1
|
Belosludtseva NV, Uryupina TA, Pavlik LL, Mikheeva IB, Talanov EY, Venediktova NI, Serov DA, Stepanov MR, Ananyan MA, Mironova GD. Pathological Alterations in Heart Mitochondria in a Rat Model of Isoprenaline-Induced Myocardial Injury and Their Correction with Water-Soluble Taxifolin. Int J Mol Sci 2024; 25:11596. [PMID: 39519147 PMCID: PMC11547074 DOI: 10.3390/ijms252111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondrial damage and associated oxidative stress are considered to be major contributory factors in cardiac pathology. One of the most potent naturally occurring antioxidants is taxifolin, especially in its water-soluble form. Herein, the effect of a 14-day course of the peroral application of the water-soluble taxifolin (aqTAX, 15 mg/kg of body weight) on the progression of ultrastructural and functional disorders in mitochondria and the heart's electrical activity in a rat model of myocardial injury induced with isoprenaline (ISO, 150 mg/kg/day for two consecutive days, subcut) was studied. The delayed ISO-induced myocardial damage was accompanied by an increase in the duration of RR and QT intervals, and long-term application of aqTAX partially restored the disturbed intraventricular conduction. It was shown that the injections of ISO lead to profound ultrastructural alterations of myofibrils and mitochondria in cardiomyocytes in the left ventricle myocardium, including the impairment of the ordered arrangement of mitochondria between myofibrils as well as a decrease in the size and the number of these organelles per unit area. In addition, a reduction in the protein level of the subunits of the respiratory chain complexes I-V and the activity of the antioxidant enzymes catalase, glutathione peroxidase, and Mn-SOD in mitochondria was observed. The application of aqTAX caused an increase in the efficiency of oxidation phosphorylation and a partial restoration of the morphometric parameters of mitochondria in the heart tissue of animals with the experimental pathology. These beneficial effects of aqTAX are associated with the inhibition of lipid peroxidation and the normalization of the enzymatic activities of glutathione peroxidase and Mn-SOD in rat cardiac mitochondria, which may reduce the oxidative damage to the organelles. Taken together, these data allow one to consider this compound as a promising cardioprotector in the complex therapy of heart failure.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Tatyana A. Uryupina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Lyubov L. Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Irina B. Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Eugeny Yu. Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Natalya I. Venediktova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia
| | | | | | - Galina D. Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| |
Collapse
|
2
|
Adams RA, Liu Z, Hsieh C, Marko M, Lederer WJ, Jafri MS, Mannella C. Structural Analysis of Mitochondria in Cardiomyocytes: Insights into Bioenergetics and Membrane Remodeling. Curr Issues Mol Biol 2023; 45:6097-6115. [PMID: 37504301 PMCID: PMC10378267 DOI: 10.3390/cimb45070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Mitochondria in mammalian cardiomyocytes display considerable structural heterogeneity, the significance of which is not currently understood. We use electron microscopic tomography to analyze a dataset of 68 mitochondrial subvolumes to look for correlations among mitochondrial size and shape, crista morphology and membrane density, and organelle location within rat cardiac myocytes. A tomographic analysis guided the definition of four classes of crista morphology: lamellar, tubular, mixed and transitional, the last associated with remodeling between lamellar and tubular cristae. Correlations include an apparent bias for mitochondria with lamellar cristae to be located in the regions between myofibrils and a two-fold larger crista membrane density in mitochondria with lamellar cristae relative to mitochondria with tubular cristae. The examination of individual cristae inside mitochondria reveals local variations in crista topology, such as extent of branching, alignment of fenestrations and progressive changes in membrane morphology and packing density. The findings suggest both a rationale for the interfibrillar location of lamellar mitochondria and a pathway for crista remodeling from lamellar to tubular morphology.
Collapse
Affiliation(s)
- Raquel A. Adams
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - Chongere Hsieh
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - Michael Marko
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - W. Jonathan Lederer
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - M. Saleet Jafri
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Carmen Mannella
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Differential remodelling of mitochondrial subpopulations and mitochondrial dysfunction are a feature of early stage diabetes. Sci Rep 2022; 12:978. [PMID: 35046471 PMCID: PMC8770458 DOI: 10.1038/s41598-022-04929-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial dysfunction is a feature of type I and type II diabetes, but there is a lack of consistency between reports and links to disease development. We aimed to investigate if mitochondrial structure–function remodelling occurs in the early stages of diabetes by employing a mouse model (GENA348) of Maturity Onset Diabetes in the Young, exhibiting hyperglycemia, but not hyperinsulinemia, with mild left ventricular dysfunction. Employing 3-D electron microscopy (SBF-SEM) we determined that compared to wild-type, WT, the GENA348 subsarcolemma mitochondria (SSM) are ~ 2-fold larger, consistent with up-regulation of fusion proteins Mfn1, Mfn2 and Opa1. Further, in comparison, GENA348 mitochondria are more irregular in shape, have more tubular projections with SSM projections being longer and wider. Mitochondrial density is also increased in the GENA348 myocardium consistent with up-regulation of PGC1-α and stalled mitophagy (down-regulation of PINK1, Parkin and Miro1). GENA348 mitochondria have more irregular cristae arrangements but cristae dimensions and density are similar to WT. GENA348 Complex activity (I, II, IV, V) activity is decreased but the OCR is increased, potentially linked to a shift towards fatty acid oxidation due to impaired glycolysis. These novel data reveal that dysregulated mitochondrial morphology, dynamics and function develop in the early stages of diabetes.
Collapse
|
4
|
Heinen-Weiler J, Hasenberg M, Heisler M, Settelmeier S, Beerlage AL, Doepper H, Walkenfort B, Odersky A, Luedike P, Winterhager E, Rassaf T, Hendgen-Cotta UB. Superiority of focused ion beam-scanning electron microscope tomography of cardiomyocytes over standard 2D analyses highlighted by unmasking mitochondrial heterogeneity. J Cachexia Sarcopenia Muscle 2021; 12:933-954. [PMID: 34120411 PMCID: PMC8350221 DOI: 10.1002/jcsm.12742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cardioprotection by preventing or repairing mitochondrial damage is an unmet therapeutic need. To understand the role of cardiomyocyte mitochondria in physiopathology, the reliable characterization of the mitochondrial morphology and compartment is pivotal. Previous studies mostly relied on two-dimensional (2D) routine transmission electron microscopy (TEM), thereby neglecting the real three-dimensional (3D) mitochondrial organization. This study aimed to determine whether classical 2D TEM analysis of the cardiomyocyte ultrastructure is sufficient to comprehensively describe the mitochondrial compartment and to reflect mitochondrial number, size, dispersion, distribution, and morphology. METHODS Spatial distribution of the complex mitochondrial network and morphology, number, and size heterogeneity of cardiac mitochondria in isolated adult mouse cardiomyocytes and adult wild-type left ventricular tissues (C57BL/6) were assessed using a comparative 3D imaging system based on focused ion beam-scanning electron microscopy (FIB-SEM) nanotomography. For comparison of 2D vs. 3D data sets, analytical strategies and mathematical comparative approaches were performed. To confirm the value of 3D data for mitochondrial changes, we compared the obtained values for number, coverage area, size heterogeneity, and complexity of wild-type cardiomyocyte mitochondria with data sets from mice lacking the cytosolic and mitochondrial protein BNIP3 (BCL-2/adenovirus E1B 19-kDa interacting protein 3; Bnip3-/- ) using FIB-SEM. Mitochondrial respiration was assessed on isolated mitochondria using the Seahorse XF analyser. A cardiac biopsy was obtained from a male patient (48 years) suffering from myocarditis. RESULTS The FIB-SEM nanotomographic analysis revealed that no linear relationship exists for mitochondrial number (r = 0.02; P = 0.9511), dispersion (r = -0.03; P = 0.9188), and shape (roundness: r = 0.15, P = 0.6397; elongation: r = -0.09, P = 0.7804) between 3D and 2D results. Cumulative frequency distribution analysis showed a diverse abundance of mitochondria with different sizes in 3D and 2D. Qualitatively, 2D data could not reflect mitochondrial distribution and dynamics existing in 3D tissue. 3D analyses enabled the discovery that BNIP3 deletion resulted in more smaller, less complex cardiomyocyte mitochondria (number: P < 0.01; heterogeneity: C.V. wild-type 89% vs. Bnip3-/- 68%; complexity: P < 0.001) forming large myofibril-distorting clusters, as seen in human myocarditis with disturbed mitochondrial dynamics. Bnip3-/- mice also show a higher respiration rate (P < 0.01). CONCLUSIONS Here, we demonstrate the need of 3D analyses for the characterization of mitochondrial features in cardiac tissue samples. Hence, we observed that BNIP3 deletion physiologically acts as a molecular brake on mitochondrial number, suggesting a role in mitochondrial fusion/fission processes and thereby regulating the homeostasis of cardiac bioenergetics.
Collapse
Affiliation(s)
- Jacqueline Heinen-Weiler
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Heisler
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Anna-Lena Beerlage
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hannah Doepper
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Andrea Odersky
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Peter Luedike
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Elke Winterhager
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Elorza AA, Soffia JP. mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology. Front Cell Dev Biol 2021; 9:625020. [PMID: 33692999 PMCID: PMC7937615 DOI: 10.3389/fcell.2021.625020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The most common aging-associated diseases are cardiovascular diseases which affect 40% of elderly people. Elderly people are prone to suffer aging-associated diseases which are not only related to health and medical cost but also to labor, household productivity and mortality cost. Aging is becoming a world problem and it is estimated that 21.8% of global population will be older than 65 years old in 2050; and for the first time in human history, there will be more elderly people than children. It is well accepted that the origin of aging-associated cardiovascular diseases is mitochondrial dysfunction. Mitochondria have their own genome (mtDNA) that is circular, double-stranded, and 16,569 bp long in humans. There are between 500 to 6000 mtDNA copies per cell which are tissue-specific. As a by-product of ATP production, reactive oxygen species (ROS) are generated which damage proteins, lipids, and mtDNA. ROS-mutated mtDNA co-existing with wild type mtDNA is called mtDNA heteroplasmy. The progressive increase in mtDNA heteroplasmy causes progressive mitochondrial dysfunction leading to a loss in their bioenergetic capacity, disruption in the balance of mitochondrial fusion and fission events (mitochondrial dynamics, MtDy) and decreased mitophagy. This failure in mitochondrial physiology leads to the accumulation of depolarized and ROS-generating mitochondria. Thus, besides attenuated ATP production, dysfunctional mitochondria interfere with proper cellular metabolism and signaling pathways in cardiac cells, contributing to the development of aging-associated cardiovascular diseases. In this context, there is a growing interest to enhance mitochondrial function by decreasing mtDNA heteroplasmy. Reduction in mtDNA heteroplasmy is associated with increased mitophagy, proper MtDy balance and mitochondrial biogenesis; and those processes can delay the onset or progression of cardiovascular diseases. This has led to the development of mitochondrial therapies based on the application of nutritional, pharmacological and genetic treatments. Those seeking to have a positive impact on mtDNA integrity, mitochondrial biogenesis, dynamics and mitophagy in old and sick hearts. This review covers the current knowledge of mitochondrial physiopathology in aging, how disruption of OXPHOS or mitochondrial life cycle alter mtDNA and cardiac cell function; and novel mitochondrial therapies to protect and rescue our heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Alvaro A Elorza
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Juan Pablo Soffia
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
6
|
Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy. J Mol Cell Cardiol 2019; 138:304-317. [PMID: 31836543 DOI: 10.1016/j.yjmcc.2019.11.159] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Succinylation is a post-translational modification of protein lysine residues with succinyl groups derived from succinyl CoA. Succinylation is considered a significant post-translational modification with the potential to impact protein function which is highly conserved across numerous species. The role of succinylation in the heart, especially in heart failure and myofibril mechanics, remains largely unexplored. Mechanical parameters were measured in myofibrils isolated from failing hearts of ischemic cardiomyopathy patients and non-failing donor controls. We employed mass spectrometry to quantify differential protein expression in myofibrils from failing ischemic cardiomyopathy hearts compared to non-failing hearts. In addition, we combined peptide enrichment by immunoprecipitation with liquid chromatography tandem mass spectrometry to quantitatively analyze succinylated lysine residues in these myofibrils. Several key parameters of sarcomeric mechanical interactions were altered in myofibrils isolated from failing ischemic cardiomyopathy hearts, including lower resting tension and a faster rate of activation. Of the 100 differentially expressed proteins, 46 showed increased expression in ischemic heart failure, while 54 demonstrated decreased expression in ischemic heart failure. Our quantitative succinylome analysis identified a total of 572 unique succinylated lysine sites located on 181 proteins, with 307 significantly changed succinylation events. We found that 297 succinyl-Lys demonstrated decreased succinylation on 104 proteins, while 10 residues demonstrated increased succinylation on 4 proteins. Investigating succinyl CoA generation, enzyme activity assays demonstrated that α-ketoglutarate dehydrogenase and succinate dehydrogenase activities were significantly decreased in ischemic heart failure. An activity assay for succinyl CoA synthetase demonstrated a significant increase in ischemic heart failure. Taken together, our findings support the hypothesis that succinyl CoA production is decreased and succinyl CoA turnover is increased in ischemic heart failure, potentially resulting in an overall decrease in the mitochondrial succinyl CoA pool, which may contribute to decreased myofibril protein succinylation in heart failure.
Collapse
|
7
|
Guilbeau-Frugier C, Cauquil M, Karsenty C, Lairez O, Dambrin C, Payré B, Cassard H, Josse C, Seguelas MH, Allart S, Branchereau M, Heymes C, Mandel F, Delisle MB, Pathak A, Dague E, Sénard JM, Galés C. Structural evidence for a new elaborate 3D-organization of the cardiomyocyte lateral membrane in adult mammalian cardiac tissues. Cardiovasc Res 2019; 115:1078-1091. [PMID: 30329023 DOI: 10.1093/cvr/cvy256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/29/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS This study explored the lateral crest structures of adult cardiomyocytes (CMs) within healthy and diseased cardiac tissue. METHODS AND RESULTS Using high-resolution electron and atomic force microscopy, we performed an exhaustive quantitative analysis of the three-dimensional (3D) structure of the CM lateral surface in different cardiac compartments from various mammalian species (mouse, rat, cow, and human) and determined the technical pitfalls that limit its observation. Although crests were observed in nearly all CMs from all heart compartments in all species, we showed that their heights, dictated by the subsarcolemmal mitochondria number, substantially differ between compartments from one species to another and tightly correlate with the sarcomere length. Differences in crest heights also exist between species; for example, the similar cardiac compartments in cows and humans exhibit higher crests than rodents. Unexpectedly, we found that lateral surface crests establish tight junctional contacts with crests from neighbouring CMs. Consistently, super-resolution SIM or STED-based immunofluorescence imaging of the cardiac tissue revealed intermittent claudin-5-claudin-5 interactions in trans via their extracellular part and crossing the basement membrane. Finally, we found a loss of crest structures and crest-crest contacts in diseased human CMs and in an experimental mouse model of left ventricle barometric overload. CONCLUSION Overall, these results provide the first evidence for the existence of differential CM surface crests in the cardiac tissue as well as the existence of CM-CM direct physical contacts at their lateral face through crest-crest interactions. We propose a model in which this specific 3D organization of the CM lateral membrane ensures the myofibril/myofiber alignment and the overall cardiac tissue cohesion. A potential role in the control of sarcomere relaxation and of diastolic ventricular dysfunction is also discussed. Whether the loss of CM surface crests constitutes an initial and common event leading to the CM degeneration and the setting of heart failure will need further investigation.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cattle
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Claudin-5/metabolism
- Cryoelectron Microscopy
- Disease Models, Animal
- Female
- Humans
- Male
- Mice, Inbred C57BL
- Microscopy, Atomic Force
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Middle Aged
- Mitochondria, Heart/ultrastructure
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Rats, Wistar
- Sarcomeres/ultrastructure
- Species Specificity
- Tight Junctions/metabolism
- Tight Junctions/ultrastructure
Collapse
Affiliation(s)
- Céline Guilbeau-Frugier
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
- Department of Forensic Medicine, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, Toulouse, France
- Centre de Microscopie Électronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Université de Toulouse, Toulouse, France
| | - Marie Cauquil
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
| | - Clément Karsenty
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
- Department of Cardiology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- CHU Toulouse, Pediatric and Congenital Cardiology, Children's Hospital, Université de Toulouse, Toulouse, France
| | - Olivier Lairez
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
- Department of Cardiology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Camille Dambrin
- Department of Cardiology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Bruno Payré
- Centre de Microscopie Électronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Université de Toulouse, Toulouse, France
| | - Hervé Cassard
- UMR IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Claudie Josse
- Centre de MicroCaractérisation Raimond Castaing, UMS 3623, Toulouse, France
| | - Marie-Hélène Seguelas
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
| | - Sophie Allart
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, INSERM, CNRS, Toulouse, France
| | - Maxime Branchereau
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
| | - Franck Mandel
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
| | - Marie-Bernadette Delisle
- Centre de Microscopie Électronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Université de Toulouse, Toulouse, France
- Department of Histopathology, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Atul Pathak
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
- Department of Cardiovascular Medicine, Hypertension, Risk Factors and Heart Failure Unit, Clinique Pasteur, Toulouse, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
- Department of Clinical Pharmacology, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
| |
Collapse
|
8
|
Daghistani HM, Rajab BS, Kitmitto A. Three-dimensional electron microscopy techniques for unravelling mitochondrial dysfunction in heart failure and identification of new pharmacological targets. Br J Pharmacol 2018; 176:4340-4359. [PMID: 30225980 PMCID: PMC6887664 DOI: 10.1111/bph.14499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/30/2018] [Accepted: 08/18/2018] [Indexed: 12/23/2022] Open
Abstract
A hallmark of heart failure is mitochondrial dysfunction leading to a bioenergetics imbalance in the myocardium. Consequently, there is much interest in targeting mitochondrial abnormalities to attenuate the pathogenesis of heart failure. This review discusses (i) how electron microscopy (EM) techniques have been fundamental for the current understanding of mitochondrial structure–function, (ii) the paradigm shift in resolutions now achievable by 3‐D EM techniques due to the introduction of direct detection devices and phase plate technology, and (iii) the application of EM for unravelling mitochondrial pathological remodelling in heart failure. We further consider the tremendous potential of multi‐scale EM techniques for the development of therapeutics, structure‐based ligand design and for delineating how a drug elicits nanostructural effects at the molecular, organelle and cellular levels. In conclusion, 3‐D EM techniques have entered a new era of structural biology and are poised to play a pivotal role in discovering new therapies targeting mitochondria for treating heart failure. Linked Articles This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc
Collapse
Affiliation(s)
- Hussam M Daghistani
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bodour S Rajab
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
9
|
Abstract
The spatial density of mitochondria was studied by thin-section electron microscopy in
smooth muscles of bladder, iris and gut in mice, rats, guinea-pigs and sheep. Morphometric
data included areas of muscle cell profiles (~6,000 muscle cells were measured) and areas
of their mitochondria (more than three times as many). The visual method delivers accurate
estimates of the extent of the chondrioma (the ensemble of mitochondria in a cell),
measuring all and only the mitochondria in each muscle cell and no other cells. The
digital records obtained can be used again for checks and new searches. Spatial density of
mitochondria varies between about 2 and 10% in different muscles in different species. In
contrast, there is consistency of mitochondrial density within a given muscle in a given
species. For each muscle in each species there is a characteristic mitochondrial density
with modest variation between experiments. On the basis of data from serial sections in
the rat detrusor muscle, mitochondrial density varies very little between the muscle
cells, each cell having a value close to that for the whole muscle. Mitochondrial density
is different in a given muscle, e.g., ileal circular muscle, from the four mammalian
species, with highest values in mouse and lowest in sheep; in mice the mitochondrial
density is nearly three time higher that in sheep. In a given species there are
characteristic variations between different muscles. For example, the bladder detrusor
muscle has markedly fewer mitochondria than the ileum, and the iris has markedly more.
Collapse
|
10
|
Abstract
Several interventions, such as ischemic preconditioning, remote pre/perconditioning, or postconditioning, are known to decrease lethal myocardial ischemia-reperfusion injury. While several signal transduction pathways become activated by such maneuvers, they all have a common end point, namely, the mitochondria. These organelles represent an essential target of the cardioprotective strategies, and the preservation of mitochondrial function is central for the reduction of ischemia-reperfusion injury. In the present review, we address the role of mitochondria in the different conditioning strategies; in particular, we focus on alterations of mitochondrial function in terms of energy production, formation of reactive oxygen species, opening of the mitochondrial permeability transition pore, and mitochondrial dynamics induced by ischemia-reperfusion.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig Universität , Giessen , Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| |
Collapse
|
11
|
Nagarse treatment of cardiac subsarcolemmal and interfibrillar mitochondria leads to artefacts in mitochondrial protein quantification. J Pharmacol Toxicol Methods 2018; 91:50-58. [DOI: 10.1016/j.vascn.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/05/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022]
|