molyneux S, George PM, Mackay R, Robertson SP, Snell RG, Lehnert K. Compound Heterozygous Inheritance of Mutations in Coenzyme Q8A Results in Autosomal Recessive Cerebellar Ataxia and Coenzyme Q 10 Deficiency in a Female Sib-Pair. JIMD Rep 2017; 42:31-36. [PMID: 29159460 DOI: 10.1007/8904_2017_73] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
Autosomal recessive ataxias are characterised by a fundamental loss in coordination of gait with associated atrophy of the cerebellum. There is significant clinical and genetic heterogeneity amongst inherited ataxias; however, an early molecular diagnosis is essential with low-risk treatments available for some of these conditions. We describe two female siblings who presented early in life with unsteady gait and cerebellar atrophy. Whole exome sequencing revealed compound heterozygous inheritance of two pathogenic mutations (p.Leu277Pro, c.1506+1G>A) in the coenzyme Q8A gene (COQ8A), a gene central to biosynthesis of coenzyme Q (CoQ). The paternally derived p.Leu277Pro mutation is predicted to disrupt a conserved motif in the substrate-binding pocket of the protein, resulting in inhibition of CoQ10 production. The maternal c.1506+1G>A mutation destroys a canonical splice donor site in exon 12 affecting transcript processing and subsequent protein translation. Mutations in this gene can result in primary coenzyme Q10 deficiency type 4, which is characterized by childhood onset of cerebellar ataxia and exercise intolerance, both of which were observed in this sib-pair. Muscle biopsies revealed unequivocally low levels of CoQ10, and the siblings were subsequently established on a therapeutic dose of CoQ10 with distinct clinical evidence of improvement after 1 year of treatment. This case emphasises the importance of an early and accurate molecular diagnosis for suspected inherited ataxias, particularly given the availability of approved treatments for some subtypes.
Collapse
Affiliation(s)
- Jessie C Jacobsen
- Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Whitney Whitford
- Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Brendan Swan
- Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Juliet Taylor
- Genetic Health Service New Zealand, Auckland City Hospital, Auckland, New Zealand
| | - Donald R Love
- Diagnostic Genetics, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Rosamund Hill
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Sarah Molyneux
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Peter M George
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Richard Mackay
- Canterbury Health Laboratories, Christchurch, New Zealand
| | | | - Russell G Snell
- Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| | - Klaus Lehnert
- Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Stefely JA, Pagliarini DJ. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem Sci 2017; 42:824-843. [PMID: 28927698 DOI: 10.1016/j.tibs.2017.06.008] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone) is a redox-active lipid produced across all domains of life that functions in electron transport and oxidative phosphorylation and whose deficiency causes human diseases. Yet, CoQ biosynthesis has not been fully defined in any organism. Several proteins with unclear molecular functions facilitate CoQ biosynthesis through unknown means, and multiple steps in the pathway are catalyzed by currently unidentified enzymes. Here we highlight recent progress toward filling these knowledge gaps through both traditional biochemistry and cutting-edge 'omics' approaches. To help fill the remaining gaps, we present questions framed by the recently discovered CoQ biosynthetic complex and by putative biophysical barriers. Mapping CoQ biosynthesis, metabolism, and transport pathways has great potential to enhance treatment of numerous human diseases.
Collapse
Affiliation(s)
- Jonathan A Stefely
- Morgridge Institute for Research, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Guo X, Lin M, Shi T, Yan W, Chen W. Targeted Next-Generation Sequencing Newly Identifies Mutations in Exostosin-1 and Exostosin-2 Genes of Patients with Multiple Osteochondromas. TOHOKU J EXP MED 2017; 242:173-181. [PMID: 28690282 DOI: 10.1620/tjem.242.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multiple osteochondromas (MO) is one of the most common benign bone tumors in humans with an autosomal dominant hereditary mode. MO is a genetic heterogeneity disease with variable number and size of osteochondromas, as well as changeable number and location of diseased bones. Mutations in Exostosin-1/Exostosin-2 (EXT1/EXT2) genes are the main molecular basis of MO. EXT1 and EXT2 genes encode exostosin 1 and exostosin 2, respectively, both of which are transmembrane glycosyltransferases that elongate the chains of heparin sulfate (HS) at HS proteoglycans (HSPGs). HSPGs are considered to be involved in regulating the proliferation and differentiation of chondrocytes. Owing to large size of EXT1/EXT2 genes and lack of mutation hotspots, molecular diagnosis of MO is challenging. Here, we applied targeted next-generation sequencing (t-NGS) in mutation screening of EXT1/EXT2 genes for 10 MO patients. The results were compared and validated with Sanger sequencing. Overall, nine mutations identified by t-NGS were confirmed with Sanger sequencing, excluding two variants of false positive, suggesting the reliability of mutation screening by t-NGS. The nine mutations identified by t-NGS include two missense mutations (EXT1: c.1088G>A and c.2120C>T), one splicing mutation (EXT2: c.744-1G>T), and six nonsense mutations (EXT1: c.351C>G, c.1121G>A, and c.1843_1846dup; EXT2: c.67C>T, c.561delG, and c.575T>A). In summary, our paper provides the primary data of the application of t-NGS in MO molecular diagnosis, including six newly identified mutations (EXT1: c.1843_1846dup, c.1088G>A, c.351C>G, and c.2120C>T and EXT2: c.744-1G>T and c.575T>A), which further enrich the mutation database of MO from the Chinese population.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Department of Laboratory Medicine, The Second Hospital of Fuzhou Affiliated to Xiamen University
| | - Mingrui Lin
- Intensive Care Unit, The Affiliated People's Hospital of Fujian Traditional Medical University
| | - Tengfei Shi
- Department of Laboratory Medicine, The Second Hospital of Fuzhou Affiliated to Xiamen University
| | - Wei Yan
- Department of Bone Tumors, The Second Hospital of Fuzhou Affiliated to Xiamen University
| | - Wenxu Chen
- Department of Laboratory Medicine, The Second Hospital of Fuzhou Affiliated to Xiamen University
| |
Collapse
|
26
|
Hong G, Guo X, Yan W, Li Q, Zhao H, Ma P, Hu X. Identification of a novel mutation in the EXT1 gene from a patient with multiple osteochondromas by exome sequencing. Mol Med Rep 2016; 15:657-664. [PMID: 28035357 PMCID: PMC5364847 DOI: 10.3892/mmr.2016.6086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/18/2016] [Indexed: 01/16/2023] Open
Abstract
Multiple osteochondromas (MO) is an autosomal skeletal disease with an elusive molecular mechanism. To further elucidate the genetic mechanism of the disease a three-generation Chinese family with MO was observed and researched, and a novel frameshift mutation (c.335_336insA) in the exotosin 1 (EXT1) gene of one patient with MO was observed through exome sequencing. This was further validated by Sanger sequencing and comparison with 200 unrelated healthy controls. Immunohistochemistry and multiple sequence alignment were performed to determine the pathogenicity of the candidate mutation. Multiple sequence alignment suggested that codon 335 and 336 in the EXT1 gene were highly conserved regions in vertebrates. Immunohistochemistry revealed that EXT1 protein expression levels were decreased in a patient with MO and this mutation compared with a patient with MO who had no EXT1 mutation. Owing to the appearance of c.335_336insA in exon 1 of EXT1, a premature stop codon was introduced, resulting in truncated EXT1. As a result integrated and functional EXT1 was reduced. EXT1 is involved in the biosynthesis of heparan sulfate (HS), an essential molecule, and its dysfunction may lead to MO. The novel mutation of c.335_336insA in the EXT1 gene reported in the present study has enlarged the causal mutation spectrum of MO, and may assist genetic counseling and prenatal diagnosis of MO.
Collapse
Affiliation(s)
- Guolin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xiaoyan Guo
- Department of Laboratory Medicine, The Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Wei Yan
- Department of Bone Tumors, The Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Qianqian Li
- Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Hailing Zhao
- Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Ping Ma
- Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiao Hu
- Shenzhen Huada Gene Research Institute, Shenzhen, Fujian 518083, P.R. China
| |
Collapse
|
27
|
Stefely JA, Licitra F, Laredj L, Reidenbach AG, Kemmerer ZA, Grangeray A, Jaeg-Ehret T, Minogue CE, Ulbrich A, Hutchins PD, Wilkerson EM, Ruan Z, Aydin D, Hebert AS, Guo X, Freiberger EC, Reutenauer L, Jochem A, Chergova M, Johnson IE, Lohman DC, Rush MJP, Kwiecien NW, Singh PK, Schlagowski AI, Floyd BJ, Forsman U, Sindelar PJ, Westphall MS, Pierrel F, Zoll J, Dal Peraro M, Kannan N, Bingman CA, Coon JJ, Isope P, Puccio H, Pagliarini DJ. Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity. Mol Cell 2016; 63:608-620. [PMID: 27499294 DOI: 10.1016/j.molcel.2016.06.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease.
Collapse
Affiliation(s)
- Jonathan A Stefely
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Floriana Licitra
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR 7104, 67400 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France; Chaire de Génétique Humaine, Collège de France, 67404 Illkirch, France
| | - Leila Laredj
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR 7104, 67400 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France; Chaire de Génétique Humaine, Collège de France, 67404 Illkirch, France
| | - Andrew G Reidenbach
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zachary A Kemmerer
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anais Grangeray
- Université de Strasbourg, 67081 Strasbourg, France; Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 67084 Strasbourg, France
| | - Tiphaine Jaeg-Ehret
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR 7104, 67400 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France; Chaire de Génétique Humaine, Collège de France, 67404 Illkirch, France
| | - Catherine E Minogue
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arne Ulbrich
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul D Hutchins
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily M Wilkerson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zheng Ruan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Deniz Aydin
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Alexander S Hebert
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiao Guo
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elyse C Freiberger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laurence Reutenauer
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR 7104, 67400 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France; Chaire de Génétique Humaine, Collège de France, 67404 Illkirch, France
| | - Adam Jochem
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Maya Chergova
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR 7104, 67400 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France; Chaire de Génétique Humaine, Collège de France, 67404 Illkirch, France
| | - Isabel E Johnson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Danielle C Lohman
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew J P Rush
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicholas W Kwiecien
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pankaj K Singh
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR 7104, 67400 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France; Chaire de Génétique Humaine, Collège de France, 67404 Illkirch, France
| | - Anna I Schlagowski
- Fédération de Medicine Translationnelle de Strasbourg, EA3072, Faculté de Médicine et Faculté des Sciences du Sport, Université de Strasbourg, 67084 Strasbourg, France
| | - Brendan J Floyd
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ulrika Forsman
- University Grenoble Alpes, LCBM, UMR 5249, 38000 Grenoble, France
| | - Pavel J Sindelar
- University Grenoble Alpes, LCBM, UMR 5249, 38000 Grenoble, France; Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, 75252 Paris, France
| | - Michael S Westphall
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fabien Pierrel
- University Grenoble Alpes, LCBM, UMR 5249, 38000 Grenoble, France; TIMC-IMAG, CNRS UMR 5525, UFR de Médecine, University Joseph Fourier, 38706 La Tronche, France
| | - Joffrey Zoll
- Fédération de Medicine Translationnelle de Strasbourg, EA3072, Faculté de Médicine et Faculté des Sciences du Sport, Université de Strasbourg, 67084 Strasbourg, France
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Philippe Isope
- Université de Strasbourg, 67081 Strasbourg, France; Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 67084 Strasbourg, France
| | - Hélène Puccio
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR 7104, 67400 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France; Chaire de Génétique Humaine, Collège de France, 67404 Illkirch, France.
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
28
|
Mallaret M, Renaud M, Redin C, Drouot N, Muller J, Severac F, Mandel JL, Hamza W, Benhassine T, Ali-Pacha L, Tazir M, Durr A, Monin ML, Mignot C, Charles P, Van Maldergem L, Chamard L, Thauvin-Robinet C, Laugel V, Burglen L, Calvas P, Fleury MC, Tranchant C, Anheim M, Koenig M. Validation of a clinical practice-based algorithm for the diagnosis of autosomal recessive cerebellar ataxias based on NGS identified cases. J Neurol 2016; 263:1314-22. [DOI: 10.1007/s00415-016-8112-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/26/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
|
29
|
Nguyen M, Boesten I, Hellebrekers DMEI, Mulder-den Hartog NM, de Coo IFM, Smeets HJM, Gerards M. Novel pathogenicSLC25A46splice-site mutation causes an optic atrophy spectrum disorder. Clin Genet 2016; 91:121-125. [DOI: 10.1111/cge.12774] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/15/2022]
Affiliation(s)
- M. Nguyen
- Department of Clinical Genetics, Unit Clinical Genomics; Maastricht University Medical Centre; Maastricht The Netherlands
- School for Oncology and Developmental Biology (GROW); Maastricht University Medical Centre; Maastricht The Netherlands
| | - I. Boesten
- Department of Clinical Genetics, Unit Clinical Genomics; Maastricht University Medical Centre; Maastricht The Netherlands
| | - D. M. E. I. Hellebrekers
- Department of Clinical Genetics, Unit Clinical Genomics; Maastricht University Medical Centre; Maastricht The Netherlands
| | | | - I. F. M. de Coo
- Department of Neurology; Erasmus Medical Centre; Rotterdam The Netherlands
| | - H. J. M. Smeets
- Department of Clinical Genetics, Unit Clinical Genomics; Maastricht University Medical Centre; Maastricht The Netherlands
- School for Oncology and Developmental Biology (GROW); Maastricht University Medical Centre; Maastricht The Netherlands
| | - M. Gerards
- Department of Clinical Genetics, Unit Clinical Genomics; Maastricht University Medical Centre; Maastricht The Netherlands
- School for Oncology and Developmental Biology (GROW); Maastricht University Medical Centre; Maastricht The Netherlands
- Maastricht Center for Systems Biology (MaCSBio); Maastricht University Medical Centre; Maastricht The Netherlands
| |
Collapse
|
30
|
Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C, Zordan R, Trevisson E, Salviati L. Coenzyme Q biosynthesis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1079-1085. [PMID: 27060254 DOI: 10.1016/j.bbabio.2016.03.036] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/11/2023]
Abstract
Coenzyme Q (CoQ, or ubiquinone) is a remarkable lipid that plays an essential role in mitochondria as an electron shuttle between complexes I and II of the respiratory chain, and complex III. It is also a cofactor of other dehydrogenases, a modulator of the permeability transition pore and an essential antioxidant. CoQ is synthesized in mitochondria by a set of at least 12 proteins that form a multiprotein complex. The exact composition of this complex is still unclear. Most of the genes involved in CoQ biosynthesis (COQ genes) have been studied in yeast and have mammalian orthologues. Some of them encode enzymes involved in the modification of the quinone ring of CoQ, but for others the precise function is unknown. Two genes appear to have a regulatory role: COQ8 (and its human counterparts ADCK3 and ADCK4) encodes a putative kinase, while PTC7 encodes a phosphatase required for the activation of Coq7. Mutations in human COQ genes cause primary CoQ(10) deficiency, a clinically heterogeneous mitochondrial disorder with onset from birth to the seventh decade, and with clinical manifestation ranging from fatal multisystem disorders, to isolated encephalopathy or nephropathy. The pathogenesis of CoQ(10) deficiency involves deficient ATP production and excessive ROS formation, but possibly other aspects of CoQ(10) function are implicated. CoQ(10) deficiency is unique among mitochondrial disorders since an effective treatment is available. Many patients respond to oral CoQ(10) supplementation. Nevertheless, treatment is still problematic because of the low bioavailability of the compound, and novel pharmacological approaches are currently being investigated. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Manuel Jesús Acosta
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Luis Vazquez Fonseca
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Cristina Cerqua
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Roberta Zordan
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy.
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy.
| |
Collapse
|
31
|
Cullen JK, Abdul Murad N, Yeo A, McKenzie M, Ward M, Chong KL, Schieber NL, Parton RG, Lim YC, Wolvetang E, Maghzal GJ, Stocker R, Lavin MF. AarF Domain Containing Kinase 3 (ADCK3) Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation. PLoS One 2016; 11:e0148213. [PMID: 26866375 PMCID: PMC4751082 DOI: 10.1371/journal.pone.0148213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Autosomal recessive ataxias are a clinically diverse group of syndromes that in some cases are caused by mutations in genes with roles in the DNA damage response, transcriptional regulation or mitochondrial function. One of these ataxias, known as Autosomal Recessive Cerebellar Ataxia Type-2 (ARCA-2, also known as SCAR9/COQ10D4; OMIM: #612016), arises due to mutations in the ADCK3 gene. The product of this gene (ADCK3) is an atypical kinase that is thought to play a regulatory role in coenzyme Q10 (CoQ10) biosynthesis. Although much work has been performed on the S. cerevisiae orthologue of ADCK3, the cellular and biochemical role of its mammalian counterpart, and why mutations in this gene lead to human disease is poorly understood. Here, we demonstrate that ADCK3 localises to mitochondrial cristae and is targeted to this organelle via the presence of an N-terminal localisation signal. Consistent with a role in CoQ10 biosynthesis, ADCK3 deficiency decreased cellular CoQ10 content. In addition, endogenous ADCK3 was found to associate in vitro with recombinant Coq3, Coq5, Coq7 and Coq9, components of the CoQ10 biosynthetic machinery. Furthermore, cell lines derived from ARCA-2 patients display signs of oxidative stress, defects in mitochondrial homeostasis and increases in lysosomal content. Together, these data shed light on the possible molecular role of ADCK3 and provide insight into the cellular pathways affected in ARCA-2 patients.
Collapse
Affiliation(s)
- Jason K. Cullen
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- * E-mail: (JKC); (MFL)
| | - Norazian Abdul Murad
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| | - Abrey Yeo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Matthew McKenzie
- Hudson Institute of Medical Research, Centre for Genetic Diseases, Melbourne, VIC, Australia
| | - Micheal Ward
- Mater Medical Research Institute, Glycation and Diabetic Complications Group, Translational Research Institute, Brisbane, QLD, Australia
| | - Kok Leong Chong
- Queensland University of Technology, ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Brisbane, QLD, Australia
| | - Nicole L. Schieber
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St. Lucia, QLD, Australia
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St. Lucia, QLD, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ernst Wolvetang
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Australia
| | - Ghassan J. Maghzal
- Victor Chang Cardiac Research Institute, Vascular Biology Division, Darlinghurst, Australia
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Vascular Biology Division, Darlinghurst, Australia
| | - Martin F. Lavin
- The University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
- * E-mail: (JKC); (MFL)
| |
Collapse
|
32
|
Abstract
Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| |
Collapse
|
33
|
Hamza W, Ali Pacha L, Hamadouche T, Muller J, Drouot N, Ferrat F, Makri S, Chaouch M, Tazir M, Koenig M, Benhassine T. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia. BMC MEDICAL GENETICS 2015; 16:36. [PMID: 26068213 PMCID: PMC4630839 DOI: 10.1186/s12881-015-0180-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 05/29/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with great genetic and phenotypic heterogeneity, over 30 genes/loci have been associated with more than 20 different clinical forms of ARCA. Genetic heterogeneity combined with highly variable clinical expression of the cerebellar symptoms and overlapping features complicate furthermore the etiological diagnosis of ARCA. The determination of the most frequent mutations and corresponding ataxias, as well as particular features specific to a population, are mandatory to facilitate and speed up the diagnosis process, especially when an appropriate treatment is available. METHODS We explored 166 patients (115 families) refered to the neurology units of Algiers central hospitals (Algeria) with a cerebellar ataxia phenotype segregating as an autosomal recessive pattern of inheritance. Genomic DNA was extracted from peripheral blood samples and mutational screening was performed by PCR and direct sequencing or by targeted genomic capture and massive parallel sequencing of 57 genes associated with inherited cerebellar ataxia phenotypes. RESULTS In this work we report the clinical and molecular results obtained on a large cohort of Algerian patients (110 patients/76 families) with genetically determined autosomal recessive ataxia, representing 9 different types of ARCA and 23 different mutations, including 6 novel ones. The five most common ARCA in this cohort were Friedreich ataxia, ataxia with isolated vitamin E deficiency, ataxia with oculomotor apraxia type 2, autosomal recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1. CONCLUSION We report here a large cohort of patients with genetically determined autosomal recessive ataxia and the first study of the genetic context of ARCA in Algeria. This study showed that in Algerian patients, the two most common types of ataxia (Friedreich ataxia and ataxia with isolated vitamin E deficiency) coexist with forms that may be less common or underdiagnosed. To refine the genotype/phenotype correlation in rare and heteregeneous diseases as autosomal recessive ataxias, more extensive epidemiological investigations and reports are necessary as well as more accurate and detailed clinical characterizations. The use of standardized clinical and molecular protocols would thus enable a better knowledge of the different forms of ARCA.
Collapse
Affiliation(s)
- Wahiba Hamza
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, USTHB, Alger, Algeria.
| | - Lamia Ali Pacha
- Service de Neurologie, CHU Mustapha Bacha, Alger, Algeria. .,Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria.
| | - Tarik Hamadouche
- Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria. .,Laboratoire de Biologie Moléculaire, Faculté des Sciences, UMBB, Boumerdes, Algeria.
| | - Jean Muller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg UMR7104, INSERM U964, Illkirch, France. .,Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg UMR7104, INSERM U964, Illkirch, France.
| | - Farida Ferrat
- Service de Neurologie, CHU Ben Aknoun, Alger, Algeria.
| | - Samira Makri
- Service de Neurologie, EHS Ali Aït Idir, Alger, Algeria.
| | | | - Meriem Tazir
- Service de Neurologie, CHU Mustapha Bacha, Alger, Algeria. .,Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria.
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU de Montpellier, Montpellier, France.
| | - Traki Benhassine
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, USTHB, Alger, Algeria.
| |
Collapse
|
34
|
Abstract
Among the hereditary cerebellar ataxias (CAs), there are at least 36 different forms of autosomal dominant cerebellar ataxia (ADCAs), 20 autosomal recessive cerebellar ataxias (ARCAs), two X-linked ataxias, and several forms of ataxia associated with mitochondrial defects. Despite the steady increase in the number of newly discovered CA genes, patients, especially those with putative ARCAs, cannot yet be genotyped. Moreover, in daily clinical practice, ataxia may present as an isolated cerebellar syndrome or, more often, it is associated with a broad spectrum of neurological manifestations including pyramidal, extrapyramidal, sensory, and cognitive dysfunction. Furthermore, non-neurological symptoms may also coexist. A close integration between clinical records, neurophysiological, neuroradiological and, in some instances, biochemical findings will help physicians in the diagnostic work-up (including selection of the correct genetic tests) and may lead to timely therapy. Some inherited CAs are in fact potentially treatable, and the efficacy of the therapy is directly related to the severity of the cerebellar atrophy and to the time of onset of the disease. Most cases of CA are sporadic, and the diagnostic work-up remains a challenge. Detailed anamnesis and deep investigation of the family pedigree are usually enough to discriminate between acquired and genetic conditions. In the case of ADCA, molecular testing should be guided by taking into account the main associated symptoms. In sporadic cases, a multi-disciplinary approach is needed and should consider the following points: (1) onset and clinical course; (2) associated features; (3) neurophysiological parameters, with special attention to the occurrence of peripheral neuropathy; (4) neuroimaging results; and (5) laboratory findings. A late-onset sporadic ataxia, in which other possible causes have been excluded by following the proposed steps, might be attributable to metabolic disorders, which in some instances may be treatable. In this review, we will guide the reader through the labyrinth of CAs, and we propose a diagnostic flow chart.
Collapse
|
35
|
Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis 2015; 38:145-56. [PMID: 25091424 DOI: 10.1007/s10545-014-9749-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022]
Abstract
Coenzyme Q(10) is a remarkable lipid involved in many cellular processes such as energy production through the mitochondrial respiratory chain (RC), beta-oxidation of fatty acids, and pyrimidine biosynthesis, but it is also one of the main cellular antioxidants. Its biosynthesis is still incompletely characterized and requires at least 15 genes. Mutations in eight of them (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) cause primary CoQ(10) deficiency, a heterogeneous group of disorders with variable age of onset (from birth to the seventh decade) and associated clinical phenotypes, ranging from a fatal multisystem disease to isolated steroid resistant nephrotic syndrome (SRNS) or isolated central nervous system disease. The pathogenesis is complex and related to the different functions of CoQ(10). It involves defective ATP production and oxidative stress, but also an impairment of pyrimidine biosynthesis and increased apoptosis. CoQ(10) deficiency can also be observed in patients with defects unrelated to CoQ(10) biosynthesis, such as RC defects, multiple acyl-CoA dehydrogenase deficiency, and ataxia and oculomotor apraxia.Patients with both primary and secondary deficiencies benefit from high-dose oral supplementation with CoQ(10). In primary forms treatment can stop the progression of both SRNS and encephalopathy, hence the critical importance of a prompt diagnosis. Treatment may be beneficial also for secondary forms, although with less striking results.In this review we will focus on CoQ(10) biosynthesis in humans, on the genetic defects and the specific clinical phenotypes associated with CoQ(10) deficiency, and on the diagnostic strategies for these conditions.
Collapse
Affiliation(s)
- Maria Andrea Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, Padova, 35128, Italy
| | | | | | | | | |
Collapse
|
36
|
Khadria AS, Mueller BK, Stefely JA, Tan CH, Pagliarini DJ, Senes A. A Gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3. J Am Chem Soc 2014; 136:14068-77. [PMID: 25216398 PMCID: PMC4195374 DOI: 10.1021/ja505017f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interactions between α-helices within the hydrophobic environment of lipid bilayers are integral to the folding and function of transmembrane proteins; however, the major forces that mediate these interactions remain debated, and our ability to predict these interactions is still largely untested. We recently demonstrated that the frequent transmembrane association motif GASright, the GxxxG-containing fold of the glycophorin A dimer, is optimal for the formation of extended networks of Cα-H hydrogen bonds, supporting the hypothesis that these bonds are major contributors to association. We also found that optimization of Cα-H hydrogen bonding and interhelical packing is sufficient to computationally predict the structure of known GASright dimers at near atomic level. Here, we demonstrate that this computational method can be used to characterize the structure of a protein not previously known to dimerize, by predicting and validating the transmembrane dimer of ADCK3, a mitochondrial kinase. ADCK3 is involved in the biosynthesis of the redox active lipid, ubiquinone, and human ADCK3 mutations cause a cerebellar ataxia associated with ubiquinone deficiency, but the biochemical functions of ADCK3 remain largely undefined. Our experimental analyses show that the transmembrane helix of ADCK3 oligomerizes, with an interface based on an extended Gly-zipper motif, as predicted by our models. The data provide strong evidence for the hypothesis that optimization of Cα-H hydrogen bonding is an important factor in the association of transmembrane helices. This work also provides a structural foundation for investigating the role of transmembrane association in regulating the biological activity of ADCK3.
Collapse
Affiliation(s)
- Ambalika S Khadria
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | | | | | | | | | | |
Collapse
|
37
|
Quinzii CM, Emmanuele V, Hirano M. Clinical presentations of coenzyme q10 deficiency syndrome. Mol Syndromol 2014; 5:141-6. [PMID: 25126046 DOI: 10.1159/000360490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coenzyme Q10 (CoQ10) deficiency is a clinically and genetically heterogeneous syndrome which has been associated with 5 major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) nephropathy, (4) cerebellar ataxia, and (5) isolated myopathy. Of these phenotypes, cerebellar ataxia and syndromic or isolated nephrotic syndrome are the most common. CoQ10 deficiency predominantly presents in childhood. To date, causative mutations have been identified in a small proportion of patients, making it difficult to identify a phenotype-genotype correlation. Identification of CoQ10 deficiency is important because the disease, in particular muscle symptoms and nephropathy, frequently responds to CoQ10 supplementation.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| | - Valentina Emmanuele
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| |
Collapse
|
38
|
Doimo M, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L. Genetics of coenzyme q10 deficiency. Mol Syndromol 2014; 5:156-62. [PMID: 25126048 DOI: 10.1159/000362826] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential component of eukaryotic cells and is involved in crucial biochemical reactions such as the production of ATP in the mitochondrial respiratory chain, the biosynthesis of pyrimidines, and the modulation of apoptosis. CoQ10 requires at least 13 genes for its biosynthesis. Mutations in these genes cause primary CoQ10 deficiency, a clinically and genetically heterogeneous disorder. To date mutations in 8 genes (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) have been associated with CoQ10 deficiency presenting with a wide variety of clinical manifestations. Onset can be at virtually any age, although pediatric forms are more common. Symptoms include those typical of respiratory chain disorders (encephalomyopathy, ataxia, lactic acidosis, deafness, retinitis pigmentosa, hypertrophic cardiomyopathy), but some (such as steroid-resistant nephrotic syndrome) are peculiar to this condition. The molecular bases of the clinical diversity of this condition are still unknown. It is of critical importance that physicians promptly recognize these disorders because most patients respond to oral administration of CoQ10.
Collapse
Affiliation(s)
- Mara Doimo
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Maria A Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Cristina Cerqua
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| |
Collapse
|
39
|
Ozaltin F. Primary coenzyme Q10 (CoQ 10) deficiencies and related nephropathies. Pediatr Nephrol 2014; 29:961-9. [PMID: 23736673 DOI: 10.1007/s00467-013-2482-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is a metabolic pathway that uses energy released by the oxidation of nutrients to generate adenosine triphosphate (ATP). Coenzyme Q10 (CoQ10), also known as ubiquinone, plays an essential role in the human body not only by generating ATP in the mitochondrial respiratory chain but also by providing protection from reactive oxygen species (ROS) and functioning in the activation of many mitochondrial dehydrogenases and enzymes required in pyrimidine nucleoside biosynthesis. The presentations of primary CoQ10 deficiencies caused by genetic mutations are very heterogeneous. The phenotypes related to energy depletion or ROS production may depend on the content of CoQ10 in the cell, which is determined by the severity of the mutation. Primary CoQ10 deficiency is unique among mitochondrial disorders because early supplementation with CoQ10 can prevent the onset of neurological and renal manifestations. In this review I summarize primary CoQ10 deficiencies caused by various genetic abnormalities, emphasizing its nephropathic form.
Collapse
Affiliation(s)
- Fatih Ozaltin
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, 06100, Ankara, Turkey,
| |
Collapse
|
40
|
Liu YT, Hersheson J, Plagnol V, Fawcett K, Duberley KEC, Preza E, Hargreaves IP, Chalasani A, Laurá M, Wood NW, Reilly MM, Houlden H. Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation. J Neurol Neurosurg Psychiatry 2014; 85:493-8. [PMID: 24218524 PMCID: PMC3995328 DOI: 10.1136/jnnp-2013-306483] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/07/2013] [Accepted: 10/14/2013] [Indexed: 12/03/2022]
Abstract
BACKGROUND The autosomal-recessive cerebellar ataxias (ARCA) are a clinically and genetically heterogeneous group of neurodegenerative disorders. The large number of ARCA genes leads to delay and difficulties obtaining an exact diagnosis in many patients and families. Ubiquinone (CoQ10) deficiency is one of the potentially treatable causes of ARCAs as some patients respond to CoQ10 supplementation. The AarF domain containing kinase 3 gene (ADCK3) is one of several genes associated with CoQ10 deficiency. ADCK3 encodes a mitochondrial protein which functions as an electron-transfer membrane protein complex in the mitochondrial respiratory chain (MRC). METHODS We report two siblings from a consanguineous Pakistani family who presented with cerebellar ataxia and severe myoclonus from adolescence. Whole exome sequencing and biochemical assessment of fibroblasts were performed in the index patient. RESULTS A novel homozygous frameshift mutation in ADCK3 (p.Ser616Leufs*114), was identified in both siblings. This frameshift mutation results in the loss of the stop codon, extending the coding protein by 81 amino acids. Significant CoQ10 deficiency and reduced MRC enzyme activities in the index patient's fibroblasts suggested that the mutant protein may reduce the efficiency of mitochondrial electron transfer. CoQ10 supplementation was initiated following these genetic and biochemical analyses. She gained substantial improvement in myoclonic movements, ataxic gait and dysarthric speech after treatment. CONCLUSION This study highlights the importance of diagnosing ADCK3 mutations and the potential benefit of treatment for patients. The identification of this new mutation broadens the phenotypic spectrum associated with ADCK3 mutations and provides further understanding of their pathogenic mechanism.
Collapse
Affiliation(s)
- Yo-Tsen Liu
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- Section of Epilepsy, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Joshua Hersheson
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Katherine Fawcett
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Kate E C Duberley
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Elisavet Preza
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, National Hospital of Neurology and Neurosurgery, London, UK
| | - Annapurna Chalasani
- Neurometabolic Unit, National Hospital of Neurology and Neurosurgery, London, UK
| | - Matilde Laurá
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Nick W Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
41
|
Tian C, Yan R, Wen S, Li X, Li T, Cai Z, Li X, Du H, Chen H. A splice mutation and mRNA decay of EXT2 provoke hereditary multiple exostoses. PLoS One 2014; 9:e94848. [PMID: 24728384 PMCID: PMC3984245 DOI: 10.1371/journal.pone.0094848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 03/20/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Hereditary multiple exostoses (HME) is an autosomal dominant disease. The classical paradigm of mutation screening seeks to relate alterations in the exostosin glycosyltransferase genes, EXT1 and EXT2, which are responsible for over 70% of HME cases. However, the pathological significance of the majority of these mutations is often unclear. METHODS In a Chinese family with HME, EXT1 and EXT2 genes were screened by direct sequencing. The consequence of a detected mutant was predicted by in silico analysis and confirmed by mRNA analysis. The EXT1 and EXT2 mRNA and protein levels and the HS patterns in the HME patients were compared with those in healthy controls. RESULTS A heterozygous transition (c.743+1G>A) in the EXT2 gene, which co-segregated with the HME phenotype in this family, was identified. The G residue at position +1 in intron 4 of EXT2 was predicted to be a 5' donor splice site. The mRNA analysis revealed an alternative transcript with a cryptic splice site 5 bp downstream of the wild-type site, which harbored a premature stop codon. However, the predicted truncated protein was not detected by western blot analysis. Decay of the mutant mRNA was shown by clone sequencing and quantification analysis. The corresponding downregulation of the EXT2 mRNA will contribute to the abnormal EXT1/EXT2 ratio and HS pattern that were detected in the patients with HME. CONCLUSION The heterozygous mutation c.743+1G>A in the EXT2 gene causes HME as a result of abnormal splicing, mRNA decay, and the resulting haploinsufficiency of EXT2.
Collapse
Affiliation(s)
- Chen Tian
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Rengna Yan
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shuzhen Wen
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Xueling Li
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Tianfeng Li
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Zhenming Cai
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Xinxiu Li
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Hong Du
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- * E-mail: (HD); (HC)
| | - Huimei Chen
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
- * E-mail: (HD); (HC)
| |
Collapse
|
42
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Takahashi H, Shimoda K. Coenzyme Q10 in neurodegenerative disorders: Potential benefit of CoQ10 supplementation for multiple system atrophy. World J Neurol 2014; 4:1-6. [DOI: 10.5316/wjn.v4.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/03/2013] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential cofactor in the mitochondrial respiratory pathway and also functions as a lipid-soluble antioxidant. CoQ10 deficiency has been implicated in many clinical disorders and aging. Primary CoQ10 deficiency is a group of recessively inherited diseases caused by mutations in any gene involved in the CoQ10 biosynthesis pathway. Although primary CoQ10 deficiency is rare, its diagnosis is important because it is potentially treatable with exogenous CoQ10. Multiple system atrophy (MSA) was recently shown to be linked to mutations in the COQ2 gene, one of the genes involved in the CoQ10 biosynthesis pathway. MSA is relatively common in adult-onset neurodegenerative diseases characterized by Parkinsonism, cerebellar ataxia and autonomic failures. Because COQ2 mutations are associated with an increased risk of MSA, oral CoQ10 supplementation may be beneficial for MSA, as for other primary CoQ10 deficiencies. Statins are 3-hydroxy-3-methylglutaryl coenzyme A inhibitors that inhibit the biosynthesis of cholesterol, as well as the synthesis of mevalonate, a critical intermediate in cholesterol synthesis. Statin therapy has been associated with a variety of muscle complaints from myalgia to rhabdomyolysis. Statin treatment carries a potential risk of CoQ10 deficiency, although no definite evidence has implicated CQ10 deficiency as the cause of statin-related myopathy.
Collapse
|
44
|
Laredj LN, Licitra F, Puccio HM. The molecular genetics of coenzyme Q biosynthesis in health and disease. Biochimie 2013; 100:78-87. [PMID: 24355204 DOI: 10.1016/j.biochi.2013.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
Abstract
Coenzyme Q, or ubiquinone, is an endogenously synthesized lipid-soluble antioxidant that plays a major role in the mitochondrial respiratory chain. Although extensively studied for decades, recent data on coenzyme Q have painted an exciting albeit incomplete picture of the multiple facets of this molecule's function. In humans, mutations in the genes involved in the biosynthesis of coenzyme Q lead to a heterogeneous group of rare disorders, with most often severe and debilitating symptoms. In this review, we describe the current understanding of coenzyme Q biosynthesis, provide a detailed overview of human coenzyme Q deficiencies and discuss the existing mouse models for coenzyme Q deficiency. Furthermore, we briefly examine the current state of affairs in non-mitochondrial coenzyme Q functions and the latter's link to statin.
Collapse
Affiliation(s)
- Leila N Laredj
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France; Inserm, U596, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Université de Strasbourg, Strasbourg, France; Collège de France, Chaire de génétique humaine, Illkirch, France
| | - Floriana Licitra
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France; Inserm, U596, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Université de Strasbourg, Strasbourg, France; Collège de France, Chaire de génétique humaine, Illkirch, France
| | - Hélène M Puccio
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France; Inserm, U596, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Université de Strasbourg, Strasbourg, France; Collège de France, Chaire de génétique humaine, Illkirch, France.
| |
Collapse
|
45
|
Mignot C, Apartis E, Durr A, Marques Lourenço C, Charles P, Devos D, Moreau C, de Lonlay P, Drouot N, Burglen L, Kempf N, Nourisson E, Chantot-Bastaraud S, Lebre AS, Rio M, Chaix Y, Bieth E, Roze E, Bonnet I, Canaple S, Rastel C, Brice A, Rötig A, Desguerre I, Tranchant C, Koenig M, Anheim M. Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression. Orphanet J Rare Dis 2013; 8:173. [PMID: 24164873 PMCID: PMC3843540 DOI: 10.1186/1750-1172-8-173] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/15/2013] [Indexed: 01/23/2023] Open
Abstract
Autosomal recessive cerebellar ataxia 2 (ARCA2) is a recently identified recessive ataxia due to ubiquinone deficiency and biallelic mutations in the ADCK3 gene. The phenotype of the twenty-one patients reported worldwide varies greatly. Thus, it is difficult to decide which ataxic patients are good candidates for ADCK3 screening without evidence of ubiquinone deficiency. We report here the clinical and molecular data of 10 newly diagnosed patients from seven families and update the disease history of four additional patients reported in previous articles to delineate the clinical spectrum of ARCA2 phenotype and to provide a guide to the molecular diagnosis. First signs occurred before adulthood in all 14 patients. Cerebellar atrophy appeared in all instances. The progressivity and severity of ataxia varied greatly, but no patients had the typical inexorable ataxic course that characterizes other childhood-onset recessive ataxias. The ataxia was frequently associated with other neurological signs. Importantly, stroke-like episodes contributed to significant deterioration of the neurological status in two patients. Ubidecarenone therapy markedly improved the movement disorders, including ataxia, in two other patients. The 7 novel ADCK3 mutations found in the 10 new patients were two missense and five truncating mutations. There was no apparent correlation between the genotype and the phenotype. Our series reveals that the clinical spectrum of ARCA2 encompasses a range of ataxic phenotypes. On one end, it may manifest as a pure ataxia with very slow progressivity and, on the other end, as a severe infantile encephalopathy with cerebellar atrophy. The phenotype of most patients, however, lies in between. It is characterized by a very slowly progressive or apparently stable ataxia associated with other signs of central nervous system involvement. We suggest undergoing the molecular analysis of ADCK3 in patients with this phenotype and in those with cerebellar atrophy and a stroke-like episode. The diagnosis of patients with a severe ARCA2 phenotype may also be performed on the basis of biological data, i.e. low ubiquinone level or functional evidence of ubiquinone deficiency. This diagnosis is crucial since the neurological status of some patients may be improved by ubiquinone therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mathieu Anheim
- Department of Genetics and Cytogenetics, AP-HP, Hôpital de la Salpêtrière, Paris, F-75013, France.
| |
Collapse
|
46
|
Blumkin L, Leshinsky-Silver E, Zerem A, Yosovich K, Lerman-Sagie T, Lev D. Heterozygous Mutations in the ADCK3 Gene in Siblings with Cerebellar Atrophy and Extreme Phenotypic Variability. JIMD Rep 2013; 12:103-7. [PMID: 24048965 DOI: 10.1007/8904_2013_251] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/29/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED We describe a highly variable clinical presentation of cerebellar ataxia in two sisters. The younger sister demonstrates early onset rapidly progressive cerebellar ataxia accompanied by motor and nonmotor cerebellar features, as well as cognitive decline and psychiatric problems. Mitochondrial respiratory chain enzyme analysis in muscle showed a decrease in complex I + III. Progressive cerebellar atrophy was demonstrated on serial brain MR imaging. Coenzyme Q10 (CoQ10) supplementation, started at the age of 5 years, led to a significant improvement in motor and cognitive abilities with partial amelioration of the cerebellar signs. Discontinuation of this treatment resulted in worsening of the ataxia, cognitive decline, and severe depression.The older sister, who is 32 years old, has nonprogressive dysarthria and clumsiness from the age of 10 years and MRI reveals cerebellar atrophy.Exome sequencing identified compound heterozygosity for a known (p. Thr584delACC (c.1750_1752delACC)) and a novel (p.P502R) mutation in the ACDK3 gene. CONCLUSIONS Patients with primary CoQ10 deficiency due to ADCK3 mutations can demonstrate a wide spectrum of clinical presentations even in the same family. It is difficult to diagnose CoQ10 deficiency based solely on the clinical presentation.Exome sequencing can provide the molecular diagnosis but since it is expensive and not readily available, we recommend a trial of CoQ10 treatment in patients with ataxia and cerebellar atrophy even before confirmation of the molecular diagnosis.
Collapse
Affiliation(s)
- Lubov Blumkin
- Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel
| | | | | | | | | | | |
Collapse
|
47
|
Zsurka G, Kunz WS. Mitochondrial involvement in neurodegenerative diseases. IUBMB Life 2013; 65:263-72. [PMID: 23341346 DOI: 10.1002/iub.1126] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 01/12/2023]
Abstract
The classical bioenergetical view of the involvement of mitochondria in neurogeneration is based on the fact that mitochondria are the central players of ATP synthesis in neurons and their failure leads to neuronal dysfunction and eventually to cell death. Mutations in at least 39 genes in inherited neurodegenerative disorders seem to alter directly or indirectly mitochondrial function. Most of these mutations do not directly affect oxidative phosphorylation, but act through disturbed mitochondrial dynamics and quality control. This, however, does not invalidate the bioenergetic hypothesis. Neurodegeneration is not necessarily associated with a gross failure of ATP production, but might rather be a consequence of local insufficiencies of ATP supply in critical compartments of neurons, like the presynaptic terminal. We hypothesize that slow disease progression, at least in a subgroup of neurodegenerative diseases, can be explained by the parallel action of subcellular ATP insufficiency and clonal expansion of somatic mitochondrial DNA mutations, and particularly deletions.
Collapse
Affiliation(s)
- Gábor Zsurka
- Department of Epileptology and Life and Brain Center, University Bonn, Bonn, Germany
| | | |
Collapse
|
48
|
Emmanuele V, López LC, López L, Berardo A, Naini A, Tadesse S, Wen B, D'Agostino E, Solomon M, DiMauro S, Quinzii C, Hirano M. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. ACTA ACUST UNITED AC 2012; 69:978-83. [PMID: 22490322 DOI: 10.1001/archneurol.2012.206] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coenzyme Q(10) (CoQ(10)) deficiency has been associated with 5 major clinical phenotypes: encephalomyopathy, severe infantile multisystemic disease, nephropathy, cerebellar ataxia, and isolated myopathy. Primary CoQ(10) deficiency is due to defects in CoQ(10) biosynthesis, while secondary forms are due to other causes. A review of 149 cases, including our cohort of 76 patients, confirms that CoQ(10) deficiency is a clinically and genetically heterogeneous syndrome that mainly begins in childhood and predominantly manifests as cerebellar ataxia. Coenzyme Q(10) measurement in muscle is the gold standard for diagnosis. Identification of CoQ(10) deficiency is important because the condition frequently responds to treatment. Causative mutations have been identified in a small proportion of patients.
Collapse
Affiliation(s)
- Valentina Emmanuele
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Talishinsky A, Rosen GD. Systems genetics of the lateral septal nucleus in mouse: heritability, genetic control, and covariation with behavioral and morphological traits. PLoS One 2012; 7:e44236. [PMID: 22952935 PMCID: PMC3432065 DOI: 10.1371/journal.pone.0044236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
The lateral septum has strong efferent projections to hypothalamic and midbrain regions, and has been associated with modulation of social behavior, anxiety, fear conditioning, memory-related behaviors, and the mesolimbic reward pathways. Understanding natural variation of lateral septal anatomy and function, as well as its genetic modulation, may provide important insights into individual differences in these evolutionarily important functions. Here we address these issues by using efficient and unbiased stereological probes to estimate the volume of the lateral septum in the BXD line of recombinant inbred mice. Lateral septum volume is a highly variable trait, with a 2.5-fold difference among animals. We find that this trait covaries with a number of behavioral and physiological phenotypes, many of which have already been associated with behaviors modulated by the lateral septum, such as spatial learning, anxiety, and reward-seeking. Heritability of lateral septal volume is moderate (h(2) = 0.52), and much of the heritable variation is caused by a locus on the distal portion of chromosome (Chr) 1. Composite interval analysis identified a secondary interval on Chr 2 that works additively with the Chr 1 locus to increase lateral septum volume. Using bioinformatic resources, we identified plausible candidate genes in both intervals that may influence the volume of this key nucleus, as well as associated behaviors.
Collapse
Affiliation(s)
- Alexander Talishinsky
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Glenn D. Rosen
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
50
|
Horvath R. Update on clinical aspects and treatment of selected vitamin-responsive disorders II (riboflavin and CoQ 10). J Inherit Metab Dis 2012; 35:679-87. [PMID: 22231380 DOI: 10.1007/s10545-011-9434-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 01/13/2023]
Abstract
Riboflavin and ubiquinone (Coenzyme Q(10), CoQ(10)) deficiencies are heterogeneous groups of autosomal recessive conditions affecting both children and adults. Riboflavin (vitamin B(2))-derived cofactors are essential for the function of numerous dehydrogenases. Genetic defects of the riboflavin transport have been detected in Brown-Vialetto-Van Laere and Fazio-Londe syndromes (C20orf54), and haploinsufficiency of GPR172B has been proposed in one patient to cause persistent riboflavin deficiency. Mutations in the electron tranferring fravoprotein genes (ETFA/ETFB) and its dehydrogenase (ETFDH) are causative for multiple acyl-CoA dehydrogenase deficiency. Mutations in ACAD9, encoding the acyl-CoA dehydrogenase 9 protein were recently reported in mitochondrial disease with respiratory chain complex I deficiency. All these conditions may respond to riboflavin therapy. CoQ(10) is a lipid-soluble component of the cell membranes, where it functions as a mobile electron and proton carrier, but also participates in other cellular processes as a potent antioxidant, and by influencing pyrimidine metabolism. The increasing number of molecular defects in enzymes of the CoQ(10) biosynthetic pathways (PDSS1, PDSS2, COQ2, COQ6, COQ9, CABC1/ADCK3) underlies the importance of these conditions. The clinical heterogeneity may reflect blocks at different levels in the complex biosynthetic pathway. Despite the identification of several primary CoQ(10) deficiency genes, the number of reported patients is still low, and no true genotype-phenotype correlations are known which makes the genetic diagnosis still difficult. Additionally to primary CoQ(10) deficiencies, where the mutation impairs a protein directly involved in CoQ(10) biosynthesis, we can differentiate secondary deficiencies. CoQ(10) supplementation may be beneficial in both primary and secondary deficiencies and therefore the early recognition of these diseases is of utmost importance.
Collapse
Affiliation(s)
- Rita Horvath
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|