1
|
Ko TS, Greenwood JC, Morgan RW, Abella BS, Shofer FS, Mason M, Weintraub D, Bungatavula D, Lewis A, Ranieri NR, Yodh AG, Baker WB, Forti RM, Kao SH, Shin SS, Kilbaugh TJ, Jang DH. Attenuation of mitochondrial dysfunction in a ventricular fibrillation swine model of cardiac arrest treated with carbon monoxide. Resuscitation 2025:110647. [PMID: 40383501 DOI: 10.1016/j.resuscitation.2025.110647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality. Despite aggressive supportive care and use of targeted temperature management, half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. Development of neuroprotective therapeutics is critical to improving outcomes. One promising readily available agent that has shown benefit is carbon monoxide (CO). METHODS We utilize a swine model of ventricular fibrillation (VF) arrest to assess the therapeutic effect of CO on cellular measures. All animals underwent VF arrest followed by cardiopulmonary resuscitation until achievement of return of spontaneous circulation (ROSC) or the 20 min mark. One hour following ROSC, animals were randomized to the Cardiac Arrest group (VF alone) versus the CO group (VF treated with CO). Animals in the CO group were administered low dose CO of 200 ppm for two hours. At three hours post-ROSC period, all animals were euthanized for tissue and blood collection for mitochondrial respiration (cortical and hippocampal tissue) and the downstream biomolecular analysis. RESULTS The primary findings were an overall improvement in mitochondrial respiration and ATP concentrations in the brain from animals in the Carbon Monoxide group. In addition, we also report the use of cell-free DNA as a biomarker to localize the site of tissue injury and our non-invasive optical measuring device to assess cerebral metabolism. CONCLUSIONS CO may be a potential therapeutic to attenuate cellular injury in post-arrest.
Collapse
Affiliation(s)
- Tiffany S Ko
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - John C Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan W Morgan
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Benjamin S Abella
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Frances S Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - McKenna Mason
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Devora Weintraub
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | | | - Alistair Lewis
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Department of Chemistry, University of Pennsylvania
| | - Nicolina R Ranieri
- School of Biomedical Engineering, Science and Health Systems at Drexel University, Philadelphia, PA, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Wesley B Baker
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rodrigo M Forti
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Shih-Han Kao
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Samuel S Shin
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Todd J Kilbaugh
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
2
|
Bungatavula D, Greenwood JC, Shofer FS, Buehler G, Kao SH, Kelly M, Shin SS, Ehinger JK, Kilbaugh TJ, Jang DH. Blood Cells as a Cellular Biomarker for Mitochondrial Function in a Experimental Model of Acute Carbon Monoxide Poisoning with Treatment. J Med Toxicol 2025:10.1007/s13181-025-01077-6. [PMID: 40295447 DOI: 10.1007/s13181-025-01077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
INTRODUCTION Carbon monoxide (CO) is a leading cause of environmental poisoning in the United States with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and mitochondrial dysfunction. Currently both biomarkers and therapies for CO poisoning are limited and require new approaches. METHODS Rats (~ 300 g) were divided into four groups of ten rodents per group (exposure): Control (room air), CO-400 (400 ppm), CO-1000 (1000 ppm) and CO-2000 (2000 ppm). Rodents received the assigned exposure through a secured tracheotomy tube over 120 min followed by 30 min of re-oxygenation at room air for a total of 150 min. Five additional rodents in each group were administered a succinate prodrug (NV354) at the start of exposure for the duration of the experiment until the reoxygenation period as separate experiments. Cortical brain tissue and whole blood were obtained for mitochondrial respiration. Stored plasma and snap frozen tissue stored at -80oC were used to obtain protein quantification with Western Blotting. RESULTS All animals in the Sham, CO-400, and CO-1000 groups survived until the end of the exposure period; no animals in the CO-2000 groups survived the exposure and were counted as attrition. We observed a dose-dependent decrease in key respiratory states in both isolated brain mitochondria and peripheral blood mononuclear cells (PBMCs), and, PBMCs respiration more positively correlated with isolated brain mitochondria when compared to carboxyhemoglobin (COHb). There was no significant difference in mitochondrial respiratory states in animals treated with NV354 compared to the untreated group. CONCLUSIONS The primary findings from this study include: (1) A dose-dependent decrease with key respiration states with higher concentrations of CO; (2) PBMCs had a higher correlation to isolated brain mitochondria respiration when compared to COHb; and (3) there was no treatment effect with the use of NV354.
Collapse
Affiliation(s)
| | - John C Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frances S Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guthrie Buehler
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shih-Han Kao
- Resuscitation Science Center (RSC), The Children's Hospital of Philadelphia, Lab 814F 3615 Civic Center Blvd, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Kelly
- Department of Emergency Medicine, University of Alabama-Birmingham, Birmingham, USA
| | - Samuel S Shin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Todd J Kilbaugh
- Resuscitation Science Center (RSC), The Children's Hospital of Philadelphia, Lab 814F 3615 Civic Center Blvd, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Resuscitation Science Center (RSC), The Children's Hospital of Philadelphia, Lab 814F 3615 Civic Center Blvd, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Hossain T, Secor JT, Eckmann DM. Hyperbaric oxygen rapidly produces intracellular bioenergetics dysfunction in human pulmonary cells. Chem Biol Interact 2024; 404:111266. [PMID: 39426659 DOI: 10.1016/j.cbi.2024.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Hyperoxic exposure lasting days alters mitochondrial bioenergetic and dynamic functions in pulmonary cells as indices of oxygen toxicity. The aim of this study was to examine effects of short duration hyperbaric and hyperoxic exposures to induce oxygen toxicity similarly. Cultured human lung microvascular endothelial cells, human pulmonary artery endothelial cells and A549 cells were exposed to hyperoxia (∼5 % CO2 equivalent, balance O2) under hyperbaric conditions (4.8 ATA) for 1 and 4 h. Measures of mitochondrial dynamics, inner membrane potential, mitochondrial respiration, the intracellular distribution of bioenergetic capacity and respiration complex protein levels were then quantified. Exposures resulted in altered mitochondrial motility, presence of inhomogeneities in respiration parameters, loss of inner membrane potential, and changes in intracellular partitioning of ATP-linked respiration. Changes in the levels of respiration complex protein levels were also found. The combination of hyperoxic exposure with hyperbaric conditions rapidly produced changes in mitochondrial dynamics and bioenergetics in pulmonary cells. These changes are consistent with the onset of pulmonary oxygen toxicity previously known to result from long duration exposure to hyperoxia alone. These findings suggest health caution is warranted in environmental settings in which both hyperoxic and hyperbaric conditions are present. The synergism of hyperoxia and hyperbaria for rapid induction of oxygen toxicity in cellular models has utility for the study of mechanistic determinants of oxygen toxicity, testing of putative therapeutics, and associated investigations of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Anesthesiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Jackson T Secor
- Department of Anesthesiology, The Ohio State University, Columbus, OH, 43210, USA
| | - David M Eckmann
- Department of Anesthesiology, The Ohio State University, Columbus, OH, 43210, USA; Center for Medical and Engineering Innovation, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Yang Y, Zhang W, Liu Y, Liu X, Xie J, Xu R, Huang Y, Hao J, Sun Y, Gu X, Ma Z. Mitochondrial Dysfunction of Peripheral Platelets as a Predictive Biomarker for Postoperative Delirium in Elderly Patients. Ann Neurol 2024; 96:74-86. [PMID: 38501714 DOI: 10.1002/ana.26918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To determine the association between the preoperative Bioenergetic Health Index (BHI) of platelets and the occurrence of postoperative delirium (POD) in elderly patients. METHODS Elderly patients scheduled for major abdominal surgery under general anesthesia were included. The presence of POD was assessed within the 3 days after surgery. Seahorse XF analysis and transmission electron microscopy were utilized to evaluate the mitochondrial metabolism and morphology of platelets. RESULTS A total of 20 out of 162 participants developed POD. Participants with POD showed lower preoperative Mini-Mental State Examination scores and total protein levels, fewer educational years, longer surgery duration, higher mean platelet volume, and lower platelet BHI compared with those without POD. Damaged mitochondria with swollen appearance and distorted cristae was detected in platelets from participants with POD. Preoperative platelet BHI was independently associated with the occurrence of POD after adjusting for age, education, preoperative Mini-Mental State Examination score, preoperative mean platelet volume and total protein levels, surgical type and duration, and lymphocyte counts on the first postoperative day (OR 0.11, 95% CI 0.03-0.37, p < 0.001). The areas under the receiver operating curves for predicting POD were 0.83 (95% CI 0.76-0.88) for platelet BHI. It showed a sensitivity of 85.00% and specificity of 73.24%, with an optimal cutoff value of 1.61. Using a serial combination (mean platelet volume followed by BHI) yielded a sensitivity of 80.00% and specificity of 82.39%. INTERPRETATION Preoperative platelet BHI was independently associated with the occurrence of POD in elderly patients and has the potential as a screening biomarker for POD risk. ANN NEUROL 2024;96:74-86.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jun Xie
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Xu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Hao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yu'e Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Mavroudis CD, Lewis A, Greenwood JC, Kelly M, Ko TS, Forti RM, Shin SS, Shofer FS, Ehinger JK, Baker WB, Kilbaugh TJ, Jang DH. Investigation of Cerebral Mitochondrial Injury in a Porcine Survivor Model of Carbon Monoxide Poisoning. J Med Toxicol 2024; 20:39-48. [PMID: 37847352 PMCID: PMC10774472 DOI: 10.1007/s13181-023-00971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). One of the glaring gaps is the lack of rigorous experimental models that may recapitulate survivors of acute CO poisoning in the early phase. The primary objective of this preliminary study is to use our advanced swine platform of acute CO poisoning to develop a clinically relevant survivor model to perform behavioral assessment and MRI imaging that will allow future development of biomarkers and therapeutics. METHODS Four swine (10 kg) were divided into two groups: control (n = 2) and CO (n = 2). The CO group received CO at 2000 ppm for over 120 min followed by 30 min of re-oxygenation at room air for one swine and 150 min followed by 30 min of re-oxygenation for another swine. The two swine in the sham group received room air for 150 min. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. Following exposures, all surviving animals were observed for a 24-h period with neurobehavioral assessment and imaging. At the end of the 24-h period, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. RESULTS While a preliminary ongoing study, animals in the CO group showed alterations in cerebral metabolism and cellular function in the acute exposure phase with possible sustained mitochondrial changes 24 h after the CO exposure ended. CONCLUSIONS This preliminary research further establishes a large animal swine model investigating survivors of CO poisoning to measure translational metrics relevant to clinical medicine that includes a basic neurobehavioral assessment and post exposure cellular measures.
Collapse
Affiliation(s)
- Constantine D Mavroudis
- Divisions of Cardiothoracic Surgery, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, 19104, USA
| | - Alistair Lewis
- Divisions of Cardiothoracic Surgery, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Anesthesia and Critical Care Medicine Mitochondrial Unit (ACMU), The Children's Hospital of Philadelphia (CHOP), Lab 6200, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - John C Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew Kelly
- Divisions of Cardiothoracic Surgery, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Anesthesia and Critical Care Medicine Mitochondrial Unit (ACMU), The Children's Hospital of Philadelphia (CHOP), Lab 6200, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Emergency Medicine, University of Alabama, Birmingham, AL, USA
| | - Tiffany S Ko
- Anesthesia and Critical Care Medicine Mitochondrial Unit (ACMU), The Children's Hospital of Philadelphia (CHOP), Lab 6200, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Rodrigo M Forti
- Anesthesia and Critical Care Medicine Mitochondrial Unit (ACMU), The Children's Hospital of Philadelphia (CHOP), Lab 6200, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Samuel S Shin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Frances S Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Johannes K Ehinger
- Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Wesley B Baker
- Anesthesia and Critical Care Medicine Mitochondrial Unit (ACMU), The Children's Hospital of Philadelphia (CHOP), Lab 6200, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Todd J Kilbaugh
- Anesthesia and Critical Care Medicine Mitochondrial Unit (ACMU), The Children's Hospital of Philadelphia (CHOP), Lab 6200, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - David H Jang
- Anesthesia and Critical Care Medicine Mitochondrial Unit (ACMU), The Children's Hospital of Philadelphia (CHOP), Lab 6200, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Hossain T, Eckmann DM. Hyperoxic exposure alters intracellular bioenergetics distribution in human pulmonary cells. Life Sci 2023:121880. [PMID: 37356749 DOI: 10.1016/j.lfs.2023.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
AIMS Pulmonary oxygen toxicity is caused by exposure to a high fraction of inspired oxygen, which damages multiple cell types within the lung. The cellular basis for pulmonary oxygen toxicity includes mitochondrial dysfunction. The aim of this study was to identify the effects of hyperoxic exposure on mitochondrial bioenergetic and dynamic functions in pulmonary cells. MAIN METHODS Mitochondrial respiration, inner membrane potential, dynamics (including motility), and distribution of mitochondrial bioenergetic capacity in two intracellular regions were quantified using cultured human lung microvascular endothelial cells, human pulmonary artery endothelial cells and A549 cells. Hyperoxic (95 % O2) exposures lasted 24, 48 and 72 h, durations relevant to mechanical ventilation in intensive care settings. KEY FINDINGS Mitochondrial motility was altered following all hyperoxic exposures utilized in experiments. Inhomogeneities in inner membrane potential and respiration parameters were present in each cell type following hyperoxia. The partitioning of ATP-linked respiration was also hyperoxia-duration and cell type dependent. Hyperoxic exposure lasting 48 h or longer provoked the largest alterations in mitochondrial motility and the greatest decreases in ATP-linked respiration, with a suggestion of decreases in respiration complex protein levels. SIGNIFICANCE Hyperoxic exposures of different durations produce intracellular inhomogeneities in mitochondrial dynamics and bioenergetics in pulmonary cells. Oxygen therapy is utilized commonly in clinical care and can induce undesirable decrements in bioenergy function needed to maintain pulmonary cell function and viability. There may be adjunctive or prophylactic measures that can be employed during hyperoxic exposures to prevent the mitochondrial dysfunction that signals the presence of oxygen toxcity.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Anesthesiology, The Ohio State University, Columbus, OH 43210, United States of America
| | - David M Eckmann
- Department of Anesthesiology, The Ohio State University, Columbus, OH 43210, United States of America; Center for Medical and Engineering Innovation, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
7
|
Green A, Hossain T, Eckmann DM. Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Front Cell Dev Biol 2022; 10:1010232. [PMID: 36340034 PMCID: PMC9626967 DOI: 10.3389/fcell.2022.1010232] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are cell organelles that play pivotal roles in maintaining cell survival, cellular metabolic homeostasis, and cell death. Mitochondria are highly dynamic entities which undergo fusion and fission, and have been shown to be very motile in vivo in neurons and in vitro in multiple cell lines. Fusion and fission are essential for maintaining mitochondrial homeostasis through control of morphology, content exchange, inheritance of mitochondria, maintenance of mitochondrial DNA, and removal of damaged mitochondria by autophagy. Mitochondrial motility occurs through mechanical and molecular mechanisms which translocate mitochondria to sites of high energy demand. Motility also plays an important role in intracellular signaling. Here, we review key features that mediate mitochondrial dynamics and explore methods to advance the study of mitochondrial motility as well as mitochondrial dynamics-related diseases and mitochondrial-targeted therapeutics.
Collapse
Affiliation(s)
- Adam Green
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
| | - Tanvir Hossain
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
| | - David M. Eckmann
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
- Center for Medical and Engineering Innovation, The Ohio State University, Columbus, OH, United States
- *Correspondence: David M. Eckmann,
| |
Collapse
|
8
|
Greenwood JC, Talebi FM, Jang DH, Spelde AE, Kilbaugh TJ, Shofer FS, Acker MA, Augoustides JGT, Bakker J, Meyer NJ, Brenner JS, Muzykantov VR, Abella BS. Protocol for the MicroRESUS study: The impact of circulatory shock and resuscitation on microcirculatory function and mitochondrial respiration after cardiovascular surgery. PLoS One 2022; 17:e0273349. [PMID: 36018848 PMCID: PMC9417024 DOI: 10.1371/journal.pone.0273349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
Background Despite current resuscitation strategies, circulatory shock and organ injury after cardiac surgery occur in 25–40% of patients. Goal-directed resuscitation after cardiac surgery has generated significant interest, but clinical practice to normalize hemodynamic variables including mean arterial pressure, cardiac filling pressures, and cardiac output may not reverse microcirculation abnormalities and do not address cellular dysoxia. Recent advances in technology have made it possible to measure critical components of oxygen delivery and oxygen utilization systems in live human tissues and blood cells. The MicroRESUS study will be the first study to measure microcirculatory and mitochondrial function in patients with circulatory shock and link these findings with clinical outcomes. Methods and analysis This will be a prospective, observational study that includes patients undergoing elective cardiovascular surgery with cardiopulmonary bypass (CPB). Microcirculation will be quantified with sublingual incident dark field videomicroscopy. Mitochondrial respiration will be measured by performing a substrate–uncoupler–inhibitor titration protocol with high resolution respirometry on peripheral blood mononuclear cells at baseline and serial timepoints during resuscitation and at recovery as a possible liquid biomarker. Plasma samples will be preserved for future analysis to examine endothelial injury and other mechanisms of microcirculatory dysfunction. Thirty-day ventilator and vasopressor-free days (VVFDs) will be measured as a primary outcome, along with sequential organ failure assessment scores, and other clinical parameters to determine if changes in microcirculation and mitochondrial respiration are more strongly associated with clinical outcomes compared to traditional resuscitation targets. Discussion This will be the first prospective study to examine both microcirculatory and mitochondrial function in human patients with circulatory shock undergoing cardiac bypass and address a key mechanistic knowledge gap in the cardiovascular literature. The results of this study will direct future research efforts and therapeutic development for patients with shock.
Collapse
Affiliation(s)
- John C. Greenwood
- Division of Critical Care Medicine, Department of Emergency Medicine, Department of Anesthesiology and Critical Care, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| | - Fatima M. Talebi
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - David H. Jang
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Audrey E. Spelde
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Frances S. Shofer
- Department of Epidemiology & Biostatistics, Department of Emergency Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael A. Acker
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - John G. T. Augoustides
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jan Bakker
- Division of Pulmonary, Allergy, and Critical Care Medicine, New York University, New York, NY, United States of America
| | - Nuala J. Meyer
- Division of Pulmonary and Critical Care, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Jacob S. Brenner
- Division of Pulmonary and Critical Care, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Vladimir R. Muzykantov
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Benjamin S. Abella
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
9
|
Preau S, Vodovar D, Jung B, Lancel S, Zafrani L, Flatres A, Oualha M, Voiriot G, Jouan Y, Joffre J, Huel F, De Prost N, Silva S, Azabou E, Radermacher P. Energetic dysfunction in sepsis: a narrative review. Ann Intensive Care 2021; 11:104. [PMID: 34216304 PMCID: PMC8254847 DOI: 10.1186/s13613-021-00893-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Growing evidence associates organ dysfunction(s) with impaired metabolism in sepsis. Recent research has increased our understanding of the role of substrate utilization and mitochondrial dysfunction in the pathophysiology of sepsis-related organ dysfunction. The purpose of this review is to present this evidence as a coherent whole and to highlight future research directions. Main text Sepsis is characterized by systemic and organ-specific changes in metabolism. Alterations of oxygen consumption, increased levels of circulating substrates, impaired glucose and lipid oxidation, and mitochondrial dysfunction are all associated with organ dysfunction and poor outcomes in both animal models and patients. The pathophysiological relevance of bioenergetics and metabolism in the specific examples of sepsis-related immunodeficiency, cerebral dysfunction, cardiomyopathy, acute kidney injury and diaphragmatic failure is also described. Conclusions Recent understandings in substrate utilization and mitochondrial dysfunction may pave the way for new diagnostic and therapeutic approaches. These findings could help physicians to identify distinct subgroups of sepsis and to develop personalized treatment strategies. Implications for their use as bioenergetic targets to identify metabolism- and mitochondria-targeted treatments need to be evaluated in future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00893-7.
Collapse
Affiliation(s)
- Sebastien Preau
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France.
| | - Dominique Vodovar
- Centre AntiPoison de Paris, Hôpital Fernand Widal, APHP, 75010, Paris, France.,Faculté de pharmacie, UMRS 1144, 75006, Paris, France.,Université de Paris, UFR de Médecine, 75010, Paris, France
| | - Boris Jung
- Medical Intensive Care Unit, Lapeyronie Teaching Hospital, Montpellier University Hospital and PhyMedExp, University of Montpellier, Montpellier, France
| | - Steve Lancel
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France
| | - Lara Zafrani
- Médecine Intensive Réanimation, Hôpital Saint-Louis, AP-HP, Université de Paris, Paris, France.,INSERM UMR 976, Hôpital Saint Louis, Université de Paris, Paris, France
| | | | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre - Paris University, Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France.,Faculté de Médecine de Tours, INSERM U1100 Centre d'Etudes des Pathologies Respiratoires, Tours, France
| | - Jeremie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, 94143, USA
| | - Fabrice Huel
- Réanimation médico-chirurgicale, Université de Paris, Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Paris, France
| | - Nicolas De Prost
- Service de Réanimation Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Cedex 94010, Créteil, France
| | - Stein Silva
- Réanimation URM CHU Purpan, Cedex 31300, Toulouse, France.,Toulouse NeuroImaging Center INSERM1214, Cedex 31300, Toulouse, France
| | - Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, AP-HP, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles (UVSQ), Paris-Saclay University, Paris, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
10
|
Hyperbaric oxygen alters intracellular bioenergetics distribution in human dermal fibroblasts. Life Sci 2021; 278:119616. [PMID: 34015286 DOI: 10.1016/j.lfs.2021.119616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023]
Abstract
AIMS Hyperbaric oxygen therapy (HBOT), used to promote wound healing, has limited efficacy in many clinical conditions. Wound healing exerts bioenergetic demands on cells that can exceed their intrinsic bioenergetic capacity to proliferate and migrate. The aim of this investigation was to quantify the effects of HBOT on mitochondrial dynamics and bioenergetics functions in cells relevant to wound healing. MAIN METHODS High-resolution respirometry and fluorescence microscopy were used to quantify mitochondrial respiration, intermembrane potential, dynamics, including motility, and the intracellular distribution of mitochondrial bioenergetic capacity partitioned into perinuclear and cell peripheral regions in cultured human dermal fibroblasts. Cells were subjected to a range of gas mixtures and hyperbaric pressures, including conditions utilized in clinical care. KEY FINDINGS Motility was reduced immediately following all HBOT exposures utilized in experiments. Inhomogeneities in intermembrane potential and respiration parameters were produced by different HBOT conditions. The partitioning of ATP-linked respiration was also HBOT-condition dependent. Application of HBOT at common clinical pressure and oxygen conditions resulted in the largest immediate decrement in mitochondrial motility and reductions in ATP-linked respiration in both the cell periphery and perinuclear zones. Aberrations in motility and respiration were also present 6 h after exposure. SIGNIFICANCE HBOT produces intracellular distinctions and inhomogeneities in mitochondrial dynamics and bioenergetics. HBOT as is commonly applied in clinical medicine induced undesirable and persistent alterations in bioenergy function needed to support cell migration and/or proliferation. There may be alternative HBOT parameters that more effectively engender maintenance and adequacy of intracellular bioenergy supply to promote wound healing.
Collapse
|
11
|
Huang W, Wang X, Zhang H, Wang G, Liu D. Prognostic Significance of the Fission1/Parkin Ratio for Sepsis: A Prospective Cohort Study. Front Med (Lausanne) 2021; 8:642749. [PMID: 34055831 PMCID: PMC8155307 DOI: 10.3389/fmed.2021.642749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction: Fission1 (Fis1) and parkin are key proteins related to mitochondrial fission and mitophagy, respectively. This study aimed to assess the prognostic value of the Fis1/parkin ratio as a biomarker in patients with sepsis. Methods: Consecutive patients with sepsis (n = 133) or simple infection (n = 24) were enrolled within 24 h of arrival at the intensive care unit (ICU). Serum levels of Fis1, parkin, mitofusin2 (Mfn2), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) were measured by enzyme-linked immunosorbent assay (ELISA) upon ICU admission. Clinical parameters and standard laboratory test data were also collected. All patients received follow-up for at least 28 days. Results: Patients with sepsis presented with significantly decreased serum levels of parkin, Mfn2, and PGC-1α, but an increased serum Fis1 level and Fis1/parkin, Fis1/Mfn2, and Fis1/PGC-1α ratios at ICU admission. Relative to patients with simple infections, the ratios were remarkably elevated in septic patients—particularly septic shock patients. The area under the receiver operating characteristic (ROC) curve of the Fis1/parkin ratio was greater than that of Fis1, parkin, Mfn2, and PGC-1α levels as well as that of the Fis1/Mfn2 and Fis1/PGC-1α ratios for prediction of 28-day mortality due to sepsis. All of the ratios were significantly higher in non-survivors than survivors at the 28-day follow-up examination. Fis1/parkin ratio was found to be an independent predictor of 28-day mortality in patients with sepsis. Conclusions: The Fis1/parkin ratio is valuable for risk stratification in patients with sepsis and is associated with poor clinical outcomes for sepsis in the ICU.
Collapse
Affiliation(s)
- Wei Huang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Guangjian Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Sepsis is associated with mitochondrial DNA damage and a reduced mitochondrial mass in the kidney of patients with sepsis-AKI. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:36. [PMID: 33494815 PMCID: PMC7831178 DOI: 10.1186/s13054-020-03424-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Background Sepsis is a life-threatening condition accompanied by organ dysfunction subsequent to a dysregulated host response to infection. Up to 60% of patients with sepsis develop acute kidney injury (AKI), which is associated with a poor clinical outcome. The pathophysiology of sepsis-associated AKI (sepsis-AKI) remains incompletely understood, but mitochondria have emerged as key players in the pathogenesis. Therefore, our aim was to identify mitochondrial damage in patients with sepsis-AKI. Methods We conducted a clinical laboratory study using “warm” postmortem biopsies from sepsis-associated AKI patients from a university teaching hospital. Biopsies were taken from adult patients (n = 14) who died of sepsis with AKI at the intensive care unit (ICU) and control patients (n = 12) undergoing tumor nephrectomy. To define the mechanisms of the mitochondrial contribution to the pathogenesis of sepsis-AKI, we explored mRNA and DNA expression of mitochondrial quality mechanism pathways, DNA oxidation and mitochondrial DNA (mtDNA) integrity in renal biopsies from sepsis-AKI patients and control subjects. Next, we induced human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS) for 48 h to mimic sepsis and validate our results in vitro. Results Compared to control subjects, sepsis-AKI patients had upregulated mRNA expression of oxidative damage markers, excess mitochondrial DNA damage and lower mitochondrial mass. Sepsis-AKI patients had lower mRNA expression of mitochondrial quality markers TFAM, PINK1 and PARKIN, but not of MFN2 and DRP1. Oxidative DNA damage was present in the cytosol of tubular epithelial cells in the kidney of sepsis-AKI patients, whereas it was almost absent in biopsies from control subjects. Oxidative DNA damage co-localized with both the nuclei and mitochondria. Accordingly, HUVECs induced with LPS for 48 h showed an increased mnSOD expression, a decreased TFAM expression and higher mtDNA damage levels. Conclusion Sepsis-AKI induces mitochondrial DNA damage in the human kidney, without upregulation of mitochondrial quality control mechanisms, which likely resulted in a reduction in mitochondrial mass.![]()
Collapse
|
13
|
Owiredu S, Ranganathan A, Greenwood JC, Piel S, Janowska JI, Eckmann DM, Kelly M, Ehinger JK, Kilbaugh TJ, Jang DH. In vitro comparison of hydroxocobalamin (B12a) and the mitochondrial directed therapy by a succinate prodrug in a cellular model of cyanide poisoning. Toxicol Rep 2020; 7:1263-1271. [PMID: 33005568 PMCID: PMC7511654 DOI: 10.1016/j.toxrep.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to compare the use of hydroxocobalamin (B12a) and a succinate prodrug to evaluate for improvement in mitochondrial function in an in vitro model of cyanide poisoning. Peripheral blood mononuclear cells (PBMC) and human aortic smooth muscle cells (HASMC) incubated with 50 mM of sodium cyanide (CN) for five minutes serving as the CN group compared to controls. We investigated the following: (1) Mitochondrial respiration; (2) Superoxide and mitochondrial membrane potential with microscopy; (3) Citrate synthase protein expression. All experiments were performed with a cell concentration of 2-3 × 106 cells/ml for both PBMC and HASMC. There were four conditions: (1) Control (no exposure); (2) Cyanide (exposure only); (3) B12a (cyanide exposure followed by B12a treatment); (4) NV118 (cyanide followed by NV118 treatment). In this study the key findings include: (1) Improvement in key mitochondrial respiratory states with the succinate prodrug (NV118) but not B12a; (2) Attenuation of superoxide production with treatment of NV118 but not with B12a treatment; (3) The changes in respiration were not secondary to increased mitochondrial content as measured by citrate synthase; (4) The use of easily accessible human blood cells showed similar mitochondrial response to both cyanide and treatment to HASMC. The use of a succinate prodrug to circumvent partial CIV inhibition by cyanide with clear reversal of cellular respiration and superoxide production that was not attributed to changes in mitochondrial content not seen by the use of B12a.
Collapse
Affiliation(s)
- Shawn Owiredu
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Abhay Ranganathan
- Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, 19104, United States
| | - John C. Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Sarah Piel
- Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, 19104, United States
| | - Joanna I. Janowska
- Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, 19104, United States
| | - David M. Eckmann
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Matthew Kelly
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Johannes K. Ehinger
- Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, 19104, United States
| | - Todd J. Kilbaugh
- Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, 19104, United States
| | - David H. Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
14
|
Owiredu S, Ranganathan A, Eckmann DM, Shofer FS, Hardy K, Lambert DS, Kelly M, Jang DH. Ex vivo use of cell-permeable succinate prodrug attenuates mitochondrial dysfunction in blood cells obtained from carbon monoxide-poisoned individuals. Am J Physiol Cell Physiol 2020; 319:C129-C135. [PMID: 32374677 DOI: 10.1152/ajpcell.00539.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to evaluate a new pharmacological strategy using a first-generation succinate prodrug, NV118, in peripheral blood mononuclear cells (PBMCs) obtained from subjects with carbon monoxide (CO) poisoning and healthy controls. We obtained human blood cells from subjects with CO poisoning and healthy control subjects. Intact PBMCs from subjects in the CO and Control group were analyzed with high-resolution respirometry measured in pmol O2 per second per 10-6 PBMCs. In addition to obtaining baseline respiration, NV118 (100 μM) was injected, and the same parameters of respiration were obtained for comparison in PBMCs. We measured mitochondrial dynamics with microscopy with the same conditions. We enrolled 37 patients (17 in the CO group and 20 in the Control group for comparison) in the study. PMBCs obtained from subjects in the CO group had overall significantly lower respiration compared with the Control group (P < 0.0001). There was a significant increase in respiration with NV118, specifically with an increase in maximum respiration and respiration from complex II and complex IV (P < 0.0001). The mitochondria in PBMCs demonstrated an overall increase in net movement compared with the Control group. Our results of this study suggest that the therapeutic compound, NV118, increases respiration at complex II and IV as well as restoration of mitochondrial movement in PBMCs obtained from subjects with CO poisoning. Mitochondrial-directed therapy offers a potential future strategy with further exploration in vivo.
Collapse
Affiliation(s)
- Shawn Owiredu
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abhay Ranganathan
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frances S Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin Hardy
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David S Lambert
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Kelly
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Ranganathan A, Owiredu S, Jang DH, Eckmann DM. Prophylaxis of mitochondrial dysfunction caused by cellular decompression from hyperbaric exposure. Mitochondrion 2020; 52:8-19. [PMID: 32045716 DOI: 10.1016/j.mito.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction occurring in response to cellular perturbations can include altered mitochondrial motility and bioenergetic function having intracellular heterogeneity. Exogenous mitochondrial directed therapy may correct these dysfunctions. Using in vitro approaches, we find that cell perturbations induced by rapid decompression from hyperbaric conditions with specific gas exposures has differential effects on mitochondrial motility, inner membrane potential, cellular respiration, reactive oxygen species production, impaired maintenance of cell shape and altered intracellular distribution of bioenergetic capacity in perinuclear and cell peripheral domains. Addition of a first-generation cell-permeable succinate prodrug to support mitochondrial function has positive overall effects in blunting the resultant bioenergy responses. Our results with this model of perturbed cell function induced by rapid decompression indicate that alterations in bioenergetic state are partitioned within the cell, as directly assessed by a combination of mitochondrial respiration and dynamics measurements. Reductions in the observed level of dysfunction produced can be achieved with application of the cell-permeable succinate prodrug.
Collapse
Affiliation(s)
- Abhay Ranganathan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Shawn Owiredu
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
16
|
Wu Y, Yao YM, Lu ZQ. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J Mol Med (Berl) 2019; 97:451-462. [PMID: 30788535 DOI: 10.1007/s00109-019-01756-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/24/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023]
Abstract
Sepsis is a dysregulated response to severe infection characterized by life-threatening organ failure and is the leading cause of mortality worldwide. Multiple organ failure is the central characteristic of sepsis and is associated with poor outcome of septic patients. Ultrastructural damage to the mitochondria and mitochondrial dysfunction are reported in sepsis. Mitochondrial dysfunction with subsequent ATP deficiency, excessive reactive oxygen species (ROS) release, and cytochrome c release are all considered to contribute to organ failure. Consistent mitochondrial dysfunction leads to reduced mitochondrial quality control capacity, which eliminates dysfunctional and superfluous mitochondria to maintain mitochondrial homeostasis. Mitochondrial quality is controlled through a series of processes including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and transport processes. Several studies have indicated that multiple organ failure is ameliorated by restoring mitochondrial quality control mechanisms and is further amplified by defective quality control mechanisms. This review will focus on advances concerning potential mechanisms in regulating mitochondrial quality control and impacts of mitochondrial quality control on the progression of sepsis.
Collapse
Affiliation(s)
- You Wu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Wenzhou Municipal Key Laboratory of Emergency, Critical Care and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yong-Ming Yao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China.
| | - Zhong-Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,Wenzhou Municipal Key Laboratory of Emergency, Critical Care and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,College of Nursing, Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
17
|
Jang DH, Owiredu S, Ranganathan A, Eckmann DM. Acute decompression following simulated dive conditions alters mitochondrial respiration and motility. Am J Physiol Cell Physiol 2018; 315:C699-C705. [PMID: 30110561 DOI: 10.1152/ajpcell.00243.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While barotrauma, decompression sickness, and drowning-related injuries are common morbidities associated with diving and decompression from depth, it remains unclear what impact rapid decompression has on mitochondrial function. In vitro diving simulation was performed with human dermal fibroblast cells subjected to control, air, nitrogen, and oxygen dive conditions. With the exception of the gas mixture, all other related variables, including absolute pressure exposure, dive and decompression rates, and temperature, were held constant. High-resolution respirometry was used to examine key respiratory states. Mitochondrial dynamic function, including net movement, number, and rates of fusion/fission events, was obtained from fluorescence microscopy imaging. Effects of the dive conditions on cell cytoskeleton were assessed by imaging both actin and microtubules. Maximum respiration was lower in fibroblasts in the air group than in the control and nitrogen groups. The oxygen group had overall lower respiration when compared with all other groups. All groups demonstrated lower mitochondrial motility when compared with the control group. Rates of fusion and fission events were the same between all groups. There were visible differences in cell morphology consistent with the actin staining; however, there were no appreciable changes to the microtubules. This is the first study to directly assess mitochondrial respiration and dynamics in a cell model of decompression. Both hyperbaric oxygen and air dive conditions produce deleterious effects on overall mitochondrial health in fibroblasts.
Collapse
Affiliation(s)
- David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Shawn Owiredu
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Abhay Ranganathan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Translational Application of Measuring Mitochondrial Functions in Blood Cells Obtained from Patients with Acute Poisoning. J Med Toxicol 2018. [PMID: 29536431 DOI: 10.1007/s13181-018-0656-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is conservatively estimated that 5,000 deaths per year and 20,000 injuries in the USA are due to poisonings caused by chemical exposures (e.g., carbon monoxide, cyanide, hydrogen sulfide, phosphides) that are cellular inhibitors. These chemical agents result in mitochondrial inhibition resulting in cardiac arrest and/or shock. These cellular inhibitors have multi-organ effects, but cardiovascular collapse is the primary cause of death marked by hypotension, lactic acidosis, and cardiac arrest. The mitochondria play a central role in cellular metabolism where oxygen consumption through the electron transport system is tightly coupled to ATP production and regulated by metabolic demands. There has been increasing use of human blood cells such as peripheral blood mononuclear cells and platelets, as surrogate markers of mitochondrial function in organs due to acute care illnesses. We demonstrate the clinical applicability of measuring mitochondrial bioenergetic and dynamic function in blood cells obtained from patients with acute poisoning using carbon monoxide poisoning as an illustration of our technique. Our methods have potential application to guide therapy and gauge severity of disease in poisoning related to cellular inhibitors of public health concern.
Collapse
|