1
|
Škarica M, Acsadi G, Živković SA. Pontocerebellar Hypoplasia Type 1 and Associated Neuronopathies. Genes (Basel) 2025; 16:585. [PMID: 40428407 PMCID: PMC12111444 DOI: 10.3390/genes16050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 05/11/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Pontocerebellar hypoplasia is a rare neurodegenerative syndrome characterized by severe hypoplasia or atrophy of pons and cerebellum that may be associated with other brain malformations, microcephaly, optic nerve atrophy, dystonia, ataxia and neuromuscular disorders. At this time, there are 17 variants of PCH distinguished by clinical presentation and distinctive radiological and biochemical features in addition to pontine and cerebellar hypoplasia. PCH1 is defined as PCH variant associated with anterior horn degeneration in the spinal cord with muscle weakness and hypotonia, and is associated with recessive variants in genes VRK1, EXOSC3, EXOSC8, EXOSC9 and SLC25A46. Neuromuscular manifestations may clinically present as amyotrophic lateral sclerosis (ALS), motor neuropathy (HMN) or neuronopathy (non-5q spinal muscular atrophy; SMA) or sensorimotor polyneuropathy (HMSN). Physiologic functions of PCH1-associated genes include regulation of RNA metabolism, mitochondrial fission and neuronal migration. Overall, complex phenotypes associated with PCH1 gene variants ranging from PCH and related neurodevelopmental disorders combined with neuromuscular disorders to isolated neuromuscular disorders have variable outcomes with isolated neuromuscular disorders typically having later onset with better outcomes. Improved understanding of pathogenesis of pontocerebellar hypoplasia and its association with motor neuronopathies and peripheral neuropathies may provide us with valuable insights and lead to potential new therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Mario Škarica
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Gyula Acsadi
- Division of Neurology, Connecticut Children’s Medical Center, St. Hartford, CT 06106, USA;
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Sasha A. Živković
- Department of Neurology and CMT Program at Yale, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Sterrett MC, Cureton LA, Cohen LN, van Hoof A, Khoshnevis S, Fasken MB, Corbett AH, Ghalei H. Comparative analyses of disease-linked missense mutations in the RNA exosome modeled in budding yeast reveal distinct functional consequences in translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.18.562946. [PMID: 37904946 PMCID: PMC10614903 DOI: 10.1101/2023.10.18.562946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The RNA exosome is a multi-subunit, evolutionarily conserved ribonuclease complex that is essential for processing, decay and surveillance of many cellular RNAs. Missense mutations in genes encoding the structural subunits of the RNA exosome complex cause a diverse range of diseases, collectively known as RNA exosomopathies, often involving neurological and developmental defects. The varied symptoms suggest that different mutations lead to distinct in vivo consequences. To investigate these functional consequences and distinguish whether they are unique to each RNA exosomopathy mutation, we generated a collection of in vivo models by introducing pathogenic missense mutations in orthologous S. cerevisiae genes. Comparative RNA-seq analysis assessing broad transcriptomic changes in each mutant model revealed that three yeast mutant models, rrp4-G226D, rrp40-W195R and rrp46-L191H, which model mutations in the genes encoding EXOSC2, EXOSC3 and EXOSC5, respectively, had the largest transcriptomic differences. While some transcriptomic changes, particularly in transcripts related to ribosome biogenesis, were shared among mutant models, each mutation also induced unique transcriptomic changes. Thus, our data suggests that while there are some shared consequences, there are also distinct differences in RNA exosome function by each variant. Assessment of ribosome biogenesis and translation defects in the three models revealed distinct differences in polysome profiles. Collectively, our results provide the first comparative analyses of RNA exosomopathy mutant models and suggest that different RNA exosome gene mutations result in in vivo consequences that are both unique and shared across each variant, providing further insight into the biology underlying each distinct pathology.
Collapse
Affiliation(s)
- Maria C. Sterrett
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Lauryn A. Cureton
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lauren N. Cohen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Milo B. Fasken
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | | | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Fasken MB, Leung SW, Cureton LA, Al-Awadi M, Al-Kindy A, van Hoof A, Khoshnevis S, Ghalei H, Al-Maawali A, Corbett AH. A biallelic variant of the RNA exosome gene, EXOSC4, associated with neurodevelopmental defects impairs RNA exosome function and translation. J Biol Chem 2024; 300:107571. [PMID: 39009343 PMCID: PMC11357806 DOI: 10.1016/j.jbc.2024.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
The RNA exosome is an evolutionarily conserved complex required for both precise RNA processing and decay. Pathogenic variants in EXOSC genes, which encode structural subunits of this complex, are linked to several autosomal recessive disorders. Here, we describe a missense allele of the EXOSC4 gene that causes a collection of clinical features in two affected siblings. This missense variant (NM_019037.3: exon3:c.560T>C) changes a leucine residue within a conserved region of EXOSC4 to proline (p.Leu187Pro). The two affected individuals show prenatal growth restriction, failure to thrive, global developmental delay, intracerebral and basal ganglia calcifications, and kidney failure. Homozygosity for the damaging variant was identified by exome sequencing with Sanger sequencing to confirm segregation. To explore the functional consequences of this amino acid change, we modeled EXOSC4-L187P in the corresponding budding yeast protein, Rrp41 (Rrp41-L187P). Cells that express Rrp41-L187P as the sole copy of the essential Rrp41 protein show growth defects. Steady-state levels of both Rrp41-L187P and EXOSC4-L187P are decreased compared to controls, and EXOSC4-L187P shows decreased copurification with other RNA exosome subunits. RNA exosome target transcripts accumulate in rrp41-L187P cells, including the 7S precursor of 5.8S rRNA. Polysome profiles show a decrease in actively translating ribosomes in rrp41-L187P cells as compared to control cells with the incorporation of 7S pre-rRNA into polysomes. This work adds EXOSC4 to the structural subunits of the RNA exosome that have been linked to human disease and defines foundational molecular defects that could contribute to the adverse phenotypes caused by EXOSC pathogenic variants.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia USA.
| | - Sara W Leung
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia USA
| | - Lauryn A Cureton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia USA; Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Maha Al-Awadi
- Sultan Qaboos Hospital, Ministry of Health, Salalah, Oman
| | - Adila Al-Kindy
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia USA.
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman; Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman.
| | - Anita H Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia USA.
| |
Collapse
|
4
|
Raslan IR, Silva TYT, Kok F, Rodrigues MM, Aragão MM, Pinho RS, França MC, Barsottini OG, Pedroso JL. Clinical and Genetic Characterization of a Cohort of Brazilian Patients With Congenital Ataxia. Neurol Genet 2024; 10:e200153. [PMID: 38681507 PMCID: PMC11052569 DOI: 10.1212/nxg.0000000000200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
Background and Objectives Congenital ataxias are rare hereditary disorders characterized by hypotonia and developmental motor delay in the first few months of life, followed by cerebellar ataxia in early childhood. The course of the disease is predominantly nonprogressive, and many patients are incorrectly diagnosed with cerebral palsy. Despite significant advancements in next-generation sequencing in the past few decades, a specific genetic diagnosis is seldom obtained in cases of congenital ataxia. The aim of the study was to analyze the clinical, radiologic, and genetic features of a cohort of Brazilian patients with congenital ataxia. Methods Thirty patients with a clinical diagnosis of congenital ataxia were enrolled in this study. Clinical and demographic features and neuroimaging studies were analyzed. Genetic testing (whole-exome sequencing) was also performed. Results A heterogeneous pattern of genetic variants was detected. Eighteen genes were involved: ALDH5A1, BRF1, CACNA1A CACNA1G, CC2D2A, CWF19L1, EXOSC3, ITPR1, KIF1A, MME, PEX10, SCN2A, SNX14, SPTBN2, STXBP1, TMEM240, THG1L, and TUBB4A. Pathogenic/likely pathogenic variants involving 11 genes (ALDH5A1, CACNA1A, EXOSC3, MME, ITPR1, KIF1A, STXBP1, SNX14, SPTBN2, TMEM240, and TUBB4A) were identified in 46.7% of patients. Variants of uncertain significance involving 8 genes were detected in 33.3% of patients. Congenital ataxias were characterized by a broad phenotype. A genetic diagnosis was more often obtained in patients with cerebellar-plus syndrome than in patients with a pure cerebellar syndrome. Discussion This study re-emphasizes the genetic heterogeneity of congenital ataxias and the absence of a clear phenotype-genotype relationship. A specific genetic diagnosis was established in 46.7% of patients. Autosomal dominant, associated with sporadic cases, was recognized as an important genetic inheritance. The results of this analysis highlight the value of whole-exome sequencing as an efficient screening tool in patients with congenital ataxia.
Collapse
Affiliation(s)
- Ivana R Raslan
- From the Department of Ataxia Unit of the Federal University of São Paulo (UNIFESP) (I.R.R., T.Y.T.S., O.G.B., J.L.P.); Neurology Department (F.K.), Hospital das Clínicas da Universidade de São Paulo and Mendelics; Department of Neurology and Neurosurgery (M.M.R., M.M.A., R.S.P.), Universidade Federal de São Paulo (UNIFESP); and Department of Neurology (M.C.F.), Universidade de Campinas (UNICAMP), Brazil
| | - Thiago Yoshinaga Tonholo Silva
- From the Department of Ataxia Unit of the Federal University of São Paulo (UNIFESP) (I.R.R., T.Y.T.S., O.G.B., J.L.P.); Neurology Department (F.K.), Hospital das Clínicas da Universidade de São Paulo and Mendelics; Department of Neurology and Neurosurgery (M.M.R., M.M.A., R.S.P.), Universidade Federal de São Paulo (UNIFESP); and Department of Neurology (M.C.F.), Universidade de Campinas (UNICAMP), Brazil
| | - Fernando Kok
- From the Department of Ataxia Unit of the Federal University of São Paulo (UNIFESP) (I.R.R., T.Y.T.S., O.G.B., J.L.P.); Neurology Department (F.K.), Hospital das Clínicas da Universidade de São Paulo and Mendelics; Department of Neurology and Neurosurgery (M.M.R., M.M.A., R.S.P.), Universidade Federal de São Paulo (UNIFESP); and Department of Neurology (M.C.F.), Universidade de Campinas (UNICAMP), Brazil
| | - Marcelo M Rodrigues
- From the Department of Ataxia Unit of the Federal University of São Paulo (UNIFESP) (I.R.R., T.Y.T.S., O.G.B., J.L.P.); Neurology Department (F.K.), Hospital das Clínicas da Universidade de São Paulo and Mendelics; Department of Neurology and Neurosurgery (M.M.R., M.M.A., R.S.P.), Universidade Federal de São Paulo (UNIFESP); and Department of Neurology (M.C.F.), Universidade de Campinas (UNICAMP), Brazil
| | - Marcelo M Aragão
- From the Department of Ataxia Unit of the Federal University of São Paulo (UNIFESP) (I.R.R., T.Y.T.S., O.G.B., J.L.P.); Neurology Department (F.K.), Hospital das Clínicas da Universidade de São Paulo and Mendelics; Department of Neurology and Neurosurgery (M.M.R., M.M.A., R.S.P.), Universidade Federal de São Paulo (UNIFESP); and Department of Neurology (M.C.F.), Universidade de Campinas (UNICAMP), Brazil
| | - Ricardo S Pinho
- From the Department of Ataxia Unit of the Federal University of São Paulo (UNIFESP) (I.R.R., T.Y.T.S., O.G.B., J.L.P.); Neurology Department (F.K.), Hospital das Clínicas da Universidade de São Paulo and Mendelics; Department of Neurology and Neurosurgery (M.M.R., M.M.A., R.S.P.), Universidade Federal de São Paulo (UNIFESP); and Department of Neurology (M.C.F.), Universidade de Campinas (UNICAMP), Brazil
| | - Marcondes C França
- From the Department of Ataxia Unit of the Federal University of São Paulo (UNIFESP) (I.R.R., T.Y.T.S., O.G.B., J.L.P.); Neurology Department (F.K.), Hospital das Clínicas da Universidade de São Paulo and Mendelics; Department of Neurology and Neurosurgery (M.M.R., M.M.A., R.S.P.), Universidade Federal de São Paulo (UNIFESP); and Department of Neurology (M.C.F.), Universidade de Campinas (UNICAMP), Brazil
| | - Orlando G Barsottini
- From the Department of Ataxia Unit of the Federal University of São Paulo (UNIFESP) (I.R.R., T.Y.T.S., O.G.B., J.L.P.); Neurology Department (F.K.), Hospital das Clínicas da Universidade de São Paulo and Mendelics; Department of Neurology and Neurosurgery (M.M.R., M.M.A., R.S.P.), Universidade Federal de São Paulo (UNIFESP); and Department of Neurology (M.C.F.), Universidade de Campinas (UNICAMP), Brazil
| | - José Luiz Pedroso
- From the Department of Ataxia Unit of the Federal University of São Paulo (UNIFESP) (I.R.R., T.Y.T.S., O.G.B., J.L.P.); Neurology Department (F.K.), Hospital das Clínicas da Universidade de São Paulo and Mendelics; Department of Neurology and Neurosurgery (M.M.R., M.M.A., R.S.P.), Universidade Federal de São Paulo (UNIFESP); and Department of Neurology (M.C.F.), Universidade de Campinas (UNICAMP), Brazil
| |
Collapse
|
5
|
Kleefeld F, Hentschel A, von Moers A, Hahn K, Horvath R, Goebel HH, Preusse C, Schallner J, Schuelke M, Roos A, Stenzel W. Beyond vacuolar pathology: Multiomic profiling of Danon disease reveals dysfunctional mitochondrial homeostasis. Neuropathol Appl Neurobiol 2023; 49:e12920. [PMID: 37328427 DOI: 10.1111/nan.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Felix Kleefeld
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Neurology, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Dortmund, Germany
| | - Arpad von Moers
- Klinik für Kinder- und Jugendmedizin, DRK Kliniken Berlin Westend, Berlin, Germany
| | - Katrin Hahn
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Neurology, Berlin, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hans-Hilmar Goebel
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Neuropathology, Berlin, Germany
| | - Corinna Preusse
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Neuropathology, Berlin, Germany
| | - Jens Schallner
- Department of Neuropaediatrics, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Markus Schuelke
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Neuropediatrics, Berlin, Germany
| | - Andreas Roos
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Werner Stenzel
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Neuropathology, Berlin, Germany
| |
Collapse
|
6
|
Szeto CH, Rubin S, Sidlow R. Homozygous EXOSC3 c.395A>C Variants in Pontocerebellar Hypoplasia Type 1B: A Sibling Pair With Childhood Lethal Presentation and Literature Review. Cureus 2023; 15:e39226. [PMID: 37337484 PMCID: PMC10277028 DOI: 10.7759/cureus.39226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/21/2023] Open
Abstract
Pontocerebellar hypoplasia type 1B (PCH1B) is an autosomal recessive neurodegenerative disorder that involves hypoplasia or atrophy of the cerebellum and pons. PCH1B is caused by mutations in EXOSC3, which encodes a subunit of the RNA exosome complex. The most frequently observed mutation in PCH1B patients is a c.395A>C (p.D132A) missense variant, for which the homozygous mutation typically results in milder symptoms compared to compound heterozygous mutations or homozygous mutations for other pathogenic variants. In the present study, we report on a sibling pair harboring homozygous EXOSC3 c.395A>C missense variants who deteriorated more rapidly than previously described. These cases expand the spectrum of clinical manifestations of PCH1B associated with this variant, highlighting the need for further research to determine predictive factors of PCH1B severity.
Collapse
Affiliation(s)
- Chun Ho Szeto
- Medical School for International Health, Ben Gurion University of the Negev, Beer Sheva, ISR
| | - Sarina Rubin
- Medical School for International Health, Ben Gurion University of the Negev, Beer Sheva, ISR
| | - Richard Sidlow
- Medical Genetics and Metabolism, Valley Children's Hospital, Madera, USA
| |
Collapse
|
7
|
Mortensen Ó, Thomsen E, Lydersen LN, Apol KD, Weihe P, Steig BÁ, Andorsdóttir G, Als TD, Gregersen NO. FarGen: Elucidating the distribution of coding variants in the isolated population of the Faroe Islands. Eur J Hum Genet 2023; 31:329-337. [PMID: 36404349 PMCID: PMC9995356 DOI: 10.1038/s41431-022-01227-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Here we present results from FarGen Phase I exomes. This dataset is based on the FarGen cohort, which consists of 1,541 individuals from the isolated population of the Faroe Islands. The purpose of this cohort is to serve as a reference catalog of coding variants, and to conduct population genetic studies to better understand the genetic contribution to various diseases in the Faroese population. The first whole-exome data set comprise 465 individuals and a total of 148,267 genetic variants were discovered. Principle Component Analysis indicates that the population is isolated and weakly structured. The distribution of variants in various functional classes was compared with populations in the gnomAD dataset; the results indicated that the proportions were consistent across the cohorts, but probably due to a small sample size, the FarGen dataset contained relatively few rare variants. We identified 19 variants that are classified as pathogenic or likely pathogenic in ClinVar; several of these variants are associated with monogenetic diseases with increased prevalence in the Faroe Islands. The results support previous studies, which indicate that the Faroe Islands is an isolated and weakly structured population. Future studies may elucidate the significance of the 19 pathogenic variants that were identified. The FarGen Phase I dataset is an important step for genetic research in the Faroese population, and the next phase of FarGen will increase the sample size and broaden the scope.
Collapse
Affiliation(s)
- Ólavur Mortensen
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - Elisabet Thomsen
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | | | - Katrin D Apol
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, National Hospital of the Faroe Islands Tórshavn, Tórshavn, Faroe Islands
| | - Bjarni Á Steig
- Medical Department, National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
| | - Guðrið Andorsdóttir
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
- Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Thomas D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Noomi O Gregersen
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands.
- Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands.
| |
Collapse
|
8
|
Malformations of cerebral development and clues from the peripheral nervous system: A systematic literature review. Eur J Paediatr Neurol 2022; 37:155-164. [PMID: 34535379 DOI: 10.1016/j.ejpn.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Clinical manifestations of malformations of cortical development (MCD) are variable and can range from mild to severe intellectual disability, cerebral palsy and drug-resistant epilepsy. Besides common clinical features, non-specific or more subtle clinical symptoms may be present in association with different types of MCD. Especially in severely affected individuals, subtle but specific underlying clinical symptoms can be overlooked or overshadowed by the global clinical presentation. To facilitate the interpretation of genetic variants detailed clinical information is indispensable. Detailed (neurological) examination can be helpful in assisting with the diagnostic trajectory, both when referring for genetic work-up as well as when interpreting data from molecular genetic testing. This systematic literature review focusses on different clues derived from the neurological examination and potential further work-up triggered by these signs and symptoms in genetically defined MCDs. A concise overview of specific neurological findings and their associations with MCD subtype and genotype are presented, easily applicable in daily clinical practice. The following pathologies will be discussed: neuropathy, myopathy, muscular dystrophies and spastic paraplegia. In the discussion section, tips and pitfalls are illustrated to improve clinical outcome in the future.
Collapse
|
9
|
Taniue K, Tanu T, Shimoura Y, Mitsutomi S, Han H, Kakisaka R, Ono Y, Tamamura N, Takahashi K, Wada Y, Mizukami Y, Akimitsu N. RNA Exosome Component EXOSC4 Amplified in Multiple Cancer Types Is Required for the Cancer Cell Survival. Int J Mol Sci 2022; 23:496. [PMID: 35008922 PMCID: PMC8745236 DOI: 10.3390/ijms23010496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
The RNA exosome is a multi-subunit ribonuclease complex that is evolutionally conserved and the major cellular machinery for the surveillance, processing, degradation, and turnover of diverse RNAs essential for cell viability. Here we performed integrated genomic and clinicopathological analyses of 27 RNA exosome components across 32 tumor types using The Cancer Genome Atlas PanCancer Atlas Studies' datasets. We discovered that the EXOSC4 gene, which encodes a barrel component of the RNA exosome, was amplified across multiple cancer types. We further found that EXOSC4 alteration is associated with a poor prognosis of pancreatic cancer patients. Moreover, we demonstrated that EXOSC4 is required for the survival of pancreatic cancer cells. EXOSC4 also repressed BIK expression and destabilized SESN2 mRNA by promoting its degradation. Furthermore, knockdown of BIK and SESN2 could partially rescue pancreatic cells from the reduction in cell viability caused by EXOSC4 knockdown. Our study provides evidence for EXOSC4-mediated regulation of BIK and SESN2 mRNA in the survival of pancreatic tumor cells.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Tanzina Tanu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Shuhei Mitsutomi
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Han Han
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Rika Kakisaka
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 065-0033, Japan; (R.K.); (Y.O.)
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 065-0033, Japan; (R.K.); (Y.O.)
| | - Nobue Tamamura
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Kenji Takahashi
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Yusuke Mizukami
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| |
Collapse
|
10
|
Sterrett MC, Enyenihi L, Leung SW, Hess L, Strassler SE, Farchi D, Lee RS, Withers ES, Kremsky I, Baker RE, Basrai MA, van Hoof A, Fasken MB, Corbett AH. A budding yeast model for human disease mutations in the EXOSC2 cap subunit of the RNA exosome complex. RNA (NEW YORK, N.Y.) 2021; 27:1046-1067. [PMID: 34162742 PMCID: PMC8370739 DOI: 10.1261/rna.078618.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene EXOSC2 cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF (short stature, hearing loss, retinitis pigmentosa, and distinctive facies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic EXOSC2 missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous S. cerevisiae gene RRP4 The resulting rrp4 mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in rrp4-G226D cells that model EXOSC2 p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in EXOSC2 impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.
Collapse
Affiliation(s)
- Maria C Sterrett
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia 30322, USA
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Liz Enyenihi
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Sara W Leung
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Laurie Hess
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Sarah E Strassler
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia 30322, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Daniela Farchi
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Richard S Lee
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Elise S Withers
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Isaac Kremsky
- Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
11
|
Slavotinek A, Misceo D, Htun S, Mathisen L, Frengen E, Foreman M, Hurtig JE, Enyenihi L, Sterrett MC, Leung SW, Schneidman-Duhovny D, Estrada-Veras J, Duncan JL, Haaxma CA, Kamsteeg EJ, Xia V, Beleford D, Si Y, Douglas G, Treidene HE, van Hoof A, Fasken MB, Corbett AH. Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness. Hum Mol Genet 2021; 29:2218-2239. [PMID: 32504085 DOI: 10.1093/hmg/ddaa108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA exosome is an essential ribonuclease complex required for processing and/or degradation of both coding and non-coding RNAs. We identified five patients with biallelic variants in EXOSC5, which encodes a structural subunit of the RNA exosome. The clinical features of these patients include failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. While we ascertained five patients, three patients with distinct variants of EXOSC5 were studied in detail. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. The additional two patients ascertained are siblings who had an early frameshift mutation in EXOSC5 and the p.Thr114Ile missense variant that were inherited in trans. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess consequences of pathogenic EXOSC5 variants. Loss of function for exosc5 in zebrafish results in shortened and curved tails/bodies, reduced eye/head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants cause defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. These findings expand the number of genes encoding RNA exosome subunits linked to human disease while also suggesting that disease mechanism varies depending on the specific pathogenic variant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Stephanie Htun
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Linda Mathisen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Michelle Foreman
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Jennifer E Hurtig
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Liz Enyenihi
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Sara W Leung
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering and the Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Juvianee Estrada-Veras
- Department of Pediatrics-Medical Genetics and Metabolism, Uniformed Services University/Walter Reed NMMC Bethesda, MD 20889, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Vivian Xia
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Daniah Beleford
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Yue Si
- GeneDx Inc., MD 20877, USA
| | | | - Hans Einar Treidene
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo 0450, Norway
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Inak G, Rybak-Wolf A, Lisowski P, Pentimalli TM, Jüttner R, Glažar P, Uppal K, Bottani E, Brunetti D, Secker C, Zink A, Meierhofer D, Henke MT, Dey M, Ciptasari U, Mlody B, Hahn T, Berruezo-Llacuna M, Karaiskos N, Di Virgilio M, Mayr JA, Wortmann SB, Priller J, Gotthardt M, Jones DP, Mayatepek E, Stenzel W, Diecke S, Kühn R, Wanker EE, Rajewsky N, Schuelke M, Prigione A. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun 2021; 12:1929. [PMID: 33771987 PMCID: PMC7997884 DOI: 10.1038/s41467-021-22117-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Leigh syndrome (LS) is a severe manifestation of mitochondrial disease in children and is currently incurable. The lack of effective models hampers our understanding of the mechanisms underlying the neuronal pathology of LS. Using patient-derived induced pluripotent stem cells and CRISPR/Cas9 engineering, we developed a human model of LS caused by mutations in the complex IV assembly gene SURF1. Single-cell RNA-sequencing and multi-omics analysis revealed compromised neuronal morphogenesis in mutant neural cultures and brain organoids. The defects emerged at the level of neural progenitor cells (NPCs), which retained a glycolytic proliferative state that failed to instruct neuronal morphogenesis. LS NPCs carrying mutations in the complex I gene NDUFS4 recapitulated morphogenesis defects. SURF1 gene augmentation and PGC1A induction via bezafibrate treatment supported the metabolic programming of LS NPCs, leading to restored neuronal morphogenesis. Our findings provide mechanistic insights and suggest potential interventional strategies for a rare mitochondrial disease.
Collapse
Affiliation(s)
- Gizem Inak
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Agnieszka Rybak-Wolf
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | - Pawel Lisowski
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, n/Warsaw, Magdalenka, Poland
| | - Tancredi M Pentimalli
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | - René Jüttner
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Petar Glažar
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | | | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Dario Brunetti
- Mitochondrial Medicine Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Christopher Secker
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
| | - Annika Zink
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- Charité - Universitätsmedizin Berlin, Department of Neuropsychiatry, Berlin, Germany
| | | | - Marie-Thérèse Henke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany
| | - Monishita Dey
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ummi Ciptasari
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Barbara Mlody
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Tobias Hahn
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Nikos Karaiskos
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | | | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Josef Priller
- Charité - Universitätsmedizin Berlin, Department of Neuropsychiatry, Berlin, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | | | | | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Werner Stenzel
- Charité - Universitätsmedizin, Department of Neuropathology, Berlin, Germany
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Erich E Wanker
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany.
| | - Markus Schuelke
- Charité - Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany.
- NeuroCure Clinical Research Center, Berlin, Germany.
| | - Alessandro Prigione
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.
| |
Collapse
|
13
|
Nuovo S, Micalizzi A, Romaniello R, Arrigoni F, Ginevrino M, Casella A, Serpieri V, D'Arrigo S, Briguglio M, Salerno GG, Rossato S, Sartori S, Leuzzi V, Battini R, Ben-Zeev B, Graziano C, Mirabelli Badenier M, Brankovic V, Nardocci N, Spiegel R, Petković Ramadža D, Vento G, Marti I, Simonati A, Dipresa S, Freri E, Mazza T, Bassi MT, Bosco L, Travaglini L, Zanni G, Bertini ES, Vanacore N, Borgatti R, Valente EM. Refining the mutational spectrum and gene-phenotype correlates in pontocerebellar hypoplasia: results of a multicentric study. J Med Genet 2021; 59:399-409. [PMID: 34085948 DOI: 10.1136/jmedgenet-2020-107497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Pontocerebellar hypoplasias (PCH) comprise a group of genetically heterogeneous disorders characterised by concurrent hypoplasia of the pons and the cerebellum and variable clinical and imaging features. The current classification includes 13 subtypes, with ~20 known causative genes. Attempts have been made to delineate the phenotypic spectrum associated to specific PCH genes, yet clinical and neuroradiological features are not consistent across studies, making it difficult to define gene-specific outcomes. METHODS We performed deep clinical and imaging phenotyping in 56 probands with a neuroradiological diagnosis of PCH, who underwent NGS-based panel sequencing of PCH genes and MLPA for CASK rearrangements. Next, we conducted a phenotype-based unsupervised hierarchical cluster analysis to investigate associations between genes and specific phenotypic clusters. RESULTS A genetic diagnosis was obtained in 43 probands (77%). The most common causative gene was CASK, which accounted for nearly half cases (45%) and was mutated in females and occasionally in males. The European founder mutation p.Ala307Ser in TSEN54 and pathogenic variants in EXOSC3 accounted for 18% and 9% of cases, respectively. VLDLR, TOE1 and RARS2 were mutated in single patients. We were able to confirm only few previously reported associations, including jitteriness and clonus with TSEN54 and lower motor neuron signs with EXOSC3. When considering multiple features simultaneously, a clear association with a phenotypic cluster only emerged for EXOSC3. CONCLUSION CASK represents the major PCH causative gene in Italy. Phenotypic variability associated with the most common genetic causes of PCH is wider than previously thought, with marked overlap between CASK and TSEN54-associated disorders.
Collapse
Affiliation(s)
- Sara Nuovo
- Department of Human Neuroscience, Sapienza University of Rome, Roma, Italy
| | - Alessia Micalizzi
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Monia Ginevrino
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Roma, Italy.,Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Antonella Casella
- IRCCS Mondino Foundation, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Stefano D'Arrigo
- Department of Developmental Neurology, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marilena Briguglio
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital of Messina, Messina, Italy
| | - Grazia Gabriella Salerno
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sara Rossato
- U.O.C. Pediatria, Ospedale San Bortolo, Vicenza, Italy
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Roma, Italy
| | - Roberta Battini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Bruria Ben-Zeev
- Pediatric Neurology Department, The Edmond and Lilly Safra Pediatric Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Claudio Graziano
- Medical Genetics Unit, AOU Policlinico di S. Orsola, Bologna, Italy
| | - Marisol Mirabelli Badenier
- Fondazione Istituto David Chiossone Onlus, Genova, Italy.,Child Neuropsychiatry Unit, Department of Neurosciences and Rehabilitation, Istituto G. Gaslini, Genova, Italy
| | - Vesna Brankovic
- Clinic for Child Neurology and Psychiatry, University of Belgrade, Belgrade, Serbia
| | - Nardo Nardocci
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Ronen Spiegel
- Department of Pediatrics B, Emek Medical Center, Afula, Israel.,Rappaport School of Medicine, Technion, Haifa, Israel
| | | | - Giovanni Vento
- Division of Neonatology, Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Itxaso Marti
- Pediatric Neurology, Hospital Universitario Donostia, Biodonostia, Universidad del País Vasco UPV-EHU, San Sebastian, Spain
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona School of Medicine and Department of Clinical Neuroscience AOUI Verona, Verona, Italy
| | - Savina Dipresa
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Elena Freri
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Luca Bosco
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Roma, Italy
| | - Renato Borgatti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy .,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Mu W, Heller T, Barañano KW. Two siblings with a novel variant of EXOSC3 extended phenotypic spectrum of pontocerebellar hypoplasia 1B to an exceptionally mild form. BMJ Case Rep 2021; 14:e236732. [PMID: 33462000 PMCID: PMC7813329 DOI: 10.1136/bcr-2020-236732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 01/21/2023] Open
Abstract
Pontocerebellar hypoplasia type 1B (PCH1B) describes an autosomal recessive neurological condition that involves hypoplasia or atrophy of the cerebellum and pons, resulting in neurocognitive impairments. Although there is phenotypic variability, this is often an infantile lethal condition, and most cases have been described to be congenital and neurodegenerative. PCH1B is caused by mutations in the gene EXOSC3, which encodes exosome component 3, a subunit of the human RNA exosome complex. A range of pathogenic variants with some correlation to phenotype have been reported. The most commonly reported pathogenic variant in EXOSC3 is c.395A>C, p.(Asp132Ala); homozygosity for this variant has been proposed to lead to milder phenotypes than compound heterozygosity. In this case, we report two siblings with extraordinarily mild presentations of PCH1B who are compound heterozygous for variants in EXOSC3 c.155delC and c.80T>G. These patients drastically expand the phenotypic variability of PCH1B and raise questions about genotype-phenotype associations.
Collapse
Affiliation(s)
- Weiyi Mu
- Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Teresa Heller
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Mullani N, Porozhan Y, Mangelinck A, Rachez C, Costallat M, Batsché E, Goodhardt M, Cenci G, Mann C, Muchardt C. Reduced RNA turnover as a driver of cellular senescence. Life Sci Alliance 2021; 4:4/3/e202000809. [PMID: 33446491 PMCID: PMC7812316 DOI: 10.26508/lsa.202000809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
RNAs originating from transcription upstream and downstream of genes accumulate in the cytoplasm of a subset of senescent cells, suggesting an RNA alternative to cytoplasmic DNA in the triggering of senescence. Accumulation of senescent cells is an important contributor to chronic inflammation upon aging. The inflammatory phenotype of senescent cells was previously shown to be driven by cytoplasmic DNA. Here, we propose that cytoplasmic double-stranded RNA has a similar effect. We find that several cell types driven into senescence by different routes share an accumulation of long promoter RNAs and 3′ gene extensions rich in retrotransposon sequences. Accordingly, these cells display increased expression of genes involved in response to double stranded RNA of viral origin downstream of the interferon pathway. The RNA accumulation is associated with evidence of reduced RNA turnover, including in some cases, reduced expression of RNA exosome subunits. Reciprocally, depletion of RNA exosome subunit EXOSC3 accelerated expression of multiple senescence markers. A senescence-like RNA accumulation was also observed in cells exposed to oxidative stress, an important trigger of cellular senescence. Altogether, we propose that in a subset of senescent cells, repeat-containing transcripts stabilized by oxidative stress or reduced RNA exosome activity participate in driving and maintaining the permanent inflammatory state characterizing cellular senescence.
Collapse
Affiliation(s)
- Nowsheen Mullani
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) UMR3738, Dpt Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Paris, France.,Sorbonne Université, Ecole Doctorale "Complexité du Vivant" (ED515), Paris, France
| | - Yevheniia Porozhan
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) UMR3738, Dpt Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Paris, France
| | - Adèle Mangelinck
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christophe Rachez
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) UMR3738, Dpt Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Paris, France
| | - Mickael Costallat
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) UMR3738, Dpt Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Paris, France
| | - Eric Batsché
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) UMR3738, Dpt Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Paris, France
| | - Michele Goodhardt
- Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Giovanni Cenci
- Dipartimento Biologia e Biotecnologie "C. Darwin," SAPIENZA Università di Roma, Rome, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Carl Mann
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christian Muchardt
- Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) UMR3738, Dpt Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Paris, France
| |
Collapse
|
16
|
Fraga de Andrade I, Mehta C, Bresnick EH. Post-transcriptional control of cellular differentiation by the RNA exosome complex. Nucleic Acids Res 2020; 48:11913-11928. [PMID: 33119769 PMCID: PMC7708067 DOI: 10.1093/nar/gkaa883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Given the complexity of intracellular RNA ensembles and vast phenotypic remodeling intrinsic to cellular differentiation, it is instructive to consider the role of RNA regulatory machinery in controlling differentiation. Dynamic post-transcriptional regulation of protein-coding and non-coding transcripts is vital for establishing and maintaining proteomes that enable or oppose differentiation. By contrast to extensively studied transcriptional mechanisms governing differentiation, many questions remain unanswered regarding the involvement of post-transcriptional mechanisms. Through its catalytic activity to selectively process or degrade RNAs, the RNA exosome complex dictates the levels of RNAs comprising multiple RNA classes, thereby regulating chromatin structure, gene expression and differentiation. Although the RNA exosome would be expected to control diverse biological processes, studies to elucidate its biological functions and how it integrates into, or functions in parallel with, cell type-specific transcriptional mechanisms are in their infancy. Mechanistic analyses have demonstrated that the RNA exosome confers expression of a differentiation regulatory receptor tyrosine kinase, downregulates the telomerase RNA component TERC, confers genomic stability and promotes DNA repair, which have considerable physiological and pathological implications. In this review, we address how a broadly operational RNA regulatory complex interfaces with cell type-specific machinery to control cellular differentiation.
Collapse
Affiliation(s)
- Isabela Fraga de Andrade
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| |
Collapse
|
17
|
Bizzari S, Hamzeh AR, Mohamed M, Al-Ali MT, Bastaki F. Expanded PCH1D phenotype linked to EXOSC9 mutation. Eur J Med Genet 2020; 63:103622. [DOI: 10.1016/j.ejmg.2019.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 12/11/2022]
|
18
|
Abstract
The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| | - Derrick J Morton
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie K Jones
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Le Duc D, Horn S, Jamra RA, Schaper J, Wieczorek D, Redler S. Novel EXOSC3 pathogenic variant results in a mild course of neurologic disease with cerebellum involvement. Eur J Med Genet 2019; 63:103649. [PMID: 30986545 DOI: 10.1016/j.ejmg.2019.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
EXOSC3-related autosomal recessive neurodevelopmental disorders are rare entities with variable clinical course and prognosis. They are characterized by hypoplasia of cerebellar structures and pons, degeneration of the anterior horn cells and motor as well as neurocognitive impairment. Phenotypic expression is variable with an overall poor outcome. Current research suggests clear genotype-phenotype correlations among EXOSC3-pathogenic-variants carriers. Homozygosity for the EXOSC3 variant c.395A > C, p.(Asp132Ala) is proposed to lead to a rather mild phenotype compared to compound-heterozygous EXOSC3-pathogenic-variants carriers with lethal neurological disease in very early childhood. In this study, we report two siblings (21- and 8-year-old) affected by PCH1B with an unusual presentation. We identified compound heterozygosity for the well-established EXOSC3 variant c.395A > C, p.(Asp132Ala) and the novel variant c.572G > A, p.(Gly191Asp), expanding the genetic spectrum. Phenotypic presentation of the siblings was strikingly different from that of literature reports with a surprisingly mild disease manifestation and an unexpected intrafamilial variability. This study demonstrates the extensive clinical heterogeneity and the broad phenotypic spectrum associated with EXOSC3-associated disorders. Enlargement of sample sizes and reports of novel cases will be essential for the delineation of associated phenotypes.
Collapse
Affiliation(s)
- Diana Le Duc
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Susanne Horn
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Jörg Schaper
- Heinrich-Heine-University, Medical Faculty, Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany
| | - Silke Redler
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany; Heinrich-Heine-University, Medical Faculty, Center of Rare Disorders, Düsseldorf, Germany.
| |
Collapse
|
20
|
François-Moutal L, Jahanbakhsh S, Nelson ADL, Ray D, Scott DD, Hennefarth MR, Moutal A, Perez-Miller S, Ambrose AJ, Al-Shamari A, Coursodon P, Meechoovet B, Reiman R, Lyons E, Beilstein M, Chapman E, Morris QD, Van Keuren-Jensen K, Hughes TR, Khanna R, Koehler C, Jen J, Gokhale V, Khanna M. A Chemical Biology Approach to Model Pontocerebellar Hypoplasia Type 1B (PCH1B). ACS Chem Biol 2018; 13:3000-3010. [PMID: 30141626 DOI: 10.1021/acschembio.8b00745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mutations of EXOSC3 have been linked to the rare neurological disorder known as Pontocerebellar Hypoplasia type 1B (PCH1B). EXOSC3 is one of three putative RNA-binding structural cap proteins that guide RNA into the RNA exosome, the cellular machinery that degrades RNA. Using RNAcompete, we identified a G-rich RNA motif binding to EXOSC3. Surface plasmon resonance (SPR) and microscale thermophoresis (MST) indicated an affinity in the low micromolar range of EXOSC3 for long and short G-rich RNA sequences. Although several PCH1B-causing mutations in EXOSC3 did not engage a specific RNA motif as shown by RNAcompete, they exhibited lower binding affinity to G-rich RNA as demonstrated by MST. To test the hypothesis that modification of the RNA-protein interface in EXOSC3 mutants may be phenocopied by small molecules, we performed an in-silico screen of 50 000 small molecules and used enzyme-linked immunosorbant assays (ELISAs) and MST to assess the ability of the molecules to inhibit RNA-binding by EXOSC3. We identified a small molecule, EXOSC3-RNA disrupting (ERD) compound 3 (ERD03), which ( i) bound specifically to EXOSC3 in saturation transfer difference nuclear magnetic resonance (STD-NMR), ( ii) disrupted the EXOSC3-RNA interaction in a concentration-dependent manner, and ( iii) produced a PCH1B-like phenotype with a 50% reduction in the cerebellum and an abnormally curved spine in zebrafish embryos. This compound also induced modification of zebrafish RNA expression levels similar to that observed with a morpholino against EXOSC3. To our knowledge, this is the first example of a small molecule obtained by rational design that models the abnormal developmental effects of a neurodegenerative disease in a whole organism.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Shahriyar Jahanbakhsh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Andrew D. L. Nelson
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, Canada M5S 3E1
| | - David D. Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Matthew R. Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Andrew J. Ambrose
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona 85724, United States
| | - Ahmed Al-Shamari
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Philippe Coursodon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | | | - Rebecca Reiman
- Neurogenomics Division, TGen, Phoenix, Arizona 85004, United States
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Mark Beilstein
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona 85724, United States
| | - Quaid D. Morris
- Donnelly Centre, University of Toronto, Toronto, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
- Department of Computer Science, University of Toronto, Toronto, Canada M5S 2E4
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada M5S3G4
| | | | - Timothy R. Hughes
- Donnelly Centre, University of Toronto, Toronto, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Carla Koehler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Joanna Jen
- Mount Sinai, New York, New York 10029, United States
| | - Vijay Gokhale
- Bio5 Institute, University of Arizona, Tucson, Arizona, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| |
Collapse
|
21
|
Alston CL, Heidler J, Dibley MG, Kremer LS, Taylor LS, Fratter C, French CE, Glasgow RI, Feichtinger RG, Delon I, Pagnamenta AT, Dolling H, Lemonde H, Aiton N, Bjørnstad A, Henneke L, Gärtner J, Thiele H, Tauchmannova K, Quaghebeur G, Houstek J, Sperl W, Raymond FL, Prokisch H, Mayr JA, McFarland R, Poulton J, Ryan MT, Wittig I, Henneke M, Taylor RW. Bi-allelic Mutations in NDUFA6 Establish Its Role in Early-Onset Isolated Mitochondrial Complex I Deficiency. Am J Hum Genet 2018; 103:592-601. [PMID: 30245030 PMCID: PMC6174280 DOI: 10.1016/j.ajhg.2018.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/22/2018] [Indexed: 12/04/2022] Open
Abstract
Isolated complex I deficiency is a common biochemical phenotype observed in pediatric mitochondrial disease and often arises as a consequence of pathogenic variants affecting one of the ∼65 genes encoding the complex I structural subunits or assembly factors. Such genetic heterogeneity means that application of next-generation sequencing technologies to undiagnosed cohorts has been a catalyst for genetic diagnosis and gene-disease associations. We describe the clinical and molecular genetic investigations of four unrelated children who presented with neuroradiological findings and/or elevated lactate levels, highly suggestive of an underlying mitochondrial diagnosis. Next-generation sequencing identified bi-allelic variants in NDUFA6, encoding a 15 kDa LYR-motif-containing complex I subunit that forms part of the Q-module. Functional investigations using subjects’ fibroblast cell lines demonstrated complex I assembly defects, which were characterized in detail by mass-spectrometry-based complexome profiling. This confirmed a marked reduction in incorporated NDUFA6 and a concomitant reduction in other Q-module subunits, including NDUFAB1, NDUFA7, and NDUFA12. Lentiviral transduction of subjects’ fibroblasts showed normalization of complex I. These data also support supercomplex formation, whereby the ∼830 kDa complex I intermediate (consisting of the P- and Q-modules) is in complex with assembled complex III and IV holoenzymes despite lacking the N-module. Interestingly, RNA-sequencing data provided evidence that the consensus RefSeq accession number does not correspond to the predominant transcript in clinically relevant tissues, prompting revision of the NDUFA6 RefSeq transcript and highlighting not only the importance of thorough variant interpretation but also the assessment of appropriate transcripts for analysis.
Collapse
|
22
|
Finsterer J, Zarrouk-Mahjoub S. Cerebellar atrophy is common among mitochondrial disorders. Metab Brain Dis 2018; 33:987-988. [PMID: 29717375 DOI: 10.1007/s11011-018-0238-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Postfach 20, 1180, Vienna, Austria.
| | - Sinda Zarrouk-Mahjoub
- Pasteur Institute of Tunis, University of Tunis El Manar and Genomics Platform, Tunis, Tunisia
| |
Collapse
|
23
|
Ivanov I, Atkinson D, Litvinenko I, Angelova L, Andonova S, Mumdjiev H, Pacheva I, Panova M, Yordanova R, Belovejdov V, Petrova A, Bosheva M, Shmilev T, Savov A, Jordanova A. Pontocerebellar hypoplasia type 1 for the neuropediatrician: Genotype-phenotype correlations and diagnostic guidelines based on new cases and overview of the literature. Eur J Paediatr Neurol 2018; 22:674-681. [PMID: 29656927 DOI: 10.1016/j.ejpn.2018.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Pontocerebellar hypoplasia type 1 (PCH1) is a major cause of non-5q spinal muscular atrophy (SMA). We screened 128 SMN1-negative SMA patients from Bulgaria for a frequent mutation -p.G31A in EXOSC3, and performed a literature review of all genetically verified PCH1 cases. Homozygous p.G31A/EXOSC3 mutation was identified in 14 Roma patients, representing three fourths of all our SMN1-negative Roma SMA cases. The phenotype of the p.G31A/EXOSC3 homozygotes was compared to the clinical presentation of all reported to date genetically verified PCH1 cases. Signs of antenatal onset of disease present at birth were common in all PCH1 sub-types except in the homozygous p.D132A/EXOSC3 patients. The PCH1sub-types with early death (between ages 1 day and 17 months), seen in patients with p.G31A/EXOSC3 or SLC25A46 mutations have a SMA type 1-like clinical presentation but with global developmental delay, visual and hearing impairment, with or without microcephaly, nystagmus and optic atrophy. Mutations with milder presentation (homozygous p.D132A/EXOSC3 or VRK1) may display additionally signs of upper motor neuron impairment, dystonia or ataxia and die at age between 5 and 18 years. Other EXOSC3 mutations and EXOSC8 cases are intermediate - SMA type 1-like presentation, spasticity (mostly in EXOSC8) and death between 3 months and 5 years. There is no correlation between neurological onset and duration of life. We add marble-like skin and congenital laryngeal stridor as features of PCH1. We show that imaging signs of cerebellar and pontine hypoplasia may be missing early in infancy. EMG signs of anterior horn neuronopathy may be missing in PCH1 patients with SLC25A46 mutations. Thus, there is considerable phenotypic variability in PCH1, with some cases being more SMA-like, than PCH-like. Detailed clinical evaluation and ethnicity background may guide genetic testing and subsequent genetic counseling.
Collapse
Affiliation(s)
- I Ivanov
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - D Atkinson
- VIB Center for Molecular Neurology, University of Antwerp, Belgium.
| | - I Litvinenko
- Department of Pediatrics, SBALDB "Prof. D-r Ivan Mitev", Medical University-Sofia, Sofia, Bulgaria.
| | - L Angelova
- Department of Medical Genetics, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria.
| | - S Andonova
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria.
| | - H Mumdjiev
- Department of Neonatology, Prof. Stoyan Kirkovich University Hospital, Medical Faculty of Tracian University, Stara Zagora, Bulgaria.
| | - I Pacheva
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - M Panova
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - R Yordanova
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - V Belovejdov
- Department of Pathology, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - A Petrova
- Department of Radiology, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - M Bosheva
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - T Shmilev
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - A Savov
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria.
| | - A Jordanova
- VIB Center for Molecular Neurology, University of Antwerp, Belgium; Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
24
|
Singh P, Saha U, Paira S, Das B. Nuclear mRNA Surveillance Mechanisms: Function and Links to Human Disease. J Mol Biol 2018; 430:1993-2013. [PMID: 29758258 DOI: 10.1016/j.jmb.2018.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
25
|
Burns DT, Donkervoort S, Müller JS, Knierim E, Bharucha-Goebel D, Faqeih EA, Bell SK, AlFaifi AY, Monies D, Millan F, Retterer K, Dyack S, MacKay S, Morales-Gonzalez S, Giunta M, Munro B, Hudson G, Scavina M, Baker L, Massini TC, Lek M, Hu Y, Ezzo D, AlKuraya FS, Kang PB, Griffin H, Foley AR, Schuelke M, Horvath R, Bönnemann CG. Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 2018; 102:858-873. [PMID: 29727687 PMCID: PMC5986733 DOI: 10.1016/j.ajhg.2018.03.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
The exosome is a conserved multi-protein complex that is essential for correct RNA processing. Recessive variants in exosome components EXOSC3, EXOSC8, and RBM7 cause various constellations of pontocerebellar hypoplasia (PCH), spinal muscular atrophy (SMA), and central nervous system demyelination. Here, we report on four unrelated affected individuals with recessive variants in EXOSC9 and the effect of the variants on the function of the RNA exosome in vitro in affected individuals' fibroblasts and skeletal muscle and in vivo in zebrafish. The clinical presentation was severe, early-onset, progressive SMA-like motor neuronopathy, cerebellar atrophy, and in one affected individual, congenital fractures of the long bones. Three affected individuals of different ethnicity carried the homozygous c.41T>C (p.Leu14Pro) variant, whereas one affected individual was compound heterozygous for c.41T>C (p.Leu14Pro) and c.481C>T (p.Arg161∗). We detected reduced EXOSC9 in fibroblasts and skeletal muscle and observed a reduction of the whole multi-subunit exosome complex on blue-native polyacrylamide gel electrophoresis. RNA sequencing of fibroblasts and skeletal muscle detected significant >2-fold changes in genes involved in neuronal development and cerebellar and motor neuron degeneration, demonstrating the widespread effect of the variants. Morpholino oligonucleotide knockdown and CRISPR/Cas9-mediated mutagenesis of exosc9 in zebrafish recapitulated aspects of the human phenotype, as they have in other zebrafish models of exosomal disease. Specifically, portions of the cerebellum and hindbrain were absent, and motor neurons failed to develop and migrate properly. In summary, we show that variants in EXOSC9 result in a neurological syndrome combining cerebellar atrophy and spinal motoneuronopathy, thus expanding the list of human exosomopathies.
Collapse
|
26
|
Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB. The RNA exosome and RNA exosome-linked disease. RNA (NEW YORK, N.Y.) 2018; 24:127-142. [PMID: 29093021 PMCID: PMC5769741 DOI: 10.1261/rna.064626.117] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The RNA exosome is an evolutionarily conserved, ribonuclease complex that is critical for both processing and degradation of a variety of RNAs. Cofactors that associate with the RNA exosome likely dictate substrate specificity for this complex. Recently, mutations in genes encoding both structural subunits of the RNA exosome and its cofactors have been linked to human disease. Mutations in the RNA exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are similar autosomal-recessive, neurodegenerative diseases. Mutations in the RNA exosome gene EXOSC2 cause a distinct syndrome with various tissue-specific phenotypes including retinitis pigmentosa and mild intellectual disability. Mutations in genes that encode RNA exosome cofactors also cause tissue-specific diseases with complex phenotypes. How mutations in these genes give rise to distinct, tissue-specific diseases is not clear. In this review, we discuss the role of the RNA exosome complex and its cofactors in human disease, consider the amino acid changes that have been implicated in disease, and speculate on the mechanisms by which exosome gene mutations could underlie dysfunction and disease.
Collapse
Affiliation(s)
- Derrick J Morton
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Stephanie K Jones
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Sara W Leung
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| |
Collapse
|