1
|
McNish H, Mathapathi MS, Figlak K, Damodaran A, Birch‐Machin MA. The Effect of Blue Light on Mitochondria in Human Dermal Fibroblasts and the Potential Aging Implications. FASEB J 2025; 39:e70675. [PMID: 40421626 PMCID: PMC12107506 DOI: 10.1096/fj.202500746r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/01/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025]
Abstract
The deleterious effects of blue light on the skin are becoming an increasing area of research focus, as we are exposed to increasing amounts of blue light in our daily lives. However, the effects of blue light on mitochondrial DNA (mtDNA) damage, mitochondrial function, and production of reactive oxygen species (ROS) have yet to be investigated. Our study involved exposing neonatal human dermal fibroblasts (HDFn) to varying doses of blue light and analyzing mtDNA damage using qPCR, mitochondrial function using a Seahorse XF bioanalyzer, and ROS production using a ROS-Glo assay. Blue light induces increased mtDNA damage dose dependently, with 50 J/cm2 of blue light being the minimum dose required to induce significant increased mtDNA strand breaks (p = 0.0001). Mitochondrial oxygen consumption rate (OCR) and reduced adenosine triphosphate (ATP) production also occur simultaneously. The increased mtDNA damage and subsequent dysfunction were complemented by dose dependent increased ROS production. Within these results, 50 J/cm2 was consistently the minimum dose required to induce significant increased ROS production (p = 0.0475), reduced mitochondrial OCR, and virtually absent ATP production (p = < 0.0001). These findings suggest that blue light may have similar effects on mitochondria that have already been reported in skin exposed to ultraviolet radiation (UVR).
Collapse
Affiliation(s)
- Helen McNish
- Dermatological Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle Upon TyneUK
| | | | | | | | - Mark A. Birch‐Machin
- Dermatological Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
2
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
3
|
Mitochondrial DNA as a Sensitive Biomarker of UV-Induced Cellular Damage in Human Skin. Methods Mol Biol 2021. [PMID: 34080161 DOI: 10.1007/978-1-0716-1270-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Mitochondrial DNA (mtDNA) has been demonstrated to be a reliable biomarker of UV-induced genetic damage in both animal and human skin. Properties of the mitochondrial genome which allow for its use as a biomarker of damage include its presence in multiple copies within a cell, its limited repair mechanisms, and its lack of protective histones. To measure UV-induced mtDNA damage (particularly in the form of strand breaks), real-time quantitative PCR (qPCR) is used, based on the observation that PCR amplification efficiency is decreased in the presence of high levels of damage. Here, we describe the measurement of UV-induced mtDNA damage which includes the extraction of cellular DNA, qPCR to determine the relative amount of mtDNA, qPCR to determine UV-induced damage within a long strand of mtDNA, and the verification of the amplification process using gel electrophoresis.
Collapse
|
4
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
5
|
Liu D, Dong Z, Wang J, Tao Y, Sun X, Yao X. The existence and function of mitochondrial component in extracellular vesicles. Mitochondrion 2020; 54:122-127. [PMID: 32861876 DOI: 10.1016/j.mito.2020.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Intercellular transfer of mitochondria and mitochondrial components through extracellular vesicles (EVs), including microvesicles and exosomes, is an area of intense interest. The cargos that are carried by EVs define their biological activities. Mitochondria are in charge of bioenergetics and maintenance of cell viability. Increasing evidences indicate the presence of intact mitochondria or mitochondrial components in EVs, which raises many questions, how they are engulfed into EVs and what do they do? Here, we present what is currently known about the presence and function of various mitochondrial constituent in EVs. We also review current understanding about how and why mitochondrial components are encapsulated into EVs.
Collapse
Affiliation(s)
- Dan Liu
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian 116011, China
| | - Zhanchen Dong
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China
| | - Jinling Wang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China
| | - Ye Tao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China
| | - Xiance Sun
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China.
| |
Collapse
|
6
|
Hudson L, Rashdan E, Bonn CA, Chavan B, Rawlings D, Birch‐Machin MA. Individual and combined effects of the infrared, visible, and ultraviolet light components of solar radiation on damage biomarkers in human skin cells. FASEB J 2020; 34:3874-3883. [PMID: 31944399 PMCID: PMC7079185 DOI: 10.1096/fj.201902351rr] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022]
Abstract
The ability of solar ultraviolet (UV) to induce skin cancer and photoaging is well recognized. The effect of the infrared (IR) and visible light (Vis) components of solar radiation on skin and their interaction with UV is less well known. This study compared the effects of physiologically relevant doses of complete (UV + Vis + IR) solar-simulated light and its individual components on matched primary dermal fibroblasts and epidermal keratinocytes from human donors on three biomarkers of cellular damage (reactive oxygen species (ROS) generation, mitochondrial DNA (mtDNA), and nuclear DNA (nDNA) damage). There was a greater induction of ROS, mtDNA, and nDNA damage with the inclusion of the visible and IR components of solar-simulated light in primary fibroblast cells compared to primary keratinocytes (P < .001). Experiments using exposure to specific components of solar light alone or in combination showed that the UV, Vis, and IR components of solar light synergistically increased ROS generation in primary fibroblasts but not primary keratinocytes (P < .001). Skin cell lines were used to confirm these findings. These observations have important implications for different skin cell type responses to the individual and interacting components of solar light and therefore photodamage mechanisms and photoprotection interventions.
Collapse
Affiliation(s)
- Laura Hudson
- Dermatological SciencesTranslational and Clinical Research InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4HHUK
| | - Eyman Rashdan
- Dermatological SciencesTranslational and Clinical Research InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4HHUK
| | - Catherine A. Bonn
- Dermatological SciencesTranslational and Clinical Research InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4HHUK
| | | | - David Rawlings
- Northern Medical Physics and Clinical EngineeringFreeman HospitalNewcastle upon TyneUK
| | - Mark A. Birch‐Machin
- Dermatological SciencesTranslational and Clinical Research InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4HHUK
| |
Collapse
|
7
|
Alhegaili AS, Ji Y, Sylvius N, Blades MJ, Karbaschi M, Tempest HG, Jones GDD, Cooke MS. Genome-Wide Adductomics Analysis Reveals Heterogeneity in the Induction and Loss of Cyclobutane Thymine Dimers across Both the Nuclear and Mitochondrial Genomes. Int J Mol Sci 2019; 20:ijms20205112. [PMID: 31618917 PMCID: PMC6834194 DOI: 10.3390/ijms20205112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
The distribution of DNA damage and repair is considered to occur heterogeneously across the genome. However, commonly available techniques, such as the alkaline comet assay or HPLC-MS/MS, measure global genome levels of DNA damage, and do not reflect potentially significant events occurring at the gene/sequence-specific level, in the nuclear or mitochondrial genomes. We developed a method, which comprises a combination of Damaged DNA Immunoprecipitation and next generation sequencing (DDIP-seq), to assess the induction and repair of DNA damage induced by 0.1 J/cm2 solar-simulated radiation at the sequence-specific level, across both the entire nuclear and mitochondrial genomes. DDIP-seq generated a genome-wide, high-resolution map of cyclobutane thymine dimer (T<>T) location and intensity. In addition to being a straightforward approach, our results demonstrated a clear differential distribution of T<>T induction and loss, across both the nuclear and mitochondrial genomes. For nuclear DNA, this differential distribution existed at both the sequence and chromosome level. Levels of T<>T were much higher in the mitochondrial DNA, compared to nuclear DNA, and decreased with time, confirmed by qPCR, despite no reported mechanisms for their repair in this organelle. These data indicate the existence of regions of sensitivity and resistance to damage formation, together with regions that are fully repaired, and those for which > 90% of damage remains, after 24 h. This approach offers a simple, yet more detailed approach to studying cellular DNA damage and repair, which will aid our understanding of the link between DNA damage and disease.
Collapse
Affiliation(s)
- Alaa S Alhegaili
- Oxidative Stress Group, University of Leicester, Leicester LE1 9HN, UK.
- Radiobiology & DNA Damage Group, Leicester Cancer Research Centre, University of Leicester, Leicester LE1 9HN, UK.
- Present Addresses: Department of Medical Laboratory Sciences, Prince Sattam bin Abdulaziz University, P.O. Box 422, Alkharj 11942, Kingdom of Saudi Arabia.
| | - Yunhee Ji
- Present Addresses: Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA.
| | - Nicolas Sylvius
- NUCLEUS Genomics, Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, UK.
| | - Matthew J Blades
- Bioinformatics and Biostatistics Analysis Support Hub (BBASH), Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, UK.
| | - Mahsa Karbaschi
- Oxidative Stress Group, University of Leicester, Leicester LE1 9HN, UK.
- Present Addresses: Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA.
| | - Helen G Tempest
- Present Addresses: Department of Human Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
- Present Addresses: Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| | - George D D Jones
- Radiobiology & DNA Damage Group, Leicester Cancer Research Centre, University of Leicester, Leicester LE1 9HN, UK.
| | - Marcus S Cooke
- Oxidative Stress Group, University of Leicester, Leicester LE1 9HN, UK.
- Present Addresses: Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA.
- Present Addresses: Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
- Department of Genetics, University of Leicester, Leicester LE1 9HN, UK.
| |
Collapse
|
8
|
Orlando A, Chimienti G, Pesce V, Fracasso F, Lezza AMS, Russo F. An In Vitro Study on Mitochondrial Compensatory Response Induced by Gliadin Peptides in Caco-2 Cells. Int J Mol Sci 2019; 20:ijms20081862. [PMID: 30991726 PMCID: PMC6514596 DOI: 10.3390/ijms20081862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Dietary gliadin may show a broad spectrum of toxicity. The interplay between mitochondria and gliadin-induced oxidative stress has not been thoroughly examined in the intestinal epithelium. In this kinetic study, Caco-2 cells were exposed for 24 h to pepsin-trypsin-digested gliadin, alone or in combination with the antioxidant 2,6-di-tbutyl-p-cresol (BHT), and the effects on mitochondrial biogenesis and mtDNA were studied. Cells ability to recover from stress was determined after 24 h and 48 h of incubation in the culture medium. Gliadin-induced oxidative stress evoked a compensatory response. The stressor triggered a rapid and significant increase of Peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and Peroxiredoxin III (PrxIII) proteins, and mtDNA amount. As for the effects of gliadin on mtDNA integrity, strand breaks, abasic sites, and modified bases were analyzed in three mtDNA regions. D-loop appeared a more fragile target than Ori-L and ND1/ND2. The temporal trend of the damage at D-loop paralleled that of the amount of mtDNA. Overall, a trend toward control values was shown 48 h after gliadin exposure. Finally, BHT was able to counteract the effects of gliadin. Results from this study highlighted the effects of gliadin-induced oxidative stress on mitochondria, providing valuable evidence that might improve the knowledge of the pathophysiology of gluten-related disorders.
Collapse
Affiliation(s)
- Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology "S. de Bellis", Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70100 Bari, Italy.
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70100 Bari, Italy.
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70100 Bari, Italy.
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70100 Bari, Italy.
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology "S. de Bellis", Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| |
Collapse
|