1
|
Toraman E, Ceylan H. Investigation of the effect of tannic acid on doxorubicin-ınduced testicular damage and functions in a rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04238-0. [PMID: 40347279 DOI: 10.1007/s00210-025-04238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025]
Abstract
Reproductive and testicular toxicity is one of the most important side effects of doxorubicin (DOX), a chemotherapy drug. In our study, we investigated the ameliorative effect of tannic acid (TA), a polyphenol, against DOX-induced testicular and reproductive toxicity in rats. For this purpose, rats divided into four groups (n = 5 each). Rats were treated with DOX cumulatively 30 mg/kg (5 mg/kg by six equal injections) for 2 weeks to induce testicular toxicity. Rats were then treated daily with TA (50 mg/kg) and DOX + TA combination. After treatments, animals were decapitated and testicular tissues were removed. Then, to examine the effect of DOX and TA treatments on oxidative stress, changes in Sod, Cat, Gpx, Gst, and Gr specific activities and mRNA levels were determined. To determine the effects on inflammation, changes in the expression levels of Tnf-α, IL6, Foxo1, Foxo3, Cox2, and Inos genes were examined. In order to examine the therapeutic effect of TA on the spermatogenesis process, mRNA levels of Dazl, Amh, and Ddx4, which regulate reproductive functions, were determined. Additionally, changes in oxidative damage markers GSH, MDA, 8-OHdG, iNOS, and TNF-a and changes in mitochondrial DNA copy number were also investigated. The results showed that DOX treatment caused a decrease in the levels of oxidative stress and reproductive parameters and an increase in inflammation and DNA damage parameters. However, it was determined that oxidative stress, inflammation, and tissue damage decreased in testicular tissue after TA treatment. In addition, it was observed that TA also improved the expression levels of reproductive genes. When all the data were evaluated together, it was determined that TA administration has a therapeutic effect against the damage and toxicity caused by DOX.
Collapse
Affiliation(s)
- Emine Toraman
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey.
| | - Hamid Ceylan
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
2
|
Luo J, le Cessie S, Willems van Dijk K, Hägg S, Grassmann F, van Heemst D, Noordam R. Mitochondrial DNA abundance and circulating metabolomic profiling: Multivariable-adjusted and Mendelian randomization analyses in UK Biobank. Mitochondrion 2025; 80:101991. [PMID: 39592086 DOI: 10.1016/j.mito.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Low leukocyte mitochondrial DNA (mtDNA) abundance has been associated with a higher risk of atherosclerotic cardiovascular disease, but through unclear mechanisms. We aimed to investigate whether low mtDNA abundance is associated with worse metabolomic profiling, as being potential intermediate phenotypes, using cross-sectional and genetic studies. METHODS Among 61,186 unrelated European participants from UK Biobank, we performed multivariable-adjusted linear regression analyses to examine the associations between mtDNA abundance and 168 NMR-based circulating metabolomic measures and nine metabolomic principal components (PCs) that collectively covered 91.5% of the total variation of individual metabolomic measures. Subsequently, we conducted Mendelian randomization (MR) to approximate the causal effects of mtDNA abundance on the individual metabolomic measures and their metabolomic PCs. RESULTS After correction for multiple testing, low mtDNA abundance was associated with 130 metabolomic measures, predominantly lower concentrations of some amino acids and higher concentrations of lipids, lipoproteins and fatty acids; moreover, mtDNA abundance was associated with seven out of the nine metabolomic PCs. Using MR, genetically-predicted low mtDNA abundance was associated with lower lactate (standardized beta and 95% confidence interval: -0.17; -0.26, -0.08), and higher acetate (0.15; 0.07,0.23), and unsaturation degree (0.14; 0.08,0.20). Similarly, genetically-predicted low mtDNA abundance was associated with lower metabolomic PC2 (related to lower concentrations of lipids and fatty acids), and higher metabolomic PC9 (related to lower concentrations of glycolysis-related metabolites). CONCLUSION Low mtDNA abundance is associated with metabolomic perturbations, particularly reflecting a pro-atherogenic metabolomic profile, which potentially could link low mtDNA abundance to higher atherosclerosis risk.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia le Cessie
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
3
|
Vostatek R, Ay C. Biological Aging and Venous Thromboembolism: A Review of Telomeres and Beyond. Biomedicines 2024; 13:15. [PMID: 39857599 PMCID: PMC11759860 DOI: 10.3390/biomedicines13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Although venous thromboembolism (VTE) is the third most common cardiovascular disease, and the risk of VTE increases sharply with advancing age, approximately 40% of VTE cases are currently classified as unprovoked, highlighting the importance of risk factor research. While chronological aging is associated with the risk of VTE, the association with biological aging remains unclear. Biological aging is highly complex, influenced by several dysregulated cellular and biochemical mechanisms. In the last decade, advancements in omics methodologies provided insights into the molecular complexity of biological aging. Techniques such as high-throughput genomics, epigenomics, transcriptomics, proteomics, and metabolomics analyses identified and quantified numerous epigenetic markers, transcripts, proteins, and metabolites. These methods have also revealed the molecular alterations organisms undergo as they age. Despite the progress, there is still a lack of consensus regarding the methods for assessing and validating these biomarkers, and their application lacks standardization. This review gives an overview of biomarkers of biological aging, including telomere length, and their potential role for VTE. Furthermore, we critically examine the advantages and disadvantages of the proposed methods and discuss possible future directions for investigating biological aging in VTE.
Collapse
Affiliation(s)
| | - Cihan Ay
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
4
|
Toraman E. Biochemical and molecular evaluation of oxidative stress and mitochondrial damage in fruit fly exposed to carmoisine. Mol Biol Rep 2024; 51:685. [PMID: 38796672 DOI: 10.1007/s11033-024-09616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND In today's world, appearance is an important factor in almost all areas of our lives. Therefore, it has become common to use dyes to color foods to make them look appetizing and visually appealing. However, food additives have negative effects on biochemical processes in cells at both high and low doses. METHODS AND RESULTS This study investigated the effect of carmoisine, a commonly used food coloring, on oxidative stress and damage parameters in Drosophila melanogaster in terms of both enzymatic and gene expression. The change in mitochondrial DNA copy number (mtDNA-CN), a marker of oxidative stress, was also examined. When the data obtained were analyzed, it was observed that carmoisine caused a significant decrease in GSH levels depending on the increase in dose. SOD, CAT, GPx, and AChE enzyme activities and gene expression levels were also found to be significantly decreased. All groups also showed a significant decrease in mtDNA-CN. The effect of carmoisine on Drosophila melanogaster morphology was also investigated in our study. However, no significant change was observed in terms of morphological development in any group. CONCLUSIONS When all the findings were evaluated together, it was observed that carmoisin triggered oxidative stress and these effects became more risky at high doses. Therefore, we believe that the consumer should be made more aware of the side effects of azo dyes in food and that the type and concentration of each substance added to food should be specified.
Collapse
Affiliation(s)
- Emine Toraman
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Türkiye, 25240, Turkey.
| |
Collapse
|
5
|
Wang Y, Tan J, Wang W, Duan X, Lappe B, Shi L, Yang Y, Shi X. The Association Between Polymorphisms in Cell-Cycle Genes and Mitochondrial DNA Copy Number in Coke Oven Workers. Front Public Health 2022; 10:904856. [PMID: 35865244 PMCID: PMC9294400 DOI: 10.3389/fpubh.2022.904856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023] Open
Abstract
The mitochondrial DNA (mtDNA) copy number is a vital component in maintaining normal mitochondrial function. It is affected by environmental and occupational exposures, as well as polymorphisms in nuclear genes. Nonetheless, the specific roles of polymorphisms in cell-cycle genes and mtDNA copy number are still unknown. This study enrolled a sample of 544 coke oven workers and 238 non-exposed controls so as to assess the effect of exposure of coke oven emissions (COEs) and polymorphisms in cell-cycle genes on the mtDNA copy number. We found that the mtDNA copy number in the exposed group (0.60 ± 0.29) was significantly lower than that in the control group (1.03 ± 0.31) (t =18.931, P < 0.001). The analysis of covariance showed that both the rs1801270 (CA+CC) and the rs1059234 (CT+CC) in p21 gene were associated with lower mtDNA copy number in the exposed group (P = 0.001). Generalized linear models indicated COEs-exposure (β = -0.432, P < 0.001) and rs1059234 (CT+CC) in p21 gene (β = -0.060, P = 0.024) were the factors in mtDNA copy number reduction. In conclusion, this study suggests that the decrease of the mtDNA copy number is associated with COEs-exposure and the rs1059234 (CT+CC) in the p21 gene.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jiebing Tan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Brooke Lappe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China,*Correspondence: Yongli Yang
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China,Xuezhong Shi
| |
Collapse
|
6
|
Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:177-193. [PMID: 35578648 PMCID: PMC9096339 DOI: 10.1007/s13167-022-00281-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria are the “gatekeeper” in a wide range of cellular functions, signaling events, cell homeostasis, proliferation, and apoptosis. Consequently, mitochondrial injury is linked to systemic effects compromising multi-organ functionality. Although mitochondrial stress is common for many pathomechanisms, individual outcomes differ significantly comprising a spectrum of associated pathologies and their severity grade. Consequently, a highly ambitious task in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM/3PM) is to distinguish between individual disease predisposition and progression under circumstances, resulting in compromised mitochondrial health followed by mitigating measures tailored to the individualized patient profile. For the successful implementation of PPPM concepts, robust parameters are essential to quantify mitochondrial health sustainability. The current article analyses added value of Mitochondrial Health Index (MHI) and Bioenergetic Health Index (BHI) as potential systems to quantify mitochondrial health relevant for the disease development and its severity grade. Based on the pathomechanisms related to the compromised mitochondrial health and in the context of primary, secondary, and tertiary care, a broad spectrum of conditions can significantly benefit from robust quantification systems using MHI/BHI as a prototype to be further improved. Following health conditions can benefit from that: planned pregnancies (improved outcomes for mother and offspring health), suboptimal health conditions with reversible health damage, suboptimal life-style patterns and metabolic syndrome(s) predisposition, multi-factorial stress conditions, genotoxic environment, ischemic stroke of unclear aetiology, phenotypic predisposition to aggressive cancer subtypes, pathologies associated with premature aging and neuro/degeneration, acute infectious diseases such as COVID-19 pandemics, among others.
Collapse
|
7
|
Abstract
Mitochondrial DNA (mtDNA) is present in multiple copies in human cells. We evaluated cross-sectional associations of whole blood mtDNA copy number (CN) with several cardiometabolic disease traits in 408,361 participants of multiple ancestries in TOPMed and UK Biobank. Age showed a threshold association with mtDNA CN: among younger participants (<65 years of age), each additional 10 years of age was associated with 0.03 standard deviation (s.d.) higher level of mtDNA CN (P = 0.0014) versus a 0.14 s.d. lower level of mtDNA CN (P = 1.82 × 10-13) among older participants (≥65 years). At lower mtDNA CN levels, we found age-independent associations with increased odds of obesity (P = 5.6 × 10-238), hypertension (P = 2.8 × 10-50), diabetes (P = 3.6 × 10-7), and hyperlipidemia (P = 6.3 × 10-5). The observed decline in mtDNA CN after 65 years of age may be a key to understanding age-related diseases.
Collapse
|
8
|
Fazzini F, Lamina C, Raftopoulou A, Koller A, Fuchsberger C, Pattaro C, Del Greco FM, Döttelmayer P, Fendt L, Fritz J, Meiselbach H, Schönherr S, Forer L, Weissensteiner H, Pramstaller PP, Eckardt K, Hicks AA, Kronenberg F, the GCKD Investigators. Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14 176 individuals. J Intern Med 2021; 290:190-202. [PMID: 33453124 PMCID: PMC8359248 DOI: 10.1111/joim.13242] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondria play an important role in cellular metabolism, and their dysfunction is postulated to be involved in metabolic disturbances. Mitochondrial DNA is present in multiple copies per cell. The quantification of mitochondrial DNA copy number (mtDNA-CN) might be used to assess mitochondrial dysfunction. OBJECTIVES We aimed to investigate the cross-sectional association of mtDNA-CN with type 2 diabetes and the potential mediating role of metabolic syndrome. METHODS We examined 4812 patients from the German Chronic Kidney Disease (GCKD) study and 9364 individuals from the Cooperative Health Research in South Tyrol (CHRIS) study. MtDNA-CN was measured in whole blood using a plasmid-normalized qPCR-based assay. RESULTS In both studies, mtDNA-CN showed a significant correlation with most metabolic syndrome parameters: mtDNA-CN decreased with increasing number of metabolic syndrome components. Furthermore, individuals with low mtDNA-CN had significantly higher odds of metabolic syndrome (OR = 1.025; 95% CI = 1.011-1.039, P = 3.19 × 10-4 , for each decrease of 10 mtDNA copies) and type 2 diabetes (OR = 1.027; 95% CI = 1.012-1.041; P = 2.84 × 10-4 ) in a model adjusted for age, sex, smoking and kidney function in the meta-analysis of both studies. Mediation analysis revealed that the association of mtDNA-CN with type 2 diabetes was mainly mediated by waist circumference in the GCKD study (66%) and by several metabolic syndrome parameters, especially body mass index and triglycerides, in the CHRIS study (41%). CONCLUSIONS Our data show an inverse association of mtDNA-CN with higher risk of metabolic syndrome and type 2 diabetes. A major part of the total effect of mtDNA-CN on type 2 diabetes is mediated by obesity parameters.
Collapse
Affiliation(s)
- F. Fazzini
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - C. Lamina
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - A. Raftopoulou
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - A. Koller
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - C. Fuchsberger
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - C. Pattaro
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - F. M. Del Greco
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - P. Döttelmayer
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - L. Fendt
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - J. Fritz
- Department of Medical StatisticsInformatics and Health EconomicsMedical University of InnsbruckInnsbruckAustria
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | - H. Meiselbach
- Department of Nephrology and HypertensionFriedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - S. Schönherr
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - L. Forer
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - H. Weissensteiner
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - P. P. Pramstaller
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - K.‐U. Eckardt
- Department of Nephrology and HypertensionFriedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Department of Nephrology and Medical Intensive CareCharité – Universitätsmedizin BerlinBerlinGermany
| | - A. A. Hicks
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - F. Kronenberg
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | | |
Collapse
|
9
|
Ganel L, Chen L, Christ R, Vangipurapu J, Young E, Das I, Kanchi K, Larson D, Regier A, Abel H, Kang CJ, Scott A, Havulinna A, Chiang CWK, Service S, Freimer N, Palotie A, Ripatti S, Kuusisto J, Boehnke M, Laakso M, Locke A, Stitziel NO, Hall IM. Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences. Hum Genomics 2021; 15:34. [PMID: 34099068 PMCID: PMC8185936 DOI: 10.1186/s40246-021-00335-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718). RESULTS We identified two loci significantly associated with MT-CN variation: a common variant at the MYB-HBS1L locus (P = 1.6 × 10-8), which has previously been associated with numerous hematological parameters; and a burden of rare variants in the TMBIM1 gene (P = 3.0 × 10-8), which has been reported to protect against non-alcoholic fatty liver disease. We also found that MT-CN is strongly associated with insulin levels (P = 2.0 × 10-21) and other metabolic syndrome (metS)-related traits. Using a Mendelian randomization framework, we show evidence that MT-CN measured in blood is causally related to insulin levels. We then applied an MT-CN polygenic risk score (PRS) derived from Finnish data to the UK Biobank, where the association between the PRS and metS traits was replicated. Adjusting for cell counts largely eliminated these signals, suggesting that MT-CN affects metS via cell-type composition. CONCLUSION These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences in cell-type composition and that these differences are causally linked to insulin and related traits.
Collapse
Affiliation(s)
- Liron Ganel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lei Chen
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Christ
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Erica Young
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Indraniel Das
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Krishna Kanchi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - David Larson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison Regier
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Haley Abel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandra Scott
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aki Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Susan Service
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit (ATGU), Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Adam Locke
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan O Stitziel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ira M Hall
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Li R, Li S, Pan M, Chen H, Liu X, Chen G, Chen R, Yin S, Hu K, Mao Z, Huo W, Wang X, Yu S, Guo Y, Hou J, Wang C. Physical activity counteracted associations of exposure to mixture of air pollutants with mitochondrial DNA copy number among rural Chinese adults. CHEMOSPHERE 2021; 272:129907. [PMID: 33601207 DOI: 10.1016/j.chemosphere.2021.129907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure to single air pollutant and physical activity (PA) were associated with an altered mitochondrial DNA copy number (mtDNA-CN). However, studies on the interactive effects of single or a mixture of air pollutants and PA on mtDNA-CN were limited. METHODS A total of 2707 Chinese adults were obtained from the Henan Rural Cohort Study. Spatiotemporal models were used to estimate particulate matter (PMs) (PM with an aerodynamic diameter ≤ 1.0 μm (PM1), ≤2.5 μm (PM2.5) or ≤ 10 μm (PM10)) and nitrogen dioxide (NO2) concentrations. Relative mtDNA-CN was measured by quantitative real-time polymerase chain reaction. Linear regression and quantile g-computation models were applied to examine associations of single or mixture of air pollutants with relative mtDNA-CN. The interactive effects of single or mixture of air pollutants and PA on relative mtDNA-CN were visualized by using Interaction plots. RESULTS Each 1 μg/m3 increment in PM1, PM2.5, PM10 or NO2 was associated with a 5.11% (95% confidence interval: 3.71%, 6.53%), 6.77% (4.81%, 8.76%), 3.05% (2.22%, 3.87%) or 4.99% (3.45%, 6.55%) increase in relative mtDNA-CN. Each one-quartile increment in mixture of the four air pollutants was related to a 0.053 (0.032, 0.075) increase in relative mtDNA-CN. Negative interaction effects of single or mixture of air pollutants and PA on relative mtDNA-CN were observed. CONCLUSIONS The positive associations of single or mixture of air pollutants with relative mtDNA-CN were counteracted by PA at certain levels, implying that PA may be a costless and effective approach to decrease negative effects of air pollution on mtDNA-CN.
Collapse
Affiliation(s)
- Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Mingming Pan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Hao Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Shanshan Yin
- Department of health policy research, Henan Academy of Medical Sciences, Zhengzhou, China
| | - Kai Hu
- Department of health policy research, Henan Academy of Medical Sciences, Zhengzhou, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Songcheng Yu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
11
|
Yang K, Forman MR, Monahan PO, Graham BH, Chan AT, Zhang X, De Vivo I, Giovannucci EL, Tabung FK, Nan H. Insulinemic Potential of Lifestyle Is Inversely Associated with Leukocyte Mitochondrial DNA Copy Number in US White Adults. J Nutr 2020; 150:2156-2163. [PMID: 32492151 PMCID: PMC7398789 DOI: 10.1093/jn/nxaa146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/18/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Poor lifestyles have been linked to insulin insensitivity/hyperinsulinemia, which may contribute to downstream changes such as inflammation and oxidative damage and the development of chronic diseases. As a biomarker of intracellular oxidative stress, leukocyte mitochondrial DNA copy number (mtDNA-CN) has been related to lifestyle factors including diet and weight. No epidemiologic study has examined the relation between combined insulinemic potential of lifestyle and mtDNA-CN. OBJECTIVES Our aim was to examine the association between Empirical Lifestyle Index for Hyperinsulinemia (ELIH) and leukocyte mtDNA-CN in US men and women. METHODS This cross-sectional analysis included 2835 white adults without cancers, diabetes, or cardiovascular disease at blood collection, including 2160 women from the Nurses' Health Study and 675 men from the Health Professionals Follow-Up Study. ELIH is an index based on plasma C-peptide that characterizes the insulinemic potential of lifestyle (diet, body weight, and physical activity). Relative mtDNA-CN in peripheral blood leukocytes was measured by qPCR-based assay. RESULTS We found a significant inverse association between ELIH and mtDNA-CN. In multivariable-adjusted linear models, absolute least squares means ± SDs of mtDNA-CN z score across ELIH quintiles in women were as follows: Q1: 0.14 ± 0.05; Q2: 0.04 ± 0.06; Q3: 0.008 ± 0.05; Q4: 0.01 ± 0.05; and Q5: -0.06 ± 0.05 (P-trend = 0.006). Means ± SDs in men were as follows: Q1: 0.25 ± 0.09; Q2: 0.23 ± 0.09; Q3: 0.07 ± 0.09; Q4: 0.02 ± 0.09; and Q5: -0.04 ± 0.09 (P-trend = 0.007). Means ± SDs in all participants were as follows: Q1: 0.16 ± 0.05; Q2: 0.07 ± 0.05; Q3: 0.01 ± 0.05; Q4: 0.01 ± 0.05; and Q5: -0.05 ± 0.05 (P-trend = 0.0004). CONCLUSIONS Hyperinsulinemic lifestyles (i.e., higher ELIH) were associated with lower leukocyte mtDNA-CN among subjects without major diseases, suggesting that the difference in lifestyle insulinemic potential may be related to excessive oxidative stress damage.
Collapse
Affiliation(s)
- Keming Yang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Michele R Forman
- Department of Nutrition Science, College of Health and Human Science, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Patrick O Monahan
- Department of Biostatistics, School of Medicine and Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fred K Tabung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH, USA,Address correspondence to FKT (e-mail: )
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA,Department of Global Health, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA,IU Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA,Address correspondence to HN (e-mail: )
| |
Collapse
|
12
|
Toh YL, Wong E, Chae JW, Yap NY, Yeo AHL, Shwe M, Chan A. Association of mitochondrial DNA content and displacement loop region sequence variations with cancer-related fatigue in breast cancer survivors receiving chemotherapy. Mitochondrion 2020; 54:65-71. [PMID: 32717446 DOI: 10.1016/j.mito.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Cancer-related fatigue (CRF) is characterized by a lack of energy, and mitochondrial dysfunction is postulated to contribute to its etiology. This prospective cohort study assesses the self-reported fatigue levels of early-stage breast cancer patients using the validated Multi-Dimensional Fatigue Symptom Inventory-Short Form (MFSI-SF) and blood samples drawn at three time points: before treatment, approximately 6 weeks, and 12 weeks after the initiation of chemotherapy. The aim of this study is to evaluate mitochondrial measures with CRF, over the course of chemotherapy using mitochondrial DNA (mtDNA content) and displacement loop (D-loop) region sequence variations at nucleotide positions 303, 489 and 514. The relative mtDNA copy number was determined via real-time quantitative polymerase chain reaction and compared between study time points and D-loop sequence variants. The association of mtDNA content with MFSI-SF total and sub-domain scores was analyzed in a sample of 155 patients (mean age ± SD: 51.7 ± 8.8 years). The median mtDNA content decreased over 12 weeks after the initiation of chemotherapy (p < 0.001). Baseline mtDNA content was lower for nucleotide position 303 in sequence variations than for the reference sequence (67.2 copies vs 79.1 copies, p = 0.03). Physical fatigue negatively correlated with mtDNA content in both unadjusted (β = -0.0075, p = 0.048) and adjusted models (β = -0.0062, p = 0.042), accounting for age, anxiety, insomnia, haemoglobin levels and body mass index. Our findings add to the literature indicating that mitochondrial function serves as an important target for mitigating CRF.
Collapse
Affiliation(s)
- Yi Long Toh
- Department of Pharmacy, National University of Singapore, Singapore
| | - Elgenia Wong
- Department of Pharmacy, National University of Singapore, Singapore
| | - Jung-Woo Chae
- College of Pharmacy, Chungnam National University, South Korea
| | - Ning Yi Yap
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Maung Shwe
- Department of Pharmacy, National University of Singapore, Singapore; Department of Pharmacy, National Cancer Centre, Singapore
| | - Alexandre Chan
- Department of Pharmacy, National University of Singapore, Singapore; Department of Pharmacy, National Cancer Centre, Singapore; Department of Clinical Pharmacy Practice, University of California Irvine, USA.
| |
Collapse
|
13
|
Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020; 53:214-223. [PMID: 32544465 DOI: 10.1016/j.mito.2020.06.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is a biomarker of mitochondrial function and levels of mtDNA-CN have been reproducibly associated with overall mortality and a number of age-related diseases, including cardiovascular disease, chronic kidney disease, and cancer. Recent advancements in techniques for estimating mtDNA-CN, in particular the use of DNA microarrays and next-generation sequencing data, have led to the comprehensive assessment of mtDNA-CN across these and other diseases and traits. The importance of mtDNA-CN measures to disease and these advancing technologies suggest the potential for mtDNA-CN to be a useful biomarker in the clinic. While the exact mechanism(s) underlying the association of mtDNA-CN with disease remain to be elucidated, we review the existing literature which supports roles for inflammatory dynamics, immune function and alterations to cell signaling as consequences of variation in mtDNA-CN. We propose that future studies should focus on characterizing longitudinal, cell-type and cross-tissue profiles of mtDNA-CN as well as improving methods for measuring mtDNA-CN which will expand the potential for its use as a clinical biomarker.
Collapse
Affiliation(s)
- Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jing Sun
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
14
|
Venter M, Malan L, Elson JL, van der Westhuizen FH. Implementing a new variant load model to investigate the role of mtDNA in oxidative stress and inflammation in a bi-ethnic cohort: the SABPA study. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:440-447. [PMID: 30657012 DOI: 10.1080/24701394.2018.1544248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial DNA (mtDNA) variation has been implicated in several common complex and degenerative diseases, including cardiovascular disease. Inflammation is seen as part of many of these conditions. Mitochondria feature in inflammatory pathways and it has been suggested that mtDNA variation or released mtDNA might be important in this phenomenon. To determine if mtDNA is involved in the mechanisms leading up to cardiovascular disease, we investigated the role of these variants in seven indicators of oxidative stress and inflammation. This study was done in participants of the Sympathetic Activity and Ambulatory Blood Pressure in Africans (SABPA) cohort, a South African bi-ethnic cohort (N = 363). We applied a variant load hypothesis, which is an alternative approach to, and moves away from the classic haplogroup association approaches, to evaluate the cumulative effect of non-synonymous mtDNA variants on measurements of serum peroxides, nitric oxide metabolites, 8-hydroxy-deoxyguanosine, thiobarbituric acid reactive substances, whole blood reduced glutathione, C-reactive protein, and tumor necrosis factor alpha. We found no significant relationships between non-synonymous mtDNA variants and the seven biochemical parameters investigated here. Non-synonymous mtDNA variants are unlikely to impact on disease in this cohort, to an appreciable or measurable extent.
Collapse
Affiliation(s)
- Marianne Venter
- a Human Metabolomics, North-West University , Potchefstroom , South Africa
| | - Leone Malan
- b Hypertension in Africa Research Team (HART), Centre of Excellence , North-West University , Potchefstroom , South Africa
| | - Joanna L Elson
- a Human Metabolomics, North-West University , Potchefstroom , South Africa.,c Institute of Genetic Medicine, Newcastle University , Newcastle-upon-Tyne , United Kingdom
| | | |
Collapse
|
15
|
Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, Duan H, Zhou K, Hua Y, Wu G, Li Y. Association between mitochondrial DNA copy number and cardiovascular disease: Current evidence based on a systematic review and meta-analysis. PLoS One 2018; 13:e0206003. [PMID: 30403687 PMCID: PMC6221293 DOI: 10.1371/journal.pone.0206003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022] Open
Abstract
Background Mitochondria are energy-producing structure of the cell and help to maintain redox environment. In cardiovascular disease, the number of mitochondrial DNA (mtDNA) will changes accordingly compare to normal condition. Some investigators ask whether it has a clear association between mtDNA and cardiovascular disease with its adverse events. Thus, we conduct the meta-analysis to assess the role of circulating mtDNA in evaluating cardiovascular disease. Methods The meta-analysis was conducted in accordance with a predetermined protocol following the recommendations of Cochrane Handbook of Systematic Reviews. We searched the Pubmed, Embase, the Cochrane Central Register of Controlled Trials and World Health Organization clinical trials registry center to identify relevant studies up to the end of October 2017. Data were analyzed using STATA. Besides, publication bias and meta-regression analysis were also conducted. Results We collected results from 5 articles for further analyses with 8,252 cases and 20,904 control. The normalized mtDNA copy number level is lower in cardiovascular disease (CVD) than the control groups with a pooled standard mean difference (SMD) of -0.36(95%CI,-0.65 to -0.08); The pooled odds ratio (OR) for CVD proportion associated with a 1-SD (standard deviation) decrease in mtDNA copy number level is 1.23 (95% CI,1.06–1.42); The OR for CVD patients with mtDNA copy number lower than median level is 1.88(95% CI,1.65–2.13); The OR for CVD patients with mtDNA copy number located in the lowest quartile part is 2.15(95% CI, 1.46–3.18); the OR between mtDNA copy number and the risk of sudden cardiac death (SCD) is 1.83(95% CI, 1.22–2.74). Conclusion Although inter-study variability, the overall performance test of mtDNA for evaluating CVD and SCD revealed that the mtDNA copy number presented the potential to be a biomarker for CVD and SCD prediction. Given that, the fewer copies of mtDNA, the higher the risk of CVD.
Collapse
Affiliation(s)
- Peng Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Jing
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Fan Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Duan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|