1
|
Gomez-Artiguez L, de la Cámara-Fuentes S, Sun Z, Hernáez ML, Borrajo A, Pitarch A, Molero G, Monteoliva L, Moritz RL, Deutsch EW, Gil C. Candida albicans: A Comprehensive View of the Proteome. J Proteome Res 2025; 24:1636-1648. [PMID: 40084908 DOI: 10.1021/acs.jproteome.4c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
We describe a new release of the Candida albicans PeptideAtlas proteomics spectral resource (build 2024-03), providing a sequence coverage of 79.5% at the canonical protein level, matched mass spectrometry spectra, and experimental evidence identifying 3382 and 536 phosphorylated serine and threonine sites with false localization rates of 1% and 5.3%, respectively. We provide a tutorial on how to use the PeptideAtlas and associated tools to access this information. The C. albicans PeptideAtlas summary web page provides "Build overview", "PTM coverage", "Experiment contribution", and "Data set contribution" information. The protein and peptide information can also be accessed via the Candida Genome Database via hyperlinks on each protein page. This allows users to peruse identified peptides, protein coverage, post-translational modifications (PTMs), and experiments that identify each protein. Given the value of understanding the PTM landscape in the sequence of each protein, a more detailed explanation of how to interpret and analyze PTM results is provided in the PeptideAtlas of this important pathogen. Candida albicans PeptideAtlas web page: https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/buildDetails?atlas_build_id=578.
Collapse
Affiliation(s)
- Leticia Gomez-Artiguez
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Zhi Sun
- Institute for Systems Biology, 401 Terry Ave North, Seattle, Washington 98109, United States
| | - María Luisa Hernáez
- Proteomics Unit, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Borrajo
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aída Pitarch
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gloria Molero
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lucía Monteoliva
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Ave North, Seattle, Washington 98109, United States
| | - Eric W Deutsch
- Institute for Systems Biology, 401 Terry Ave North, Seattle, Washington 98109, United States
| | - Concha Gil
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Proteomics Unit, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Gomez-Artiguez L, de la Cámara-Fuentes S, Sun Z, Hernáez ML, Borrajo A, Pitarch A, Molero G, Monteoliva L, Moritz RL, Deutsch EW, Gil C. Candida albicans: a comprehensive view of the proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.20.629377. [PMID: 39763837 PMCID: PMC11702768 DOI: 10.1101/2024.12.20.629377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
We describe a new release of the Candida albicans PeptideAtlas proteomics spectral resource (build 2024-03), providing a sequence coverage of 79.5% at the canonical protein level, matched mass spectrometry spectra, and experimental evidence identifying 3382 and 536 phosphorylated serine and threonine sites with false localization rates of 1% and 5.3%, respectively. We provide a tutorial on how to use the PeptideAtlas and associated tools to access this information. The C. albicans PeptideAtlas summary web page provides "Build overview", "PTM coverage", "Experiment contribution", and "Dataset contribution" information. The protein and peptide information can also be accessed via the Candida Genome Database via hyperlinks on each protein page. This allows users to peruse identified peptides, protein coverage, post-translational modifications (PTMs), and experiments identifying each protein. Given the value of understanding the PTM landscape in the sequence of each protein, a more detailed explanation of how to interpret and analyse PTM results is provided in the PeptideAtlas of this important pathogen. Candida albicans PeptideAtlas web page: https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/buildDetails?atlas_build_id=578.
Collapse
Affiliation(s)
- Leticia Gomez-Artiguez
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | | | - Zhi Sun
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, USA. 98109
| | - María Luisa Hernáez
- Proteomics Unit, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | - Ana Borrajo
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | - Aída Pitarch
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | - Gloria Molero
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | - Lucía Monteoliva
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | - Robert L. Moritz
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, USA. 98109
| | - Eric W. Deutsch
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, USA. 98109
| | - Concha Gil
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
- Proteomics Unit, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| |
Collapse
|
3
|
She X, Zhou X, Zhou M, Zhang L, Calderone R, Bellanti JA, Liu W, Li D. Histone-like transcription factor Hfl1p in Candida albicans harmonizes nuclear and mitochondrial genomic network in regulation of energy metabolism and filamentation development. Virulence 2024; 15:2412750. [PMID: 39370643 PMCID: PMC11469427 DOI: 10.1080/21505594.2024.2412750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen known for surviving in various nutrient-limited conditions within the host and causing infections. Our prior research revealed that Hfl1p, an archaeal histone-like or Hap5-like protein, is linked to mitochondrial ATP generation and yeast-hyphae morphogenesis. However, the specific roles of Hfl1p in these virulence behaviours, through its function in the CBF/NF-Y complex or as a DNA polymerase II subunit, remain unclear. This study explores Hfl1p's diverse functions in energy metabolism and morphogenesis. By combining proteomic analysis and phenotypic evaluations of the hfl1Δ/hfl1Δ mutant with ChIP data, we found that Hfl1p significantly impacts mitochondrial DNA-encoded CI subunits, the tricarboxylic acid (TCA) cycle, and morphogenetic pathways. This influence occurs either independently or alongside other transcription factors recognizing a conserved DNA motif (TAXXTAATTA). These findings emphasize Hfl1p's critical role in linking carbon metabolism and mitochondrial respiration to the yeast-to-filamentous form transition, enhancing our understanding of C. albicans' metabolic adaptability during morphological transition, an important pathogenic trait of this fungus. This could help identify therapeutic targets by disrupting the relationship between energy metabolism and cell morphology in C. albicans.
Collapse
Affiliation(s)
- Xiaodong She
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xiaowei Zhou
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Meng Zhou
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Lulu Zhang
- Department Dermatology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A. Bellanti
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
4
|
Corrales J, Ramos-Alonso L, González-Sabín J, Ríos-Lombardía N, Trevijano-Contador N, Engen Berg H, Sved Skottvoll F, Moris F, Zaragoza O, Chymkowitch P, Garcia I, Enserink JM. Characterization of a selective, iron-chelating antifungal compound that disrupts fungal metabolism and synergizes with fluconazole. Microbiol Spectr 2024; 12:e0259423. [PMID: 38230926 PMCID: PMC10845951 DOI: 10.1128/spectrum.02594-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
Fungal infections are a growing global health concern due to the limited number of available antifungal therapies as well as the emergence of fungi that are resistant to first-line antimicrobials, particularly azoles and echinocandins. Development of novel, selective antifungal therapies is challenging due to similarities between fungal and mammalian cells. An attractive source of potential antifungal treatments is provided by ecological niches co-inhabited by bacteria, fungi, and multicellular organisms, where complex relationships between multiple organisms have resulted in evolution of a wide variety of selective antimicrobials. Here, we characterized several analogs of one such natural compound, collismycin A. We show that NR-6226C has antifungal activity against several pathogenic Candida species, including C. albicans and C. glabrata, whereas it only has little toxicity against mammalian cells. Mechanistically, NR-6226C selectively chelates iron, which is a limiting factor for pathogenic fungi during infection. As a result, NR-6226C treatment causes severe mitochondrial dysfunction, leading to formation of reactive oxygen species, metabolic reprogramming, and a severe reduction in ATP levels. Using an in vivo model for fungal infections, we show that NR-6226C significantly increases survival of Candida-infected Galleria mellonella larvae. Finally, our data indicate that NR-6226C synergizes strongly with fluconazole in inhibition of C. albicans. Taken together, NR-6226C is a promising antifungal compound that acts by chelating iron and disrupting mitochondrial functions.IMPORTANCEDrug-resistant fungal infections are an emerging global threat, and pan-resistance to current antifungal therapies is an increasing problem. Clearly, there is a need for new antifungal drugs. In this study, we characterized a novel antifungal agent, the collismycin analog NR-6226C. NR-6226C has a favorable toxicity profile for human cells, which is essential for further clinical development. We unraveled the mechanism of action of NR-6226C and found that it disrupts iron homeostasis and thereby depletes fungal cells of energy. Importantly, NR-6226C strongly potentiates the antifungal activity of fluconazole, thereby providing inroads for combination therapy that may reduce or prevent azole resistance. Thus, NR-6226C is a promising compound for further development into antifungal treatment.
Collapse
Affiliation(s)
- Jeanne Corrales
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Lucia Ramos-Alonso
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Javier González-Sabín
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
| | - Nicolás Ríos-Lombardía
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
| | - Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Madrid, Spain
| | | | | | - Francisco Moris
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
| | - Oscar Zaragoza
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
- Center for Biomedical Research in Network in Infectious Diseases, CB21/13/00105, Instituto de Salud Carlos III, Madrid, Spain
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Ignacio Garcia
- Department of Bacteriology, Norwegian Institute of Public Health, Oslo, Norway
| | - Jorrit M. Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Zhang L, Meng Z, Calderone R, Liu W, She X, Li D. Mitochondria complex I deficiency in Candida albicans arrests the cell cycle at S phase through suppressive TOR and PKA pathways. FEMS Yeast Res 2024; 24:foae010. [PMID: 38592962 PMCID: PMC11008738 DOI: 10.1093/femsyr/foae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024] Open
Abstract
How mutations in mitochondrial electron transport chain (ETC) proteins impact the cell cycle of Candida albicans was investigated in this study. Using genetic null mutants targeting ETC complexes I (CI), III (CIII), and IV (CIV), the cell cycle stages (G0/G1, S phase, and G2/M) were analyzed via fluorescence-activated cell sorting (FACS). Four CI null mutants exhibited distinct alterations, including extended S phase, shortened G2/M population, and a reduction in cells size exceeding 10 µM. Conversely, CIII mutants showed an increased population in G1/G0 phase. Among four CI mutants, ndh51Δ/Δ and goa1Δ/Δ displayed aberrant cell cycle patterns correlated with previously reported cAMP/PKA downregulation. Specifically, nuo1Δ/Δ and nuo2Δ/Δ mutants exhibited increased transcription of RIM15, a central hub linking cell cycle with nutrient-dependent TOR1 and cAMP/PKA pathways and Snf1 aging pathway. These findings suggest that suppression of TOR1 and cAMP/PKA pathways or enhanced Snf1 disrupts cell cycle progression, influencing cell longevity and growth among CI mutants. Overall, our study highlights the intricate interplay between mitochondrial ETC, cell cycle, and signaling pathways.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Dermatology, Jiangsu Province Hospital of Traditional Chinese Medicine, No.155 Hanzhong Road, Qinhuai District, Nanjing, 210029, China
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
| | - Zhou Meng
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 12 Jiangwangmiao Street, Xuanwu District, Naning, 210042, China
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 12 Jiangwangmiao Street, Xuanwu District, Naning, 210042, China
| | - Xiaodong She
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 12 Jiangwangmiao Street, Xuanwu District, Naning, 210042, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
| |
Collapse
|
6
|
Qin Y, Wang J, Lv Q, Han B. Recent Progress in Research on Mitochondrion-Targeted Antifungal Drugs: a Review. Antimicrob Agents Chemother 2023; 67:e0000323. [PMID: 37195189 PMCID: PMC10269089 DOI: 10.1128/aac.00003-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Fungal infections, which commonly occur in immunocompromised patients, can cause high morbidity and mortality. Antifungal agents act by disrupting the cell membrane, inhibiting nucleic acid synthesis and function, or inhibiting β-1,3-glucan synthase. Because the incidences of life-threatening fungal infections and antifungal drug resistance are continuously increasing, there is an urgent need for the development of new antifungal agents with novel mechanisms of action. Recent studies have focused on mitochondrial components as potential therapeutic drug targets, owing to their important roles in fungal viability and pathogenesis. In this review, we discuss novel antifungal drugs targeting mitochondrial components and highlight the unique fungal proteins involved in the electron transport chain, which is useful for investigating selective antifungal targets. Finally, we comprehensively summarize the efficacy and safety of lead compounds in clinical and preclinical development. Although fungus-specific proteins in the mitochondrion are involved in various processes, the majority of the antifungal agents target dysfunction of mitochondria, including mitochondrial respiration disturbance, increased intracellular ATP, reactive oxygen species generation, and others. Moreover, only a few drugs are under clinical trials, necessitating further exploration of possible targets and development of effective antifungal agents. The unique chemical structures and targets of these compounds will provide valuable hints for further exploiting new antifungals.
Collapse
Affiliation(s)
- Yulin Qin
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Jinxin Wang
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Chen X, Wei Y, Zou X, Zhao Z, Jiang S, Chen Y, Xu F, Shao X. β-Glucan Enhances the Biocontrol Efficacy of Marine Yeast Scheffersomyeces spartinae W9 against Botrytis cinerea in Strawberries. J Fungi (Basel) 2023; 9:jof9040474. [PMID: 37108929 PMCID: PMC10142798 DOI: 10.3390/jof9040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The marine yeast Scheffersomyeces spartinae W9 is a promising biocontrol agent for gray mold caused by Botrytis cinerea in strawberries. Improving the biocontrol efficacy of S. spartinae W9 is necessary for its commercial application. In this study, different concentrations of β-glucan were added to the culture medium to evaluate its effect on the biocontrol efficacy of S. spartinae W9. The results showed that 0.1% β-glucan could increase the biocontrol effect of S. spartinae W9 against B. cinerea in strawberries and in vitro. We found that adding 0.1% β-glucan to the culture medium promoted the growth of S. spartinae W9 in wounds of strawberries, enhanced biofilm formation ability, and secreted more β-1,3-glucanase. In addition, 0.1% β-glucan increased the survival rate of S. spartinae W9 under oxidative, thermal, osmotic, and plasma membrane stressors. Transcriptome analysis revealed 188 differential expressed genes in S. spartinae W9 cultured with or without 0.1% β-glucan, including 120 upregulated and 68 downregulated genes. The upregulated genes were associated with stress response, cell wall formation, energy production, growth, and reproduction. Thus, culturing with 0.1% β-glucan is an effective way to improve the biocontrol ability of S. spartinae W9 against gray mold in strawberries.
Collapse
Affiliation(s)
- Xueyan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiurong Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan 512005, China
| | - Zichang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
8
|
Lv Q, Yan L, Wang J, Feng J, Gao L, Qiu L, Chao W, Qin YL, Jiang Y. Combined Transcriptome and Metabolome Analysis Reveals That the Potent Antifungal Pyrylium Salt Inhibits Mitochondrial Complex I in Candida albicans. Microbiol Spectr 2023; 11:e0320922. [PMID: 36790175 PMCID: PMC10100848 DOI: 10.1128/spectrum.03209-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Based on the structural modification of SM21, xy12, a new pyrylium salt derivative with enhanced antifungal activities, was synthesized. The MICs (MIC90) of xy12 against Candida albicans ranged from 0.125 to 0.25 μg/mL, about 2-fold lower than those of SM21. In addition, xy12 inhibited hypha and biofilm formation in C. albicans in a dose-dependent manner. A total of 3,454 differentially expressed genes and 260 differential metabolites were identified in the xy12-treated C. albicans by RNA-seq and non-targeted metabolomics. By integrating KEGG pathway enrichment analysis, we found that inhibition of oxidative phosphorylation was the important antifungal mechanism of action of xy12. Electron transport through mitochondrial respiratory complexes I to IV is the common process of oxidative phosphorylation. Compared with the sensitivity of the wild-type SC5314 to xy12, decreased sensitivities in mitochondrial complex I (CI)-deficient mutants and increased sensitivities in mitochondrial complex III- and IV-deficient mutants suggested that the antifungal effects of xy12 were dependent on CI. Consistently, xy12 exhibited antagonism with rotenone, an inhibitor of CI, and significantly inhibited the expression and activity of CI. Meanwhile, the phenotypes in the xy12-treated C. albicans were similar to those in the CI-deficient mutants, such as decreased ATP production, reduced mitochondrial membrane potential, loss of mitochondrial DNA, inability to utilize nonfermentative carbon sources, and decreased cell wall N-linked mannoproteins. Collectively, our results revealed that the pyrylium salt xy12 could constrain oxidative phosphorylation by inhibiting mitochondrial complex I in C. albicans, providing a novel lead compound for the development of mitochondria-targeted antifungal drugs. IMPORTANCE The development of new antifungal drugs is critical for solving the problem of antifungal resistance and expanding the limited variety of clinical antifungal drugs. Based on the modification of the pyrylium salt SM21, a new lead compound, xy12, was synthesized which was effective against Candida species both in vitro and in vivo. In this study, conjoined analysis of the transcriptome and metabolome elucidated the antifungal mechanism of action of xy12, which inhibited the activity of mitochondrial complex I in C. albicans. Targeting fungi-specific mitochondrial complex proteins has been reported as a promising antifungal strategy. Our study provided a new lead compound for targeting C. albicans mitochondrial complex I, which could be beneficial for discovering novel antifungal drugs.
Collapse
Affiliation(s)
- Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Jinxin Wang
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Jia Feng
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lu Gao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lijuan Qiu
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Wen Chao
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Yu-Lin Qin
- Fudan University Minhang Hospital, Shanghai, People’s Republic of China
| | - Yuanying Jiang
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
She X, Zhang P, Shi D, Peng J, Wang Q, Meng X, Jiang Y, Calderone R, Bellanti JA, Liu W, Li D. The mitochondrial complex I proteins of Candida albicans moderate phagocytosis and the production of pro-inflammatory cytokines in murine macrophages and dendritic cells. FASEB J 2022; 36:e22575. [PMID: 36208290 DOI: 10.1096/fj.202200275rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Loss of respiratory functions impairs Candida albicans colonization of host tissues and virulence in a murine model of candidiasis. Furthermore, it is known that respiratory inhibitors decrease mannan synthesis and glucan exposure and thereby promotes phagocytosis. To understand the impact of respiratory proteins of C. albicans on host innate immunity, we characterized cell wall defects in three mitochondrial complex I (CI) null mutants (nuo1Δ, nuo2Δ and ndh51Δ) and in one CI regulator mutant (goa1Δ), and we studied the corresponding effects of these mutants on phagocytosis, neutrophil killing and cytokine production by dendritic cells (DCs). We find that reductions of phosphopeptidomannan (PPM) in goa1Δ, nuo1Δ and phospholipomannan (PLM) in nuo2Δ lead to reductions of IL-2, IL-4, and IL-10 but increase of TNF-α in infected DCs. While PPM loss is a consequence of a reduced phospho-Cek1/2 MAPK that failed to promote phagocytosis and IL-22 production in goa1Δ and nuo1Δ, a 30% glucan reduction and a defective Mek1 MAPK response in ndh51Δ lead to only minor changes in phagocytosis and cytokine production. Glucan exposure and PLM abundance seem to remain sufficient to opsonize neutrophil killing perhaps via humoral immunity. The diversity of immune phenotypes in these mutants possessing divergent cell wall defects is further supported by their transcriptional profiles in each infected murine macrophage scenario. Since metabolic processes, oxidative stress-induced senescence, and apoptosis are differently affected in these scenarios, we speculate that during the early stages of infection, host immune cells coordinate their bioactivities based upon a mixture of signals generated during host-fungi interactions.
Collapse
Affiliation(s)
- Xiaodong She
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Pengyi Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Sport Science Research Center, Shandong Sport University, Jinan, China
| | - Dongmei Shi
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Dermatology, Jining No. 1 People's Hospital, Jining, China
| | - Jingwen Peng
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Qiong Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yong Jiang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Department of Dermatology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A Bellanti
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
10
|
Stress- and metabolic responses of Candida albicans require Tor1 kinase N-terminal HEAT repeats. PLoS Pathog 2022; 18:e1010089. [PMID: 35687592 PMCID: PMC9223334 DOI: 10.1371/journal.ppat.1010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/23/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Whether to commit limited cellular resources toward growth and proliferation, or toward survival and stress responses, is an essential determination made by Target of Rapamycin Complex 1 (TORC1) for a eukaryotic cell in response to favorable or adverse conditions. Loss of TORC1 function is lethal. The TORC1 inhibitor rapamycin that targets the highly conserved Tor kinase domain kills fungal pathogens like Candida albicans, but is also severely toxic to human cells. The least conserved region of fungal and human Tor kinases are the N-terminal HEAT domains. We examined the role of the 8 most N-terminal HEAT repeats of C. albicans Tor1. We compared nutritional- and stress responses of cells that express a message for N-terminally truncated Tor1 from repressible tetO, with cells expressing wild type TOR1 from tetO or from the native promoter. Some but not all stress responses were significantly impaired by loss of Tor1 N-terminal HEAT repeats, including those to oxidative-, cell wall-, and heat stress; in contrast, plasma membrane stress and antifungal agents that disrupt plasma membrane function were tolerated by cells lacking this Tor1 region. Translation was inappropriately upregulated during oxidative stress in cells lacking N-terminal Tor1 HEAT repeats despite simultaneously elevated Gcn2 activity, while activation of the oxidative stress response MAP kinase Hog1 was weak. Conversely, these cells were unable to take advantage of favorable nutritional conditions by accelerating their growth. Consuming oxygen more slowly than cells containing wild type TOR1 alleles during growth in glucose, cells lacking N-terminal Tor1 HEAT repeats additionally were incapable of utilizing non-fermentable carbon sources. They were also hypersensitive to inhibitors of specific complexes within the respiratory electron transport chain, suggesting that inefficient ATP generation and a resulting dearth of nucleotide sugar building blocks for cell wall polysaccharides causes cell wall integrity defects in these mutants. Genome-wide expression analysis of cells lacking N-terminal HEAT repeats showed dysregulation of carbon metabolism, cell wall biosynthetic enzymes, translational machinery biosynthesis, oxidative stress responses, and hyphal- as well as white-opaque cell type-associated genes. Targeting fungal-specific Tor1 N-terminal HEAT repeats with small molecules might selectively abrogate fungal viability, especially when during infection multiple stresses are imposed by the host immune system. Whether growing harmlessly on our mucous membranes in competition with bacterial multitudes, or invading our tissues and bloodstream, the fungus Candida albicans must be capable of rapid growth when it finds abundant nutrients and favorable conditions. It must also be able to switch to stress- and survival mode when encountering host immune cells and when starving for nutrients. Tor1 kinase is the central regulator at the heart of these cellular decisions. As an essential protein, it is an attractive drug target. But the Tor1 kinase domain is very similar to its human counterpart, rendering its inhibitors like rapamycin toxic for humans. We identified a region of helical protein-protein interaction domains, the N-terminal HEAT repeats, as the least conserved part of C. albicans Tor1. Using genetic- and genome-wide expression analysis, we found that 8 N-terminal HEAT repeats are required for growth acceleration in nutrient-rich environments and for decreased translation in starvation- and stress conditions. This Tor1 region contributes to oxidative-, cell wall- and heat stress reponses, to hyphal growth and to respiration, but apparently not to plasma membrane stress endurance or fermentation. Small molecules that disrupt the protein-protein interactions mediated by this region could become fungal-selective inhibitors of Tor kinase.
Collapse
|
11
|
Li W, Xu J, Cheng L, Zhao C, Zhang L, Shao Q, Guo F. RelB promotes the migration and invasion of prostate cancer DU145 cells via exosomal ICAM1 in vitro. Cell Signal 2021; 91:110221. [PMID: 34933092 DOI: 10.1016/j.cellsig.2021.110221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
RelB confers the aggressiveness to prostate cancer (PC) cells. Exosomes modulate the oncogenesis and progression of PC. We aimed to identify the downstream molecule in the exosomes, by which RelB increases the aggressiveness of DU145. Totally, 137 upregulated and 55 downregulated exosomal proteins were identified from RelB-knockdown DU145 cells by Liquid Chromatography-Mass Spectrometry. UALCAN, GeneMANIA and tissue microarray analysis revealed that intercellular adhesion molecule-1 (ICAM1) was positively related to and co-expressed with RelB in PC. Luciferase reporter assay revealed that RelB bound directly to the promoter of ICAM1. ICAM1 overexpression enhanced the migration and invasion abilities of DU145 cells. Exposure to exosomes derived from ICAM1 overexpressing cells (hICAM1-exo) strengthened the aggressiveness of RelB-knockdown cells, especially the migration and invasion capabilities. Mechanistically, the expression of ICAM1, Integrin β1, MMP9 and uPA were upregulated in RelB-knockdown cells upon hICAM1-exo treatment. Exosomal ICAM1 is the key molecule regulated by RelB, which increased the aggressiveness of DU145. The study suggests that cell-cell communication via exosomal ICAM1 is a novel mechanism by which RelB promotes PC progression.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China; Department of Clinical Laboratory, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jingjing Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Cheng
- Department of Oncology, Shanghai East Hospital, Tongji Uiniversity School of Medicine, Shanghai, China
| | - Chenyi Zhao
- Department of Oncology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lianjun Zhang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Qiang Shao
- Department of Urology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Feng Guo
- Department of Oncology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
12
|
Peng X, Yu Q, Liu Y, Ma T, Li M. Study on the Function of the Inositol Polyphosphate Kinases Kcs1 and Vip1 of Candida albicans in Energy Metabolism. Front Microbiol 2020; 11:566069. [PMID: 33362729 PMCID: PMC7758236 DOI: 10.3389/fmicb.2020.566069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
In Saccharomyces cerevisiae, inositol polyphosphate kinase KCS1 but not VIP1 knockout is of great significance for maintaining cell viability, promoting glycolysis metabolism, and inducing mitochondrial damage. The functions of Candida albicans inositol polyphosphate kinases Kcs1 and Vip1 have not yet been studied. In this study, we found that the growth rate of C. albicans vip1Δ/Δ strain in glucose medium was reduced and the upregulation of glycolysis was accompanied by a decrease in mitochondrial activity, resulting in a large accumulation of lipid droplets, along with an increase in cell wall chitin and cell membrane permeability, eventually leading to cell death. Relieving intracellular glycolysis rate or increasing mitochondrial metabolism can reduce lipid droplet accumulation, causing a reduction in chitin content and cell membrane permeability. The growth activity and energy metabolism of the vip1Δ/Δ strains in a non-fermentable carbon source glycerol medium were not different from those of the wild-type strains, indicating that knocking out VIP1 did not cause mitochondria damage. Moreover, C. albicans KCS1 knockout did not affect cell activity and energy metabolism. Thus, in C. albicans, Vip1 is more important than Kcs1 in regulating cell viability and energy metabolism.
Collapse
Affiliation(s)
- Xueling Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yingzheng Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianyu Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Zhang X, He D, Gao S, Wei Y, Wang L. iTRAQ‑based proteomic analysis of the interaction of A549 human lung epithelial cells with Aspergillus fumigatus conidia. Mol Med Rep 2020; 22:4601-4610. [PMID: 33174000 PMCID: PMC7646843 DOI: 10.3892/mmr.2020.11582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
Severe invasive aspergillosis infection occurs when human immune function is impaired. The interaction between Aspergillus fumigatus (A. fumigatus) conidia and type II lung epithelial cells serves an important role in disease progression. The present study compared the proteomes of A549 human lung epithelial cells with and without A. fumigatus infection. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein interaction analyses were performed, and differential protein expression was verified by western blotting and reverse transcription-quantitative PCR (RT-qPCR). In addition, the RNA interference method, an internalization assay and ELISA were performed. Isobaric tags for relative and absolute quantification analysis detected a total of 1,582 proteins, from which 111 proteins with differential expression were obtained (fold change >1.5 or <0.75). Among them, 18 proteins were upregulated and 93 proteins were downregulated in A549 cells challenged with A. fumigatus. GO and KEGG analyses revealed that the altered proteins were mainly involved in biological functions, such as cell metabolism, synthesis, the cellular stress response, metabolic pathways and pyruvate metabolism. N-myc downstream-regulated gene 1 (NDRG1) expression was upregulated 1.88-fold, while CD44 expression was downregulated 0.47-fold following A. fumigatus infection. The expression levels of specific proteins were verified by western blotting and RT-qPCR. The internalization efficiency was affected by NDRG1 gene silencing. The secretion of IL-6 and IL-8 was affected when CD44 was inhibited. These results indicated that A. fumigatus affects lung epithelial cell metabolism and biological synthetic functions. A number of novel molecules, including NDRG1 and CD44, were found to be related to A. fumigatus infection.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Song Gao
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yunyun Wei
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
14
|
Song J, Zhou J, Zhang L, Li R. Mitochondria-Mediated Azole Drug Resistance and Fungal Pathogenicity: Opportunities for Therapeutic Development. Microorganisms 2020; 8:E1574. [PMID: 33066090 PMCID: PMC7600254 DOI: 10.3390/microorganisms8101574] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, the role of mitochondria in pathogenic fungi in terms of azole resistance and fungal pathogenicity has been a rapidly developing field. In this review, we describe the molecular mechanisms by which mitochondria are involved in regulating azole resistance and fungal pathogenicity. Mitochondrial function is involved in the regulation of drug efflux pumps at the transcriptional and posttranslational levels. On the one hand, defects in mitochondrial function can serve as the signal leading to activation of calcium signaling and the pleiotropic drug resistance pathway and, therefore, can globally upregulate the expression of drug efflux pump genes, leading to azole drug resistance. On the other hand, mitochondria also contribute to azole resistance through modulation of drug efflux pump localization and activity. Mitochondria further contribute to azole resistance through participating in iron homeostasis and lipid biosynthesis. Additionally, mitochondrial dynamics play an important role in azole resistance. Meanwhile, mitochondrial morphology is important for fungal virulence, playing roles in growth in stressful conditions in a host. Furthermore, there is a close link between mitochondrial respiration and fungal virulence, and mitochondrial respiration plays an important role in morphogenetic transition, hypoxia adaptation, and cell wall biosynthesis. Finally, we discuss the possibility for targeting mitochondrial factors for the development of antifungal therapies.
Collapse
Affiliation(s)
- Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
- Shandong Provincial Key Laboratory of Infection and Immunity, Jinan 250012, China;
| | - Jingwen Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
| | - Lei Zhang
- Shandong Provincial Key Laboratory of Infection and Immunity, Jinan 250012, China;
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
| |
Collapse
|
15
|
Inhibition of Respiration of Candida albicans by Small Molecules Increases Phagocytosis Efficacy by Macrophages. mSphere 2020; 5:5/2/e00016-20. [PMID: 32295866 PMCID: PMC7160677 DOI: 10.1128/msphere.00016-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida albicans adapts to various conditions in different body niches by regulating gene expression, protein synthesis, and metabolic pathways. These adaptive reactions not only allow survival but also influence the interaction with host cells, which is governed by the composition and structure of the fungal cell wall. Numerous studies had shown linkages between mitochondrial functionality, cell wall integrity and structure, and pathogenicity. Thus, we decided to inhibit single complexes of the respiratory chain of C. albicans and to analyze the resultant interaction with macrophages via their phagocytic activity. Remarkably, inhibition of the fungal bc1 complex by antimycin A increased phagocytosis, which correlated with an increased accessibility of β-glucans. To contribute to mechanistic insights, we performed metabolic studies, which highlighted significant changes in the abundance of constituents of the plasma membrane. Collectively, our results reinforce the strong linkage between fungal energy metabolism and other components of fungal physiology, which also determine the vulnerability to immune defense reactions.IMPORTANCE The yeast Candida albicans is one of the major fungal human pathogens, for which new therapeutic approaches are required. We aimed at enhancements of the phagocytosis efficacy of macrophages by targeting the cell wall structure of C. albicans, as the coverage of the β-glucan layer by mannans is one of the immune escape mechanisms of the fungus. We unambiguously show that inhibition of the fungal bc1 complex correlates with increased accessibilities of β-glucans and improved phagocytosis efficiency. Metabolic studies proved not only the known direct effects on reactive oxygen species (ROS) production and fermentative pathways but also the clear downregulation of the ergosterol pathway and upregulation of unsaturated fatty acids. The changed composition of the plasma membrane could also influence the interaction with the overlying cell wall. Thus, our work highlights the far-reaching relevance of energy metabolism, indirectly also for host-pathogen interactions, without affecting viability.
Collapse
|
16
|
Muthamil S, Prasath KG, Priya A, Precilla P, Pandian SK. Global proteomic analysis deciphers the mechanism of action of plant derived oleic acid against Candida albicans virulence and biofilm formation. Sci Rep 2020; 10:5113. [PMID: 32198447 PMCID: PMC7083969 DOI: 10.1038/s41598-020-61918-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/02/2020] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is a commensal fungus in humans, mostly found on the mucosal surfaces of the mouth, gut, vagina and skin. Incidence of ever increasing invasive candidiasis in immunocompromised patients, alarming occurrence of antifungal resistance and insufficient diagnostic methods demand more focused research into C. albicans pathogenicity. Consequently, in the present study, oleic acid from Murraya koenigii was shown to have the efficacy to inhibit biofilm formation and virulence of Candida spp. Results of in vitro virulence assays and gene expression analysis, impelled to study the protein targets which are involved in the molecular pathways of C. albicans pathogenicity. Proteomic studies of differentially expressed proteins reveals that oleic acid induces oxidative stress responses and mainly targets the proteins involved in glucose metabolism, ergosterol biosynthesis, lipase production, iron homeostasis and amino acid biosynthesis. The current study emphasizes anti-virulent potential of oleic acid which can be used as a therapeutic agent to treat Candida infections.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | - Krishnan Ganesh Prasath
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | - Pitchai Precilla
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | | |
Collapse
|
17
|
Dostál J, Blaha J, Hadravová R, Hubálek M, Heidingsfeld O, Pichová I. Cellular Localization of Carbonic Anhydrase Nce103p in Candida albicans and Candida parapsilosis. Int J Mol Sci 2020; 21:ijms21030850. [PMID: 32013007 PMCID: PMC7036955 DOI: 10.3390/ijms21030850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 01/04/2023] Open
Abstract
Pathogenic yeasts Candida albicans and Candida parapsilosis possess a ß-type carbonic anhydrase Nce103p, which is involved in CO2 hydration and signaling. C. albicans lacking Nce103p cannot survive in low CO2 concentrations, e.g., in atmospheric growth conditions. Candida carbonic anhydrases are orthologous to the Saccharomyces cerevisiae enzyme, which had originally been detected as a substrate of a non-classical export pathway. However, experimental evidence on localization of C. albicans and C. parapsilosis carbonic anhydrases has not been reported to date. Immunogold labeling and electron microscopy used in the present study showed that carbonic anhydrases are localized in the cell wall and plasmatic membrane of both Candida species. This localization was confirmed by Western blot and mass spectrometry analyses of isolated cell wall and plasma membrane fractions. Further analysis of C. albicans and C. parapsilosis subcellular fractions revealed presence of carbonic anhydrases also in the cytosolic and mitochondrial fractions of Candida cells cultivated in shaken liquid cultures, under the atmospheric conditions.
Collapse
Affiliation(s)
- Jiří Dostál
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague, Czech Republic; (J.D.); (J.B.); (R.H.); (M.H.); (O.H.)
| | - Jan Blaha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague, Czech Republic; (J.D.); (J.B.); (R.H.); (M.H.); (O.H.)
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague, Czech Republic; (J.D.); (J.B.); (R.H.); (M.H.); (O.H.)
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague, Czech Republic; (J.D.); (J.B.); (R.H.); (M.H.); (O.H.)
| | - Olga Heidingsfeld
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague, Czech Republic; (J.D.); (J.B.); (R.H.); (M.H.); (O.H.)
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague, Czech Republic; (J.D.); (J.B.); (R.H.); (M.H.); (O.H.)
- Correspondence:
| |
Collapse
|
18
|
Xue YP, Kao MC, Lan CY. Novel mitochondrial complex I-inhibiting peptides restrain NADH dehydrogenase activity. Sci Rep 2019; 9:13694. [PMID: 31548559 PMCID: PMC6757105 DOI: 10.1038/s41598-019-50114-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
The emergence of drug-resistant fungal pathogens is becoming increasingly serious due to overuse of antifungals. Antimicrobial peptides have potent activity against a broad spectrum of pathogens, including fungi, and are considered a potential new class of antifungals. In this study, we examined the activities of the newly designed peptides P-113Du and P-113Tri, together with their parental peptide P-113, against the human fungal pathogen Candida albicans. The results showed that these peptides inhibit mitochondrial complex I, specifically NADH dehydrogenase, of the electron transport chain. Moreover, P-113Du and P-113Tri also block alternative NADH dehydrogenases. Currently, most inhibitors of the mitochondrial complex I are small molecules or artificially-designed antibodies. Here, we demonstrated novel functions of antimicrobial peptides in inhibiting the mitochondrial complex I of C. albicans, providing insight in the development of new antifungal agents.
Collapse
Affiliation(s)
- Yao-Peng Xue
- Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC. .,Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC. .,Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
19
|
The potential of respiration inhibition as a new approach to combat human fungal pathogens. Curr Genet 2019; 65:1347-1353. [PMID: 31172256 PMCID: PMC6820612 DOI: 10.1007/s00294-019-01001-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
The respiratory chain has been proposed as an attractive target for the development of new therapies to tackle human fungal pathogens. This arises from the presence of fungal-specific electron transport chain components and links between respiration and the control of virulence traits in several pathogenic species. However, as the physiological roles of mitochondria remain largely undetermined with respect to pathogenesis, its value as a potential new drug target remains to be determined. The use of respiration inhibitors as fungicides is well developed but has been hampered by the emergence of rapid resistance to current inhibitors. In addition, recent data suggest that adaptation of the human fungal pathogen, Candida albicans, to respiration inhibitors can enhance virulence traits such as yeast-to-hypha transition and cell wall organisation. We conclude that although respiration holds promise as a target for the development of new therapies to treat human fungal infections, we require a more detailed understanding of the role that mitochondria play in stress adaption and virulence.
Collapse
|
20
|
Inhibition of Classical and Alternative Modes of Respiration in Candida albicans Leads to Cell Wall Remodeling and Increased Macrophage Recognition. mBio 2019; 10:mBio.02535-18. [PMID: 30696734 PMCID: PMC6355986 DOI: 10.1128/mbio.02535-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human fungal pathogen Candida albicans requires respiratory function for normal growth, morphogenesis, and virulence. Mitochondria therefore represent an enticing target for the development of new antifungal strategies. This possibility is bolstered by the presence of characteristics specific to fungi. However, respiration in C. albicans, as in many fungal organisms, is facilitated by redundant electron transport mechanisms, making direct inhibition a challenge. In addition, many chemicals known to target the electron transport chain are highly toxic. Here we made use of chemicals with low toxicity to efficiently inhibit respiration in C. albicans We found that use of the nitric oxide donor sodium nitroprusside (SNP) and of the alternative oxidase inhibitor salicylhydroxamic acid (SHAM) prevents respiration and leads to a loss of viability and to cell wall rearrangements that increase the rate of uptake by macrophages in vitro and in vivo We propose that treatment with SNP plus SHAM (SNP+SHAM) leads to transcriptional changes that drive cell wall rearrangement but which also prime cells to activate the transition to hyphal growth. In line with this, we found that pretreatment of C. albicans with SNP+SHAM led to an increase in virulence. Our data reveal strong links between respiration, cell wall remodeling, and activation of virulence factors. Our findings demonstrate that respiration in C. albicans can be efficiently inhibited with chemicals that are not damaging to the mammalian host but that we need to develop a deeper understanding of the roles of mitochondria in cellular signaling if they are to be developed successfully as a target for new antifungals.IMPORTANCE Current approaches to tackling fungal infections are limited, and new targets must be identified to protect against the emergence of resistant strains. We investigated the potential of targeting mitochondria, which are organelles required for energy production, growth, and virulence, in the human fungal pathogen Candida albicans Our findings suggest that mitochondria can be targeted using drugs that can be tolerated by humans and that this treatment enhances their recognition by immune cells. However, release of C. albicans cells from respiratory inhibition appears to activate a stress response that increases the levels of traits associated with virulence. Our results make it clear that mitochondria represent a valid target for the development of antifungal strategies but that we must determine the mechanisms by which they regulate stress signaling and virulence ahead of successful therapeutic advance.
Collapse
|
21
|
Koch B, Traven A. Mitochondrial Control of Fungal Cell Walls: Models and Relevance in Fungal Pathogens. Curr Top Microbiol Immunol 2019; 425:277-296. [PMID: 31807895 DOI: 10.1007/82_2019_183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proper structure and function of the fungal cell wall are controlled by metabolic processes, as well as an interplay between a range of cellular organelles. Somewhat surprisingly, mitochondrial function has been shown to be important for proper cell wall biogenesis and integrity. Mitochondria also play a role in the susceptibility of fungi to cell wall-targeting drugs. This is true in a range of fungal species, including important human fungal pathogens. The biochemical mechanisms that explain the roles of mitochondria in cell wall biology have remained elusive, but studies to date strongly support the idea that mitochondrial control over cellular lipid homeostasis is at the core of these processes. Excitingly, recent evidence suggests that the mitochondria-lipid linkages drive resistance to the echinocandin drug caspofungin, a clinically important therapeutic that targets cell wall biosynthesis. Here, we review the state of affairs in mitochondria-fungal cell wall research and propose models that could be tested in future studies. Elucidating the mechanisms that drive fungal cell wall integrity through mitochondrial functions holds promise for developing new strategies to combat fungal infections, including the possibility to potentiate the effects of antifungal drugs and curb drug resistance.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia.,Protein, Science and Engineering, Callaghan Innovation, Christchurch, 8140, New Zealand
| | - Ana Traven
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia.
| |
Collapse
|