1
|
Kawasaki H. Background of Insect Metamorphosis: Numerous Functions of Ecdysteroid. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70064. [PMID: 40411750 DOI: 10.1002/arch.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/26/2025]
Abstract
Insect development is mainly controlled by juvenile hormone (JH) and ecdysone, and their hemolymph titer determines the insect direction; larva, pupa, or adult. The mediators of them are Krüppel homolog 1 (Kr-h1), Broad-Complex (BR-C), and E93. They activate genes that characterize larval, pupal, and adult feature, which gives rise to the metamorphosis. Before individual ecdysis, these master factors activate target genes to produce larva, pupa, or adult. Prothoracicotropic hormone (PTTH) from the brain activates prothoracic gland (PG), resulted in the ecdysis. Other factors that activate ecdysteroid production are reported. The produced ecdysteroid was observed early stages of the last larval instar of Bombyx mori, where the ecdysteroid titer is different from previous stage. Two stages are different in JH and ecdysone titer, and the interaction of the JH and ecdysone production determines their titer. Ecdysone brings about the prominent change, which needs many gene transcriptions and the interaction of ecdysone-responsive transcription factors (ERTFs). Their target genes are successively expressed, which brings about the metamorphosis. For the activation of genes, ecdysone gives rise to chromatin remodeling and histone modification. Ecdysone and other factors bring about cell division of the wing disc of the last larval instar; for the proliferation and differentiation, which gives rise to the growth and differentiation of the wing disc for the metamorphosis. In addition, hormone-responsive miRNAs work, several ERTFs function for one gene, and the suppressive TF function along with metamorphosis. Thus, several attractive things underly around the insect metamorphosis. We will be near the understanding of the metamorphosis through these things.
Collapse
Affiliation(s)
- Hideki Kawasaki
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| |
Collapse
|
2
|
Chen J, Liu X, Han S, Zhang M, Liu Z, Li Y, Zhang L. Comparative transcriptome analysis provides a glance into the regulation of the Krüppel homolog 1 on the reproduction and diapause of the predatory ladybeetle, Coccinella septempunctata. BMC Genomics 2025; 26:414. [PMID: 40301753 PMCID: PMC12039007 DOI: 10.1186/s12864-025-11459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/07/2025] [Indexed: 05/01/2025] Open
Abstract
As a typical natural predator of agricultural pests, the lady beetle, Coccinella septempunctata, has been commercially mass-reared and widely employed in in pest management. The lady beetles can enter a long-term reproductive diapause phase in response to short photoperiods and low temperatures, for maintaining population during the overwintering process. Insect diapause is a physiological adaptative strategy that is characterized by a cessation of ovarian development, lipid accumulation and extended lifespan. Diapause regulating improve the long-term storage of C. septempunctata and release of natural enemies at the right time. In our previous research, as a main output of the juvenile hormone pathway, Krüppel homolog 1 (Kr-h1) was a key component of reproduction and diapause in C. septempunctata. However, the molecular mechanisms underlying the regulation of C. septempunctata reproduction and diapause by Kr-h1 transcription factor remains unknown. In this study, we utilized RNA-Sequencing to investigate the transcriptomic changes in C. septempunctata following RNA interference targeting the Kr-h1 gene. DEGs analysis revealed significant transcriptional alterations between the Kr-h1 knockdown group and the control group. Noteworthy findings include the downregulation of three genes related to reproduction (follicle cell protein,vitelline membrane protein, and vitellogenin) in the dsKr-h1 group, while genes involved in lipid metabolism, such as lipase and fatty acid synthase, were upregulated. These results suggested that Kr-h1 plays a critical role in the regulation of both reproductive processes and lipid metabolism in C. septempunctata. Our findings provided valuable insights into the molecular mechanisms regulating reproduction and diapause in C. septempunctata and contributed to the expanding understanding of the role of CsKr-h1 in insect physiology.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China
| | - Xiaoxiao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China
| | - Shunda Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China
| | - Maosen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China
| | - Zhaohan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China
| | - Yuyan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China.
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China.
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
3
|
Cao J, Qin X, Yang H, Liu C, Cheng T. Dimm targets GDAP2 to regulate larval development in the silkworm, Bombyx mori. INSECT SCIENCE 2025. [PMID: 40205793 DOI: 10.1111/1744-7917.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
The basic helix-loop-helix (bHLH) domain transcription factors precisely regulate various developmental processes in insects. Dimm, a specific bHLH transcription factor, integrates the insulin/insulin-like growth factor signaling (IIS) and juvenile hormone signaling (JHS) pathways to modulate larval development in silkworms. However, the molecular mechanisms underlying this regulation are not yet fully understood. This study aimed to determine the targets of Dimm through which it regulates larval development. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed ganglioside-induced differentiation-associated protein 2 (GDAP2) as a direct downstream target gene of Dimm. Further study showed that Dimm directly binds to an enhancer element located in the second intron of the GDAP2 gene to promote its transcription. GDAP2 exhibited widespread expression across different stages and tissues of silkworms, regulated by both the IIS and the JHS pathways. The systemic knockout of GDAP2 leads to delayed larval development with a significant reduction in body weight; moreover, larval development was arrested at the 4th-instar stage. Further investigation unveiled that the inhibition of the ecdysone and innate immune signaling pathways in the mutant line led to abnormal larval development. A systematic investigation of the biological functions of GDAP2 offers valuable insights into the mechanism by which Dimm integrates IIS and JHS pathways to regulate the larval development of silkworms.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Suzuki Y, Amaya S, Gonzalez P, Becerril D, Aquit S, Davis M, Hoesel M, Chou E, Khong H, Zaia K, Park HS, Nijhout HF, Tjaden B. Molecular mechanisms underlying the evolution of a color polyphenism by genetic accommodation in the tobacco hornworm, Manduca sexta. Proc Natl Acad Sci U S A 2025; 122:e2425004122. [PMID: 40106356 PMCID: PMC11962426 DOI: 10.1073/pnas.2425004122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
How organisms evolve under extreme environmental changes is a critical question in the face of global climate change. Genetic accommodation is an evolutionary process by which natural selection acts on novel phenotypes generated through repeated encounters with extreme environments. In this study, polyphenic and monophenic strains of the black mutant tobacco hornworm, Manduca sexta, were evolved via genetic accommodation of heat stress-induced phenotypes, and the molecular differences between the two strains were explored. Transcriptomic analyses showed that epigenetic and hormonal differences underlie the differences between the two strains and their distinct responses to temperature. DNA methylation had diverged between the two strains potentially mediating genetic assimilation. Juvenile hormone (JH) signaling in the polyphenic strain was temperature sensitive, whereas in the monophenic strain, JH signaling remained low at all temperatures. Although 20-hydroxyecdysone titers were elevated under heat shock conditions in both strains, the strains did not differ in the titers. Tyrosine hydroxylase was also found to differ between the two strains at different temperatures, and its expression could be modulated by topical application of a JH analog. Finally, heat shock of unselected black mutants demonstrated that the expression of the JH-response gene, Krüppel-homolog 1 (Kr-h1), increased within the first 30 min of heat shock, suggesting that JH levels respond readily to thermal stress. Our study highlights the critical role that hormones and epigenetics play during genetic accommodation and potentially in the evolution of populations in the face of climate change.
Collapse
Affiliation(s)
- Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Stephanie Amaya
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Paula Gonzalez
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Daniela Becerril
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Surisadai Aquit
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Maya Davis
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Madeline Hoesel
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Elizabeth Chou
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Hesper Khong
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Kathryn Zaia
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Heidi S. Park
- Department of Infectious Diseases, Massachusetts General Hospital, Boston, MA02114
| | | | - Brian Tjaden
- Department of Computer Sciences, Wellesley College, Wellesley, MA02481
| |
Collapse
|
5
|
Chen YH, Wu C, Xie YY, Zhang YH, Huang XT, Hu F, Xie LH. Krüppel homolog 1, a juvenile hormone transcription factor, regulates the reproduction and development of Aedes albopictus(Skuse) (Diptera: Culicidae). Parasitol Res 2025; 124:36. [PMID: 40119177 PMCID: PMC11928384 DOI: 10.1007/s00436-025-08479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/05/2025] [Indexed: 03/24/2025]
Abstract
The control of Aedes albopictus (Skuse) (Diptera: Culicidae), a vector for several important viral diseases, is crucial for mitigating mosquito-borne diseases. This study focused on the Krüppel homolog 1 (Kr-h1) gene, a transcription factor in juvenile hormone (JH) signaling, which plays a pivotal role in inhibiting metamorphosis and promoting adult reproduction. We characterized Aedes albopictus Kr-h1(AalbKr-h1), identified its eight zinc finger domains, and confirmed its orthology among insects through phylogenetic analysis. Expression profiling across life stages showed high level of expression in eggs, late larvae, and adults, with minimal expression in pupae. In adults, AalbKr-h1 was most active in the fat body and ovaries. Exposing larvae to a JH analogue significantly upregulated AalbKr-h1 expression in both larval and adult stages. RNAi-mediated knockdown of Kr-h1 protein reduced egg reproduction, survival rate and gene expression levels. These results provide a solid foundation for further exploration of the function of the AalbKr-h1 gene and the potential development of novel strategies for mosquito control and prevention of mosquito-borne diseases.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Cheng Wu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Yu-Yang Xie
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Yan-Hui Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Xi-Tong Huang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Fen Hu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| | - Li-Hua Xie
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
6
|
Chen P, Ai H, Liu Z, Li C, Li B. The dual functions of a newly identified C-type lectin (TcCTL17) in the immunity and development of Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-14. [PMID: 40099412 DOI: 10.1017/s0007485324000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
C-type lectins (CTLs), a diverse family of pattern recognition receptors, are essential for immune recognition and pathogen clearance in invertebrates. TcCTL17 contains one carbohydrate recognition domain and three scavenger receptor Cys-rich domains. Spatial and temporal expression analysis revealed that TcCTL17 is highly expressed in early pupa, early adult stages, and the larval gut at 20 days. The recombinant TcCTL17 exhibited dose-dependent binding to lipopolysaccharides and peptidoglycans, Ca2+-dependent binding and agglutination of bacteria in vitro. Knocking down TcCTL17 before bacterial exposure reduced survival rates and increased bacterial loads in T. castaneum larvae, accompanied by decreased antimicrobial peptide expression and haemolymph phenoloxidase activity. Additionally, TcCTL17 RNA interference caused developmental abnormalities, affecting metamorphosis and fecundity, possibly by influencing the 20E, JH, and vitellogenin pathways. These findings underscore dual functions of TcCTL17 in immunity and development, making it a potential target for pest management.
Collapse
Affiliation(s)
- Peng Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huayi Ai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiping Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Huang H, Li D, Xu M, Zhong S, Liu S, Gao X, Xu Y, Chen Z. Krüppel homolog 1 mediates juvenile hormone action to suppress photoperiodic reproductive diapause-related phenotypes in the female Chrysoperla nipponensis (Neuroptera: Chrysopidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:7. [PMID: 40116215 PMCID: PMC11926538 DOI: 10.1093/jisesa/ieaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 03/23/2025]
Abstract
Juvenile hormone (JH) has been revealed to be a critical factor in regulating photoperiod reproductive diapause in various insect species, however, little information is known about the detailed mechanisms. In this study, we investigated the roles of JH signaling in photoperiod reproductive diapause in a green lacewing, Chrysoperla nipponensis (Okamoto), which is a potentially important biological control predator. Our results showed that the short-day condition induces a diapause state including JH synthesis suppression, ovarian development arrest, and triglyceride accumulation. The interference of JH response genes, Krüppel homolog 1 (Kr-h1), in reproductive females exhibited a diapause-related phenotype such as ovarian development arrest and larger triglyceride storage. Exogenous JH III suppresses diapause to promote ovarian development and inhibit triglyceride synthesis. However, exogenous JH III fails to rescue the Kr-h1-silenced phenotype. Accordingly, our results demonstrate the critical role of Kr-h1 in regulating JH signaling to promote reproduction.
Collapse
Affiliation(s)
- Haiyi Huang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Dandan Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Minghui Xu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Shaofeng Zhong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Shaoye Liu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Xingke Gao
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Yongyu Xu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Zhenzhen Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
8
|
Li YX, Kang XL, Li YL, Wang XP, Yan Q, Wang JX, Zhao XF. Receptor tyrosine kinases CAD96CA and FGFR1 function as the cell membrane receptors of insect juvenile hormone. eLife 2025; 13:RP97189. [PMID: 40085503 PMCID: PMC11908783 DOI: 10.7554/elife.97189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Juvenile hormone (JH) is important to maintain insect larval status; however, its cell membrane receptor has not been identified. Using the lepidopteran insect Helicoverpa armigera (cotton bollworm), a serious agricultural pest, as a model, we determined that receptor tyrosine kinases (RTKs) cadherin 96ca (CAD96CA) and fibroblast growth factor receptor homologue (FGFR1) function as JH cell membrane receptors by their roles in JH-regulated gene expression, larval status maintaining, rapid intracellular calcium increase, phosphorylation of JH intracellular receptor MET1 and cofactor Taiman, and high affinity to JH III. Gene knockout of Cad96ca and Fgfr1 by CRISPR/Cas9 in embryo and knockdown in various insect cells, and overexpression of CAD96CA and FGFR1 in mammalian HEK-293T cells all supported CAD96CA and FGFR1 transmitting JH signal as JH cell membrane receptors.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| |
Collapse
|
9
|
Qiao H, Jiang Q, Zhao J, Xiao L, Zhu-Salzman K, Xu D, Xu G, Shen J, Gu A, Hao D, Yan S, Tan Y. Nano-delivery platform with strong protection and efficient delivery: preparation of self-assembled RNA pesticide with dual RNAi targets against Apolygus lucorum. J Nanobiotechnology 2025; 23:93. [PMID: 39920702 PMCID: PMC11806883 DOI: 10.1186/s12951-025-03155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND RNA pesticide is regarded as the "third revolution in the history of pesticides". However, the double-stranded RNA (dsRNA) is easily degraded in the environment, and its delivery efficiency is not sufficient for pest management. This study aimed to construct a star polycation (SPc)-based delivery platform with strong protection and efficient delivery to develop a self-assembled RNA pesticide with dual RNA interference (RNAi) targets. RESULTS The nanocarrier SPc was applied to assemble with dsRNA via electrostatic interaction, hydrogen bond and Van der Waals force, and the self-complexation with SPc formed nanoscale dsRNA/SPc complex. The SPc could protect the dsRNA from the degradation by midgut fluid or RNase A, thus significantly increasing the stability of dsRNA under various environmental conditions. Meanwhile, the SPc was able to improve the translocation of dsRNA across insect cuticle, and increase its plant uptake. Then, dsECR-A and dsTre-1 fragments were individually screened, and the dsECR-A and dsTre-1 fragments with good control effects were co-expressed in pET28-BL21 (DE3) RNase III - system to prepare the dsECR-A + Tre-1/SPc complex. Both topical application and spraying of dsECR-A + Tre-1/SPc complex could effectively control a piercing-sucking agricultural pest Apolygus lucorum. The SPc-loaded dsECR-A + Tre-1 could up-regulate endocytosis-related genes and down-regulate cuticle biosynthesis-related genes, which primarily inhibited insect growth and development. CONCLUSIONS Our study comprehensively demonstrated the advantages of SPc-based dsRNA delivery platform, and developed a self-assembled RNA pesticide with dual RNAi targets, which provided a reference for the design of novel RNA pesticides.
Collapse
Affiliation(s)
- Heng Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Qinhong Jiang
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Dejin Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Guangchun Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Aiguo Gu
- Jiangsu Product Quality Testing & Inspection Institute, Nanjing, 210007, People's Republic of China
| | - Dejun Hao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
10
|
Miyakawa H. Environmentally Dependent Alteration of Reproductive Strategies and Juvenile Hormone Signaling in Daphnia (Crustacea: Cladocera). Zoolog Sci 2025; 42. [PMID: 39932751 DOI: 10.2108/zs240054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/11/2024] [Indexed: 05/08/2025]
Abstract
Daphnia switches between asexual and sexual reproductive strategies, depending on environmental conditions. For sexual reproduction, unfavorable environmental signals induce production of males and formation of meiotic eggs. Induction of both these phenotypes is strongly dependent upon the arthropod endocrine factor juvenile hormone (JH). This review presents the current state of research on regulatory mechanisms of reproductive strategy alteration in Daphnia, focusing on studies related to JH signaling conducted during the past several decades. Additionally, it discusses what is needed in future research to fully understand these mechanisms and evolution of complicated life cycle and environmental adaptation systems in Daphnia.
Collapse
Affiliation(s)
- Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan,
| |
Collapse
|
11
|
Konopová B. Evolution of insect metamorphosis - an update. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101289. [PMID: 39490982 DOI: 10.1016/j.cois.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Metamorphosis endowed the insects with properties that enabled them to conquer the Earth. It is a hormonally controlled morphogenetic process that transforms the larva into the adult. Metamorphosis appeared with the origin of wings and flight. The sesquiterpenoid juvenile hormone (JH) suppresses wing morphogenesis and ensures that metamorphosis takes place at the right ontogenetic time. This review explores the origin of insect metamorphosis and the ancestral function of JH. Fossil record shows that the first Paleozoic winged insects had (hemimetabolous) metamorphosis, and their larvae were likely aquatic. In the primitive wingless silverfish that lacks metamorphosis, JH is essential for late embryogenesis and reproduction. JH production after the embryo dorsal closure promotes hatching and terminal tissue maturation.
Collapse
Affiliation(s)
- Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
12
|
Zhao W, Liu P, Saunders TR, Zhu J. Juvenile hormone induces phosphorylation of insulin/insulin-like growth factor signaling proteins in previtellogenic Aedes aegypti mosquitoes. INSECT SCIENCE 2024. [PMID: 39663731 DOI: 10.1111/1744-7917.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Juvenile hormone (JH) plays a pivotal role in regulating post-emergence development and metabolism in previtellogenic female Aedes aegypti mosquitoes. In contrast, yolk protein precursor production and egg maturation after a blood meal are regulated by the steroid hormone 20-hydroxyecdysone, the insulin-like growth factor (IGF)/insulin signaling (IIS) pathway, and the mammalian target of rapamycin (mTOR) pathway. The role of IIS/mTOR signaling in female adults prior to blood feeding has not been thoroughly investigated. In this study, we identified a significant increase in the phosphorylation of key effector proteins in the IIS/mTOR signaling pathway, including eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K) and forkhead box protein O1 (FoxO1), in previtellogenic females. In vitro fat body culture experiments suggest that JH induces these phosphorylations through rapid nongenomic signaling mediated by the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mTOR network. RNA interference experiments demonstrated that activation of IIS/mTOR signaling in previtellogenic females modulate metabolic gene expression, promoting the accumulation of energy reserves (glycogen and triglycerides), which influence mosquito fecundity. Additionally, depletion of either the insulin receptor (InR) or the JH receptor Methoprene-tolerant (Met) in adult mosquitoes abolished the phosphorylation of these proteins, indicating that both receptors are involved in JH-induced membrane-initiated signal transduction. Although the precise mechanisms remain unclear, this study uncovers a novel function of the IIS/mTOR pathway in adult mosquitoes before blood feeding, as well as a new mode of JH action through its crosstalk with the IIS pathway.
Collapse
Affiliation(s)
- Wenhao Zhao
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Pengcheng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
- Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Thomas R Saunders
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
13
|
Liu ZH, Zhai Y, Xia Y, Liao Q. Mating modifies oxidative stress in the brain and confers protection against Parkinson's Disease in a Drosophila model. Biochem Biophys Res Commun 2024; 737:150911. [PMID: 39481187 DOI: 10.1016/j.bbrc.2024.150911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Mating exerts profound and multifaceted effects on the physiology of female insects, particularly influencing metabolic alterations and bolstering stress resilience. Drosophila melanogaster has emerged as an excellent model to investigate the mechanism of neurodegenerative diseases. However, interplay between mating and its impact on the Drosophila brain remains a tantalizing enigma, awaiting elucidation. Herein, we reported that mating significantly improved the climbing and jumping activity in mated females compared to the virgins in Drosophila. Mating also reduced oxidative stress in the brain. Based on the results, we found that, mated females exhibited better behavioral performance and fewer loss of dopaminergic (DA) neurons than unmated females in PINK1 RNAi flies, a well-established Parkinson's disease (PD) model. Further study demonstrated that mating led to decreased iron content in the brain, a process associated with decreased Transferrin 1 (Tsf1) and Malvolio (Mvl) and increased ferritin. Additionally, mating inhibited expression of Duox and Nox, two NADPH oxidases in Drosophila. Furthermore, Kr-h1, a transcription factor of JH, acted downstream of mating to regulate genes involved in iron metabolism and NADPH oxidases. Collectively, the findings suggested a pivotal role of mating in regulating iron metabolism and NADPH oxidases in the brain of Drosophila. Consequently, considering mating status is imperative in scientific research, particularly in the context of neurological disorders.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Yuyin Zhai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Qiaoming Liao
- Guangxi Eco-Engineering Vocational &Technical College, Liuzhou, Guangxi, 545004, PR China
| |
Collapse
|
14
|
Tao C, Li J, Du W, Qin X, Cao J, Liu C, Cheng T. Broad Complex-Z2 directly activates BmMBF2 to inhibit the silk protein synthesis in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 277:134211. [PMID: 39069049 DOI: 10.1016/j.ijbiomac.2024.134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Silk proteins, as natural macromolecules, have extensive applications in biomaterials and biomedicine. In the silkworm, the expression of silk protein genes is negatively associated with ecdysone during the molt stage, while it is positively correlated with juvenile hormone during the intermolt stage. In our previous study, overexpression of an isoform Z2 of Broad Complex (BmBrC-Z2), an ecdysone early response factor, significantly reduced the expression of silk protein genes. However, the underlying regulatory mechanism remains unclear. In this study, we conducted transcriptomic analysis and found that overexpressing BmBrC-Z2 significantly upregulated the expression level of multiprotein bridging factor 2 (BmMBF2), an inhibitor of fibroin heavy chain (FibH). Further investigations revealed that BmBrC-Z2 directly regulated BmMBF2 by binding to cis-regulatory elements, as demonstrated using Dual-Luciferase Reporter Gene Assay, EMSA, and ChIP-PCR assay. Additionally, when using the CRISPR/Cas9 system to knock out BmMBF2, silk protein genes were significantly upregulated during the molt stage of mutant larvae. These findings uncover the negative regulation of silk protein synthesis by the ecdysone signaling cascade, specifically through the manipulation of BmMBF2 expression during the molt stage. This study enhances to our understanding of the temporal regulatory mechanism governing silk protein synthesis and offers a potential strategy for improving silk yield.
Collapse
Affiliation(s)
- Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Wenjie Du
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Zhang YK, Zhang HX, An HM, Wang K, Zhu F, Liu W, Wang XP. Key roles of insulin receptor InR1 in initiating reproductive diapause in males of the cabbage beetle Colaphellus bowringi (Coleoptera: Chrysomelidae). PEST MANAGEMENT SCIENCE 2024; 80:3852-3860. [PMID: 38511626 DOI: 10.1002/ps.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Reproductive diapause serves as a valuable strategy enabling insects to survive unfavorable seasonal conditions. However, forcing insects into diapause when the environment is conducive to their well-being can cause them to miss out on seasonal opportunities for reproduction. This outcome not only reduces insect populations but also minimizes crop losses caused by insect feeding. Therefore, altering the timing of diapause initiation presents a potential strategy for managing pests. In this study, we examined the possible role of the Insulin Receptor 1 (InR1) in controlling reproductive diapause entry in the male cabbage beetle, Colaphellus bowringi. RESULTS Compared to short-day (SD) conditions, long-day (LD) conditions led to reproductive diapause of C. bowringi males, characterized by arrested gonad development, increased Triglyceride (TG) accumulation, and upregulated expression of diapause protein 1 and genes associated with lipogenesis and stress tolerance. Upon employing RNA interference to knock down InR1 under SD conditions, males destined for reproduction were compelled into diapause, evidenced by arrested gonadal development, accumulation of TG, and elevated expression of diapause-related genes. Intriguingly, despite the common association of the absence of juvenile hormone (JH) with reproductive diapause in females, the knockdown of InR1 in males did not significant affect the expression of JH biosynthesis and JH response gene. CONCLUSION The study highlight InR1 is a key factor involved in regulating male reproductive diapause in C. bowringi. Consequently, targeting insulin signaling could be a viable approach to perturb diapause timing, offering a promising strategy for managing pests with reproductive diapause capabilities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Ke Zhang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Han-Xue Zhang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao-Min An
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Yang Z, Yang X, Du J, Wei C, Liu P, Hu J, Bao Z, Qu Z. Comparative Transcriptome Analysis of Hepatopancreas Reveals Sexual Dimorphic Response to Methyl Farnesoate Injection in Litopenaeus vannamei. Int J Mol Sci 2024; 25:8152. [PMID: 39125723 PMCID: PMC11311334 DOI: 10.3390/ijms25158152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Sexually dimorphic traits such as growth and body size are often found in various crustaceans. Methyl farnesoate (MF), the main active form of sesquiterpenoid hormone in crustaceans, plays vital roles in the regulation of their molting and reproduction. However, understanding on the sex differences in their hormonal regulation is limited. Here, we carried out a comprehensive investigation on sexual dimorphic responses to MF in the hepatopancreas of the most dominant aquacultural crustacean-the white-leg shrimp (Litopenaeus vannamei). Through comparative transcriptomic analysis of the main MF target tissue (hepatopancreas) from both female and male L. vannamei, two sets of sex-specific and four sets of sex-dose-specific differentially expressed transcripts (DETs) were identified after different doses of MF injection. Functional analysis of DETs showed that the male-specific DETs were mainly related to sugar and lipid metabolism, of which multiple chitinases were significantly up-regulated. In contrast, the female-specific DETs were mainly related to miRNA processing and immune responses. Further co-expression network analysis revealed 8 sex-specific response modules and 55 key regulatory transcripts, of which several key transcripts of genes related to energy metabolism and immune responses were identified, such as arginine kinase, tropomyosin, elongation of very long chain fatty acids protein 6, thioredoxin reductase, cysteine dioxygenase, lysosomal acid lipase, estradiol 17-beta-dehydrogenase 8, and sodium/potassium-transporting ATPase subunit alpha. Altogether, our study demonstrates the sex differences in the hormonal regulatory networks of L. vannamei, providing new insights into the molecular basis of MF regulatory mechanisms and sex dimorphism in prawn aquaculture.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.Y.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Xiaoliu Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Jiahao Du
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Cun Wei
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Pingping Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.Y.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.Y.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.Y.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhe Qu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.Y.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| |
Collapse
|
17
|
Brülhart J, Süß A, Oettler J, Heinze J, Schultner E. Sex- and caste-specific developmental responses to juvenile hormone in an ant with maternal caste determination. J Exp Biol 2024; 227:jeb247396. [PMID: 38779857 PMCID: PMC11418025 DOI: 10.1242/jeb.247396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Juvenile hormone is considered to be a master regulator of polyphenism in social insects. In the ant Cardiocondyla obscurior, whether a female egg develops into a queen or a worker is determined maternally and caste-specific differentiation occurs in embryos, so that queens and workers can be distinguished in a non-invasive manner from late embryogenesis onwards. This ant also exhibits two male morphs - winged and wingless males. Here, we used topical treatment with juvenile hormone III and its synthetic analogue methoprene, a method that influences caste determination and differentiation in some ant species, to investigate whether hormone manipulation affects the development and growth of male, queen- and worker-destined embryos and larvae. We found no effect of hormone treatment on female caste ratios or body sizes in any of the treated stages, even though individuals reacted to heightened hormone availability with increased expression of krüppel-homolog 1, a conserved JH first-response gene. In contrast, hormone treatment resulted in the emergence of significantly larger males, although male morph fate was not affected. These results show that in C. obscurior, maternal caste determination leads to irreversible and highly canalized caste-specific development and growth.
Collapse
Affiliation(s)
- Jeanne Brülhart
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Anja Süß
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Jan Oettler
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Jürgen Heinze
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Eva Schultner
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
18
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
19
|
He Q, Fan X, Wang S, Chen S, Chen J. Juvenile hormone inhibits adult cuticle formation in Drosophila melanogaster through Kr-h1/Dnmt2-mediated DNA methylation of Acp65A promoter. INSECT MOLECULAR BIOLOGY 2024; 33:124-135. [PMID: 37916965 DOI: 10.1111/imb.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Differentiation of imaginal epidermal cells of Drosophila melanogaster to form adult cuticles occurs at approximately 40-93 h after puparium formation. Juvenile hormone (JH) given at pupariation results in formation of a second pupal cuticle in the abdomen instead of the adult cuticle. Although the adult cuticle gene Acp65A has been reported to be down-regulated following JH treatment, the regulatory mechanism remains unclear. Here, we found that the JH primary response gene Krüppel homologue 1 (Kr-h1) plays a vital role in the repression of adult cuticle formation through the mediation of JH action. Overexpression of Kr-h1 mimicked-while knocking down of Kr-h1 attenuated-the inhibitory action of JH on the formation of the adult abdominal cuticle. Further, we found that Kr-h1 inhibited the transcription of Acp65A by directly binding to the consensus Kr-h1 binding site (KBS) within the Acp65A promoter region. Moreover, the DNA methyltransferase Dnmt2 was shown to interact with Kr-h1, combined with the KBS to promote the DNA methylation of sequences around the KBS, in turn inhibiting the transcription of Acp65A. This study advances our understanding of the molecular basis of the "status quo" action of JH on the Drosophila adult metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaochun Fan
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shunxin Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
20
|
Melicher D, Torson AS, Yocum GD, Bosch J, Kemp WP, Bowsher JH, Rinehart JP. Metabolic and transcriptomic characterization of summer and winter dormancy in the solitary bee, Osmia lignaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 166:104074. [PMID: 38228213 DOI: 10.1016/j.ibmb.2024.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
The solitary bee Osmia lignaria is a native pollinator in North America with growing economic importance. The life cycle of O. lignaria provides a unique opportunity to compare the physiological and molecular mechanisms underlying two ecologically contrasting dormancies within the same species. O. lignaria prepupae become dormant during the summer to avoid high temperatures. Shortly after adult eclosion, they enter a second dormancy and overwinter as diapausing adults. To compare these two dormancies, we measured metabolic rates and gene expression across development as bees initiate, maintain, and terminate both prepupal (summer) and adult (overwintering) dormancies. We observed a moderate temperature-independent decrease in gas exchange during both the prepupal dormancy after cocoon spinning (45 %) and during adult diapause after eclosion (60 %). We sequenced and assembled a high-quality reference genome from a single haploid male bee with a contiguous n50 of 5.5 Mbp to facilitate our transcriptomic analysis. The transcriptomes of dormant prepupae and diapausing adults clustered into distinct groups more closely associated with life stage than dormancy status. Membrane transport, membrane-bound cellular components, oxidoreductase activity, glutathione metabolism, and transcription factor activity increased during adult diapause, relative to prepupal dormancy. Further, the transcriptomes of adults in diapause clustered into two groups, supporting multiple phases of diapause during winter. Late adult diapause was associated with gene expression profiles supporting increased insulin/IGF, juvenile hormone, and ecdysone signaling.
Collapse
Affiliation(s)
- Dacotah Melicher
- Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture/Agricultural Research Service, 1616 Albrecht Boulevard North, Fargo, ND, 58102, USA
| | - Alex S Torson
- Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture/Agricultural Research Service, 1616 Albrecht Boulevard North, Fargo, ND, 58102, USA.
| | - George D Yocum
- Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture/Agricultural Research Service, 1616 Albrecht Boulevard North, Fargo, ND, 58102, USA
| | - Jordi Bosch
- CREAF, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - William P Kemp
- Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture/Agricultural Research Service, 1616 Albrecht Boulevard North, Fargo, ND, 58102, USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Joseph P Rinehart
- Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture/Agricultural Research Service, 1616 Albrecht Boulevard North, Fargo, ND, 58102, USA
| |
Collapse
|
21
|
Ge F, Yu Q, Zhang J, Han Y, Zhu D, Xie X. E93 gene in the swimming crab, Portunus trituberculatus: Responsiveness to 20-hydroxyecdysone and methyl farnesoate and role on regulating ecdysteroid synthesis. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110910. [PMID: 38193341 DOI: 10.1016/j.cbpb.2023.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 01/10/2024]
Abstract
Ecdysone-induced protein 93 (E93) is a metamorphic determinant involved in crosstalk between 20-hydroxyecdysone (20E) and juvenile hormone (JH) during the insect molting process. The present study identified the E93 gene from the swimming crab, P. trituberculatus, and found it was widely distributed in adult tissues. PtE93 mRNA levels in Y-organ and epidermis fluctuated during the molt cycle, suggesting its involvement in juvenile molting. In vitro and in vivo treatments with 20E led to an induction of PtE93 expression in Y-organ and epidermis, while we found the opposite effect for methyl farnesoate (MF) treatments, a crustacean equivalent of insect JH. We also observed that two genes for ecdysteroid biosynthesis, Spook (Spo) and Shadow (Sad), were suppressed by 20E and induced by MF, showing a negative correlation between PtE93 and ecdysteroid biosynthesis. PtE93 RNA interference (RNAi) induced Spo and Sad expression levels, elevated ecdysteroid content in culture medium, and relieved the 20E inhibitory effect on ecdysteroid synthesis, indicating an inhibitory role of PtE93 on ecdysteroid synthesis. Overall, our results suggest that E93 may be involved in the crosstalk between 20E and MF during crustacean molting, and its presence in Y-organ is closely related to ecdysteroid synthesis.
Collapse
Affiliation(s)
- Fuqiang Ge
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiaoling Yu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jun Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yaoyao Han
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Dongfa Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China.
| | - Xi Xie
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
22
|
Tang Y, Wu S, He H, Gao Q, Ding W, Xue J, Qiu L, Li Y. The CsmiR1579-CsKr-h1 module mediates rice stem borer development and reproduction: An effective target for transgenic insect-resistant rice. Int J Biol Macromol 2024; 254:127752. [PMID: 38287594 DOI: 10.1016/j.ijbiomac.2023.127752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
The rice stem borer (RSB, Chilo suppressalis) is a significant agricultural pest that mainly depends on chemical control. However, it has grown to varied degrees of pesticide resistance, which poses a severe threat to rice production and emphasizes the need for safer, more efficient alternative pest management strategies. Here, in vitro and in vivo experiments analyses reveal miR-1579 binds to the critical transcription factor Krüppel homologue 1 (Kr-h1) and negatively regulates its expression. Overexpression of miR-1579 in larvae with significantly lower levels of Kr-h1 was associated with a decline in larval growth and survival. Furthermore, in female pupae, miR-1579 overexpression led to abnormalities in ovarian development, suggesting that targeting miR-1579 could be a potential management strategy against C. suppressalis. Therefore, we generated transgenic rice expressing miR-1579 and screened three lines that had a single copy of highly abundant mature miR-1579 transcripts. Expectedly, fed with transgenic miR-1579 rice lines were significantly lower survival rates in larvae and high levels of resistance to damage caused by C. suppressalis infestation. These findings suggest that miRNA-mediated RNAi could provide an effective and species-specific strategy for C. suppressalis control.
Collapse
Affiliation(s)
- Yan Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Wu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
23
|
Furuta K, Yamada N, Kayukawa T. Synthesis of 1,4-benzodioxan derivatives and the evaluation of their biological activity as a novel juvenile hormone signaling inhibitor. PEST MANAGEMENT SCIENCE 2023; 79:5341-5348. [PMID: 37611118 DOI: 10.1002/ps.7744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Juvenile hormone (JH) signaling inhibitors may be used as insect growth regulators because of their ability to control metamorphosis and reproduction in insects by regulating the action of JH. RESULTS We identified ethyl (E)-3-(4-{[7- (4-methoxycarbonylbenzyloxy)-1,4-benzodioxan-6-yl]methyl}phenyl)prop-2-enoate (EMBP) and observed its strong precocious metamorphosis-inducing activity against silkworm larvae. To further elucidate its mechanism of action, we investigated the effect of EMBP on the JH-mediated signaling pathway in vitro and in vivo. In a reporter assay using a Bombyx mori cell line, EMBP strongly suppressed the induction of reporter gene expression by Juvenile hormone I (JH I) in a concentration-dependent manner. A parallel rightward shift was observed in the dose-response curve of JH I after treatment with EMBP, indicating that EMBP competitively inhibited JH. Moreover, we monitored developmental changes in the JH-responsive gene, Krüppel homolog 1 (Kr-h1), and ecdysone-responsive gene, Broad-Complex (BRC), in EMBP-treated silkworm larvae. EMBP suppressed only the expression of Kr-h1 in third-instar larvae. CONCLUSION Our results demonstrated that EMBP specifically regulates the JH-mediated Kr-h1 signaling pathway. EMBP could be used as a lead compound in the development of new insect growth regulators. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kenjiro Furuta
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naoko Yamada
- Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | - Takumi Kayukawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
24
|
Liu S, Tian H, Xu Y, Wang H. Juvenile hormone regulates silk gene expression by m 6A RNA methylation. Cell Mol Life Sci 2023; 80:331. [PMID: 37870631 PMCID: PMC11071706 DOI: 10.1007/s00018-023-04996-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/24/2023]
Abstract
Juvenile hormone (JH) is an indispensable insect hormone that is critical in regulating insect development and physiology. N6-methyladenosine (m6A) is the most abundant modification of RNA that regulates RNA fate in eukaryotic organisms. However, the relationship between m6A and JH remains largely unknown. Here, we found that the application of a Juvenile hormone analog (JHA) extended the larval period of Bombyx mori and increased the weight and thickness of the cocoon. Interestingly, global transcriptional patterns revealed that m6A-related genes are specifically regulated by JHA in the posterior silk gland (PSG) that synthesizes the major component of cocoon silk. By transcriptome and m6A sequencing data conjointly, we discovered that JHA significantly regulated the m6A modification in the PSG of B. mori and many m6A-containing genes are related to nucleic acid binding, nucleus, and nucleobase-containing compound metabolism. Notably, 547 genes were significantly regulated by JHA at both the m6A modification and expression levels, especially 16 silk-associated genes, including sericin2, seroin1, Serine protease inhibitors 4 (BmSPI4), Serine protease inhibitors 5 (BmSPI5), and LIM domain-binding protein 2 (Ldb). Among them, 11 silk associated genes were significantly affected by METTL3 knockdown, validating that these genes are targets of m6A modification. Furthermore, we confirm that JHA directly regulates the expression of BmSPI4 and BmSPI5 through m6A modification of CDS regions. These results demonstrate the essential role of m6A methylation regulated by JH in PSG, and elucidate a novel mechanism by which JH affects silk gland development via m6A methylation. This study uncovers that m6A modification is a critical factor mediating the effect of JH in insects.
Collapse
Affiliation(s)
- Shuaiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
He Q, Hou T, Fan X, Wang S, Wang Y, Chen S. Juvenile hormone suppresses sensory organ precursor determination to block Drosophila adult abdomen morphogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103957. [PMID: 37192726 DOI: 10.1016/j.ibmb.2023.103957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Juvenile hormone (JH) has a classic "status quo" action at both the pupal and adult molts when administrated exogenously. In Drosophila, treatment with JH at pupariation inhibits the formation of abdominal bristles, which are derived from the histoblasts. However, the mechanism via which JH exerts this effect remains poorly understood. In this study, we analyzed the effect of JH on histoblast proliferation, migration, and differentiation. Our results indicated that whereas the proliferation and migration of histoblasts remained unaffected following treatment with a JH mimic (JHM), their differentiation, particularly the specification of sensor organ precursor (SOP) cells, was inhibited. This effect was attributable to downregulated proneural genes achaete (ac) and Scute (sc) expression levels, which prevented the specification of SOP cells in proneural clusters. Moreover, Kr-h1 was found to mediate this effect of JHM. Histoblast-specific overexpression or knockdown of Kr-h1, respectively mimicked or attenuated the effects exerted by JHM on abdominal bristle formation, SOP determination, and transcriptional regulation of ac and sc. These results indicated that the defective SOP determination was responsible for the inhibition of abdominal bristle formation by JHM, which, in turn, was mainly mediated via the transducing action of Kr-h1.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Tianlan Hou
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaochun Fan
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shunxin Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhong Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
26
|
Rau V, Flatt T, Korb J. The remoulding of dietary effects on the fecundity / longevity trade-off in a social insect. BMC Genomics 2023; 24:244. [PMID: 37147612 PMCID: PMC10163710 DOI: 10.1186/s12864-023-09335-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND In many organisms increased reproductive effort is associated with a shortened life span. This trade-off is reflected in conserved molecular pathways that link nutrient-sensing with fecundity and longevity. Social insect queens apparently defy the fecundity / longevity trade-off as they are both, extremely long-lived and highly fecund. Here, we have examined the effects of a protein-enriched diet on these life-history traits and on tissue-specific gene expression in a termite species of low social complexity. RESULTS On a colony level, we did not observe reduced lifespan and increased fecundity, effects typically seen in solitary model organisms, after protein enrichment. Instead, on the individual level mortality was reduced in queens that consumed more of the protein-enriched diet - and partially also in workers - while fecundity seemed unaffected. Our transcriptome analyses supported our life-history results. Consistent with life span extension, the expression of IIS (insulin/insulin-like growth factor 1 signalling) components was reduced in fat bodies after protein enrichment. Interestingly, however, genes involved in reproductive physiology (e.g., vitellogenin) were largely unaffected in fat body and head transcriptomes. CONCLUSION These results suggest that IIS is decoupled from downstream fecundity-associated pathways, which can contribute to the remoulding of the fecundity/longevity trade-off in termites as compared to solitary insects.
Collapse
Affiliation(s)
- Veronika Rau
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
- RIEL, Charles Darwin University Casuarina Campus, Ellengowan Drive, Darwin, NT0811, Australia.
| |
Collapse
|
27
|
Cao J, Zheng HS, Zhang R, Xu YP, Pan H, Li S, Liu C, Cheng TC. Dimmed gene knockout shortens larval growth and reduces silk yield in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2023; 32:26-35. [PMID: 36082617 DOI: 10.1111/imb.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The bHLH domain transcription factor, Bombyx mori-derived dimmed (Bmdimm), is directly regulated by the JH-BmMet/BmSRC-BmKr-h1 pathway and plays a key role in regulating the expression of FibH, which codes the main component of silk protein. However, the other roles of Bmdimm in silk protein synthesis remain unclear. Here, we established a Bmdimm knockout (KO) line containing a 7-bp deletion via CRISPR/Cas9 system, which led to the absence of the bHLH domain. The expression level of silk protein genes and silk yield decreased significantly in the Bmdimm KO line. Moreover, knocking out Bmdimm led to shortened larval stages and significant weight loss in larvae and adults. Bmdimm was found to be highly expressed in the silk gland, but it was also expressed in the fat body. The expression level of Bmkr-h1 in the fat body was significantly downregulated in the Bmdimm KO line. Exogenous JHA treatment upregulated Bmkr-h1 and rescued the phenotype of larval growth in the Bmdimm KO line. In conclusion, knocking out Bmdimm led to a shortened larval stage via the inhibition of Bmkr-h1 expression, then reduced silk yield. These findings help to elucidate the regulatory mechanism of fibroin synthesis and larval development in silkworms.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hong-Sheng Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ran Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yong-Ping Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huan Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Shan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ting-Cai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Yang B, Miao S, Lu Y, Wang S, Wang Z, Zhao Y. Involvement of Methoprene-tolerant and Krüppel homolog 1 in juvenile hormone-mediated vitellogenesis of female Liposcelis entomophila (End.) (Psocoptera: Liposcelididae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21973. [PMID: 36193599 PMCID: PMC10078567 DOI: 10.1002/arch.21973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Methoprene-tolerant (Met) as an intracellular receptor of juvenile hormone (JH) and the Krüppel-homolog 1 (Kr-h1) as a JH-inducible transcription factor had been proved to contribute to insect reproduction. Their functions vary in different insect orders, however, they are not clear in Psocoptera. In this study, LeMet and LeKr-h1 were identified and their roles in vitellogenesis and ovarian development were investigated in Liposcelis entomophila (Enderlein). Treatment with exogenous JH III significantly induced the expression of LeKr-h1, LeVg, and LeVgR. Furthermore, silencing LeMet and LeKr-h1 remarkably reduced the transcription of LeVg and LeVgR, disrupted the production of Vg in fat body and the uptake of Vg by oocytes, and ultimately led to a decline in fecundity. The results indicated that the JH signaling pathway was essential to the reproductive process of this species. Interestingly, knockdown of LeMet or LeKr-h1 also resulted in fluctuations in the expression of FoxO, indicating the complex regulatory interactions between different hormone factors. Besides, knockdown of both LeMet and LeKr-h1 significantly increased L. entomophila mortality. Our study provides initial insight into the roles of JH signaling in the female reproduction of psocids and provided evidence that RNAi-mediated knockdown of Met or Kr-h1 is a potential pest control strategy.
Collapse
Affiliation(s)
- Bin‐Bin Yang
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Shi‐Yuan Miao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Yu‐Jie Lu
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Sui‐Sui Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Zheng‐Yan Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Ya‐Ru Zhao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| |
Collapse
|
29
|
Renard T, Gueydan C, Aron S. DNA methylation and expression of the egfr gene are associated with worker size in monomorphic ants. Sci Rep 2022; 12:21228. [PMID: 36481802 PMCID: PMC9732050 DOI: 10.1038/s41598-022-25675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The reproductive division of labour is a hallmark of eusocial Hymenoptera. Females are either reproductive queens or non-reproductive workers. In ants, workers often display further task specialisation that is associated with variation in size and/or morphology. Because female polyphenism is typically under environmental control, it is thought epigenetic mechanisms (such as DNA methylation) play a central role since they mediate gene-by-environment interactions. Methylation of the growth-promoting gene epidermal growth factor receptor (egfr) was indeed shown to control worker size in a highly polymorphic ant. However, it remains unknown if egfr methylation could also regulate worker size in monomorphic species. By combining experimental pharmacology and molecular biology, we show that worker size is associated with egfr methylation in two monomorphic ants. Furthermore, we functionally demonstrate that EGFR signalling affects worker size. These results indicate that worker size regulation by egfr methylation has been mechanistically conserved in ants but remains unexploited in monomorphic species.
Collapse
Affiliation(s)
- Thibaut Renard
- grid.4989.c0000 0001 2348 0746Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50, 1050 Brussels, Belgium
| | - Cyril Gueydan
- grid.4989.c0000 0001 2348 0746Molecular Biology of the Gene, Université Libre de Bruxelles, Rue Prof. Jeener et Brachet, 12, 6041 Gosselies, Belgium
| | - Serge Aron
- grid.4989.c0000 0001 2348 0746Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50, 1050 Brussels, Belgium
| |
Collapse
|
30
|
Chen X, Palli SR. Identification of species-specific juvenile hormone response elements in the fall armyworm, Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103860. [PMID: 36374778 DOI: 10.1016/j.ibmb.2022.103860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Juvenile hormones (JH) regulate insect development and reproduction. The JH analogs (JHA) are used as insecticides. However, JHAs are rarely used in managing pests such as the fall armyworm, Spodoptera frugiperda that cause damage during larval stages. The insecticides that antagonize JH action and induce stoppage of feeding and precocious metamorphosis might work better to control these pests. Treating insects with JHA insecticides induces the expression of an early JH response gene, Krüppel homolog 1 (Kr-h1) by working through JH response elements (JHRE) present in its promoter. In this study, we identified JHREs present in the promoter of Kr-h1 gene of a global pest, S. frugiperda, and used them to develop a JHRE-reporter cell platform to screen for JH analogs. JHA, methoprene induced the expression of SfKr-h1 both in vitro and in vivo. JHRE present in the promoters of two SfKr-h1 isoforms, SfKr-h1α and SfKr-h1β were identified. In Sf9 cells, the knockout of isoform-specific JHRE affected JH response in an isoform-specific manner. We also found that S. frugiperda JHRE (SfJHRE) did not function in the mosquito Aedes aegypti Aag2 cells and Tribolium castaneum TcA cells. Similarly, Ae. aegypti AaJHRE and T. castaneum TcJHRE were only functional in cells derived from these insects. The nucleotide sequence at the 3'end to the conserved core JHRE E-box sequence seems to be responsible for the species specificity observed. Two stable cell lines expressing the luciferase and enhanced green fluorescent protein genes under the control of SfJHRE were established. These cell lines responded well to JHA; these two JHRE-reporter cell lines could be used in screening assays to identify insecticides to manage S. frugiperda and other major pests.
Collapse
Affiliation(s)
- Xien Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
31
|
Chen F, Zhang XQ, Wu JJ, Jin L, Li GQ. Requirement of Myoglianin for metamorphosis in the beetle Henosepilachna vigintioctopunctata. INSECT MOLECULAR BIOLOGY 2022; 31:671-685. [PMID: 35661293 DOI: 10.1111/imb.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Henosepilachna vigintioctopunctata is a serious defoliating beetle attacking Solanaceae and Cucurbitaceae plants in many Asian countries. In the present paper, we identified a putative myoglianin (myo) gene. Hvmyo was actively transcribed throughout development, from embryo to adult. RNA interference (RNAi)-aided knockdown of Hvmyo delayed larval development by more than 2 days, reduced larval body size, inhibited the growth of antennae, wings and legs and disturbed gut purge. Knockdown of Hvmyo impaired the larval-pupal transition. All the Hvmyo RNAi larvae arrested at the larval stage or formed misshapen pupae or adults. The deformed pupae and adults were partially wrapped with exuviae, bearing separated wings. Moreover, the expression levels of five ecdysteroidogenesis genes (Hvspo, Hvphm, Hvdib, Hvsad and Hvshd), a prothocicotropic hormone (PTTH)/Torso pathway gene (Hvtorso), two 20E receptor genes (HvEcR and HvUSP), and two 20E signalling genes (HvE93 and HvFTZ-F1) were as a result of HvMyo RNAi significantly lowered. Conversely, the expression of a JH biosynthesis gene (Hvjhamt), a JH receptor gene HvMet and a JH signalling gene HvKr-h1 was greatly enhanced. Although ingestion of 20E and Hal rescued the 20E signal, it could not alleviate larval performance and defective phenotypes. Our results suggest that Myo exerts four distinctive roles in ecdysteroidogenesis, JH production, organ growth and larva-pupa-adult transformation in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Feng Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Qing Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Jian Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
32
|
Leyria J, Orchard I, Lange AB. Impact of JH Signaling on Reproductive Physiology of the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 23:ijms232213832. [PMID: 36430311 PMCID: PMC9692686 DOI: 10.3390/ijms232213832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
In adult females of several insect species, juvenile hormones (JHs) act as gonadotrophic hormones, regulating egg production. JH binds to its nuclear receptor, Methoprene tolerant (Met), triggering its dimerization with the protein Taiman (Tai). The resulting active complex induces transcription of JH response genes, such as Krüppel homolog 1 (Kr-h1). In this study we report for the first time the participation of the isoform JH III skipped bisepoxide (JHSB3) and its signaling pathway in the reproductive fitness of the classical insect model Rhodnius prolixus. The topical application of synthetic JHSB3 increases transcript and protein expression of yolk protein precursors (YPPs), mainly by the fat body but also by the ovaries, the second source of YPPs. These results are also confirmed by ex vivo assays. In contrast, when the JH signaling cascade is impaired via RNA interference by downregulating RhoprMet and RhoprTai mRNA, egg production is inhibited. Although RhoprKr-h1 transcript expression is highly dependent on JHSB3 signaling, it is not involved in egg production but rather in successful hatching. This research contributes missing pieces of JH action in the insect model in which JH was first postulated almost 100 years ago.
Collapse
|
33
|
Phurealipids, produced by the entomopathogenic bacteria, Photorhabdus, mimic juvenile hormone to suppress insect immunity and immature development. J Invertebr Pathol 2022; 193:107799. [PMID: 35850258 DOI: 10.1016/j.jip.2022.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
Abstract
Phurealipids (Photorhabdus urea lipids) are synthesized from Photorhabdus bacteria that are symbiotic to entomopathogenic nematodes. Their chemical structures are similar to that of juvenile hormone (JH) and have been suspected to mimic JH signaling in immunity and the development of insects. This study investigated the physiological roles of phurealipids with respect to their contribution to bacterial pathogenicity using four natural (HB13, HB69, HB416, and HB421) and one derivative (HB27) compound. First, phurealipids like JH suppressed insect immune responses. Overall, phurealipids showed JH like immunosuppressive behavior in a lepidopteran insect Spodoptera exigua larvae. More specifically, phurealipids significantly suppressed the hemocyte spreading behavior which is a key immune response upon immune challenge. Interestingly, the methyl urea derivatives (HB13, HB27, and HB69) were more potent than the unmethylated forms (HB416 and HB421). The inhibitory activity of phurealipids prevented the cellular immune response measured by hemocytic nodule formation in response to the bacterial challenge. Phurealipids also suppressed the expression of cecropin and gallerimycin, which are two highly inducible antimicrobial peptides, in S. exigua upon immune challenge. The immunosuppressive activity of the phurealipids significantly enhanced the bacterial pathogenicity of Bacillus thuringiensis against S. exigua. Second, phurealipids like JH prevented insect metamorphosis. Especially, the methylated urea derivatives of the phurealipids showed the JH-like function by inducing the expression of S. exigua Kr-h1, a transcriptional factor. At the pupal stage, exhibiting the lowest expression of Kr-h1, phurealipid treatments elevated the expression level of Kr-h1 and delayed the pupa-to-adult metamorphosis. These results suggest that phurealipids play crucial roles in Photorhabdus pathogenicity by suppressing host immune defenses and delaying host metamorphosis.
Collapse
|
34
|
Inui T, Sezutsu H, Daimon T. MicroRNA let-7 is required for hormonal regulation of metamorphosis in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103784. [PMID: 35533806 DOI: 10.1016/j.ibmb.2022.103784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The heterochronic microRNA let-7, which was first identified in Caenorhabditis elegans, controls the timing of developmental programs, and let-7 triggers the onset of the juvenile-adult transition in bilaterians. The expression of let-7 is strongly induced during the last larval stage of C. elegans and is highly expressed in the late last instar larvae/nymphs of the fly Drosophila melanogaster and the cockroach Blattella germanica. In the silkworm Bombyx mori, the expression of let-7 remarkably increases in the corpus cardiacum-corpus allatum complex (CC-CA) at the beginning of the last larval instar and is maintained at high levels during this instar. To determine the biological function of let-7 in B. mori, we generated a let-7 knockout line and a transgenic UAS-let-7 line. The let-7 knockout larvae were developmentally arrested in the prepupal stage and became pupal-adult intermediates after apolysis. When let-7 was ubiquitously overexpressed under the transcriptional control of an Actin3-GAL4 driver, developmental timing and growth of larvae were severely impaired in the penultimate (L4) instar, and these larvae underwent precocious metamorphosis from L4. Furthermore, our results showed that reception and signaling of ecdysteroids and juvenile hormones (JHs) normally occurred in the absence of let-7, whereas the biosynthesis of ecdysone and JHs were affected by disruption and overexpression of let-7. Together, the present study demonstrates that let-7 is required for the coordination of the biosynthesis of ecdysone and JH to ensure the developmental transition during the metamorphosis of B. mori.
Collapse
Affiliation(s)
- Tomohiro Inui
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba, Ibaraki, 305-8634, Japan
| | - Takaaki Daimon
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
35
|
He Q, Zhang Y. Kr-h1, a Cornerstone Gene in Insect Life History. Front Physiol 2022; 13:905441. [PMID: 35574485 PMCID: PMC9092015 DOI: 10.3389/fphys.2022.905441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Insect life cycle is coordinated by hormones and their downstream effectors. Krüppel homolog1 (Kr-h1) is one of the crucial effectors which mediates the actions of the two critical hormones of insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E). It is a transcription factor with a DNA-binding motif of eight C2H2 zinc fingers which is found to be conserved among insect orders. The expression of Kr-h1 is fluctuant during insect development with high abundance in juvenile instars and lower levels in the final instar and pupal stage, and reappearance in adults, which is governed by the coordination of JH, 20E, and miRNAs. The dynamic expression pattern of Kr-h1 is closely linked to its function in the entire life of insects. Over the past several years, accumulating studies have advanced our understanding of the role of Kr-h1 during insect development. It acts as a universal antimetamorphic factor in both hemimetabolous and holometabolous species by directly inhibiting the transcription of 20E signaling genes Broad-Complex (Br-C) and Ecdysone induced protein 93F (E93), and steroidogenic enzyme genes involved in ecdysone biosynthesis. Meanwhile, it promotes vitellogenesis and ovarian development in the majority of studied insects. In addition, Kr-h1 regulates insect behavioral plasticity and caste identity, neuronal morphogenesis, maturation of sexual behavior, as well as embryogenesis and metabolic homeostasis. Hence, Kr-h1 acts as a cornerstone regulator in insect life.
Collapse
Affiliation(s)
- Qianyu He
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanxi Zhang
- Daqing Municipal Ecology and Environment Bureau, Daqing, China
| |
Collapse
|
36
|
Sun YY, Fu DY, Liu B, Wang LJ, Chen H. Roles of Krüppel Homolog 1 and Broad-Complex in the Development of Dendroctonus armandi (Coleoptera: Scolytinae). Front Physiol 2022; 13:865442. [PMID: 35464080 PMCID: PMC9019567 DOI: 10.3389/fphys.2022.865442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
In insects, metamorphosis is controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Krüppel homolog 1 (Kr-h1), a key JH-early inducible gene, is responsible for the suppression of metamorphosis and the regulation of the Broad-Complex (Br-C) gene, which is induced by 20E and functions as a “pupal specifier”. In this study, we identified and characterized the expression patterns and tissue distribution of DaKr-h1 and DaBr-C at various developmental stages of Dendroctonus armandi. The expression of the two genes was induced by JH analog (JHA) methoprene and 20E, and their functions were investigated by RNA interference. DaKr-h1 and DaBr-C were predominantly expressed in the heads of larvae and were significantly downregulated during the molting stage. In contrast, the DaKr-h1 transcript level was highest in the adult anterior midgut. DaBr-C was mainly expressed in female adults, with the highest transcript levels in the ovaries. In the larval and pupal stages, both JHA and 20E significantly induced DaKr-h1, but only 20E significantly induced DaBr-C, indicating the importance of hormones in metamorphosis. DaKr-h1 knockdown in larvae upregulated DaBr-C expression, resulting in precocious metamorphosis from larvae to pupae and the formation of miniature pupae. DaKr-h1 knockdown in pupae suppressed DaBr-C expression, increased emergence, caused abnormal morphology, and caused the formation of small-winged adults. These results suggest that DaKr-h1 is required for the metamorphosis of D. armandi. Our findings provide insight into the roles of DaKr-h1 and DaBr-C in JH-induced transcriptional repression and highlight DaKr-h1 as a potential target for metamorphosis suppression in D. armandi.
Collapse
Affiliation(s)
- Ya-Ya Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Dan-Yang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Lin-Jun Wang
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Hui Chen,
| |
Collapse
|
37
|
Molecular mechanisms underlying metamorphosis in the most-ancestral winged insect. Proc Natl Acad Sci U S A 2022; 119:2114773119. [PMID: 35217609 PMCID: PMC8892354 DOI: 10.1073/pnas.2114773119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
As caterpillars metamorphose to butterflies, insects change their appearance dramatically through metamorphosis. Some insects have an immobile pupal stage for morphological remodeling (homometaboly). Other insects, such as cockroaches, have no pupal stage, and the juveniles and adults are morphologically similar (hemimetaboly). Notably, among the most-ancestral hemimetabolous insects, dragonflies drastically alter their appearance from aquatic nymphs to aerial adults. In dragonflies, we showed that transcription factors Kr-h1 and E93 are essential for regulating metamorphosis as in other insects, while broad, the master gene for pupation in holometabolous insects, regulates a number of both nymph-specific genes and adult-specific genes, providing insight into what evolutionary trajectory the key transcription factor broad has experienced before ending up with governing pupation and holometaboly. Insects comprise over half of the described species, and the acquisition of metamorphosis must have contributed to their diversity and prosperity. The order Odonata (dragonflies and damselflies) is among the most-ancestral insects with drastic morphological changes upon metamorphosis, in which understanding of the molecular mechanisms will provide insight into the evolution of incomplete and complete metamorphosis in insects. In order to identify metamorphosis-related genes in Odonata, we performed comprehensive RNA-sequencing of the blue-tailed damselfly Ischnura senegalensis at different developmental stages. Comparative RNA-sequencing analyses between nymphs and adults identified eight nymph-specific and seven adult-specific transcripts. RNA interference (RNAi) of these candidate genes demonstrated that three transcription factors, Krüppel homolog 1 (Kr-h1), broad, and E93 play important roles in metamorphosis of both I. senegalensis and a phylogenetically distant dragonfly, Pseudothemis zonata. E93 is essential for adult morphogenesis, and RNAi of Kr-h1 induced precocious metamorphosis in epidermis via up-regulation of E93. Precocious metamorphosis was also induced by RNAi of the juvenile hormone receptor Methoprene-tolerant (Met), confirming that the regulation of metamorphosis by the MEKRE93 (Met-Kr-h1-E93) pathway is conserved across diverse insects including the basal insect lineage Odonata. Notably, RNAi of broad produced unique grayish pigmentation on the nymphal abdominal epidermis. Survey of downstream genes for Kr-h1, broad, and E93 uncovered that unlike other insects, broad regulates a substantial number of nymph-specific and adult-specific genes independently of Kr-h1 and E93. These findings highlight the importance of functional changes and rewiring of the transcription factors Kr-h1, broad, and E93 in the evolution of insect metamorphosis.
Collapse
|
38
|
Oguchi K, Koshikawa S, Miura T. Hormone-related genes heterochronically and modularly regulate neotenic differentiation in termites. Dev Biol 2022; 485:70-79. [DOI: 10.1016/j.ydbio.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/26/2022]
|
39
|
Zhang X, Li S, Liu S. Juvenile Hormone Studies in Drosophila melanogaster. Front Physiol 2022; 12:785320. [PMID: 35222061 PMCID: PMC8867211 DOI: 10.3389/fphys.2021.785320] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
In the field of insect endocrinology, juvenile hormone (JH) is one of the most wondrous entomological terms. As a unique sesquiterpenoid hormone produced and released by the endocrine gland, corpus allatum (CA), JH is a critical regulator in multiple developmental and physiological processes, such as metamorphosis, reproduction, and behavior. Benefited from the precise genetic interventions and simplicity, the fruit fly, Drosophila melanogaster, is an indispensable model in JH studies. This review is aimed to present the regulatory factors on JH biosynthesis and an overview of the regulatory roles of JH in Drosophila. The future directions of JH studies are also discussed, and a few hot spots are highlighted.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| |
Collapse
|
40
|
Gao Y, Liu S, Jia Q, Wu L, Yuan D, Li EY, Feng Q, Wang G, Palli SR, Wang J, Li S. Juvenile hormone membrane signaling phosphorylates USP and thus potentiates 20-hydroxyecdysone action in Drosophila. Sci Bull (Beijing) 2022; 67:186-197. [PMID: 36546012 DOI: 10.1016/j.scib.2021.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023]
Abstract
Juvenile hormone (JH) and 20-hydroxyecdysone (20E) coordinately regulate development and metamorphosis in insects. Two JH intracellular receptors, methoprene-tolerant (Met) and germ-cell expressed (Gce), have been identified in the fruit fly Drosophila melanogaster. To investigate JH membrane signaling pathway without the interference from JH intracellular signaling, we characterized phosphoproteome profiles of the Met gce double mutant in the absence or presence of JH in both chronic and acute phases. Functioning through a potential receptor tyrosine kinase and phospholipase C pathway, JH membrane signaling activated protein kinase C (PKC) which phosphorylated ultraspiracle (USP) at Ser35, the PKC phosphorylation site required for the maximal action of 20E through its nuclear receptor complex EcR-USP. The uspS35A mutant, in which Ser was replaced with Ala at position 35 by genome editing, showed decreased expression of Halloween genes that are responsible for ecdysone biosynthesis and thus attenuated 20E signaling that delayed developmental timing. The uspS35A mutant also showed lower Yorkie activity that reduced body size. Altogether, JH membrane signaling phosphorylates USP at Ser35 and thus potentiates 20E action that regulates the normal fly development. This study helps better understand the complex JH signaling network.
Collapse
Affiliation(s)
- Yue Gao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lixian Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Emma Y Li
- International Department, The Affiliated High School of South China Normal University, Guangzhou 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guirong Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington 40546, USA
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park 20742, USA.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
41
|
Gao Q, Li B, Tian Z, De Loof A, Wang JL, Wang XP, Liu W. Key role of juvenile hormone in controlling reproductive diapause in females of the Asian lady beetle Harmonia axyridis. PEST MANAGEMENT SCIENCE 2022; 78:193-204. [PMID: 34469049 DOI: 10.1002/ps.6619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Asian lady beetle Harmonia axyridis is an important predator of several agricultural pests, including aphids and whiteflies, and thus can contribute to pest management. Commercial viability as a pest control method requires that the beetle can be mass-reared, and that workable conditions for extended shelf-life can be guaranteed. One of the features of Harmonia's life cycle is that it enters diapause in the adult stage when the length of the photophase starts shortening in late summer. Reduction of juvenile hormone (JH) titer has been demonstrated to be the common endocrine mechanism inducing reproductive diapause in insects. However, whether H. axyridis enters diapause dependent on JH shutdown and how the JH level is regulated before diapause remains unknown. RESULTS Like in other insects, the absence of JH triggers the induction and maintenance of reproductive diapause in H. axyridis, indicated by JH measurements and the knockdown of an intracellular JH receptor methoprene-tolerant (Met). Methoprene, a JH analog, significantly reversed diapause into reproduction via Met. Combined with RNA-sequencing and RNA interference, we also demonstrated that JH biosynthesis rather than the JH degradation pathway determines the reduction of JH titer in diapausing females. CONCLUSION Our results reveal the vital role of JH in regulating reproductive diapause in female H. axyridis. Harmonia axyridis diapause could thus be manipulated by targeting JH production and JH signaling. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiao Gao
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bei Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jia-Lu Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Pandey A, Bloch G. Krüppel-homologue 1 Mediates Hormonally Regulated Dominance Rank in a Social Bee. BIOLOGY 2021; 10:biology10111188. [PMID: 34827180 PMCID: PMC8614866 DOI: 10.3390/biology10111188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
Dominance hierarchies are ubiquitous in invertebrates and vertebrates, but little is known on how genes influence dominance rank. Our gaps in knowledge are specifically significant concerning female hierarchies, particularly in insects. To start filling these gaps, we studied the social bumble bee Bombus terrestris, in which social hierarchies among females are common and functionally significant. Dominance rank in this bee is influenced by multiple factors, including juvenile hormone (JH) that is a major gonadotropin in this species. We tested the hypothesis that the JH responsive transcription factor Krüppel homologue 1 (Kr-h1) mediates hormonal influences on dominance behavior. We first developed and validated a perfluorocarbon nanoparticles-based RNA interference protocol for knocking down Kr-h1 expression. We then used this procedure to show that Kr-h1 mediates the influence of JH, not only on oogenesis and wax production, but also on aggression and dominance rank. To the best of our knowledge, this is the first study causally linking a gene to dominance rank in social insects, and one of only a few such studies on insects or on female hierarchies. These findings are important for determining whether there are general molecular principles governing dominance rank across gender and taxa.
Collapse
Affiliation(s)
- Atul Pandey
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (A.P.); (G.B.)
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: (A.P.); (G.B.)
| |
Collapse
|
43
|
Gospocic J, Glastad KM, Sheng L, Shields EJ, Berger SL, Bonasio R. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 2021; 184:5807-5823.e14. [PMID: 34739833 DOI: 10.1016/j.cell.2021.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes. Depletion of Kr-h1 in the brain caused de-repression of "socially inappropriate" genes: gamergate genes were upregulated in workers, whereas worker genes were upregulated in gamergates. At the phenotypic level, loss of Kr-h1 resulted in the emergence of worker-specific behaviors in gamergates and gamergate-specific traits in workers. We conclude that Kr-h1 is a transcription factor that maintains distinct brain states established in response to socially regulated hormones.
Collapse
Affiliation(s)
- Janko Gospocic
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl M Glastad
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shelley L Berger
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA 19104, USA.
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Luo W, Liu S, Zhang W, Yang L, Huang J, Zhou S, Feng Q, Palli SR, Wang J, Roth S, Li S. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc Natl Acad Sci U S A 2021; 118:e2104461118. [PMID: 34544864 PMCID: PMC8488625 DOI: 10.1073/pnas.2104461118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
It is well documented that the juvenile hormone (JH) can function as a gonadotropic hormone that stimulates vitellogenesis by activating the production and uptake of vitellogenin in insects. Here, we describe a phenotype associated with mutations in the Drosophila JH receptor genes, Met and Gce: the accumulation of mature eggs with reduced egg length in the ovary. JH signaling is mainly activated in ovarian muscle cells and induces laminin gene expression in these cells. Meanwhile, JH signaling induces collagen IV gene expression in the adult fat body, from which collagen IV is secreted and deposited onto the ovarian muscles. Laminin locally and collagen IV remotely contribute to the assembly of ovarian muscle extracellular matrix (ECM); moreover, the ECM components are indispensable for ovarian muscle contraction. Furthermore, ovarian muscle contraction externally generates a mechanical force to promote ovulation and maintain egg shape. This work reveals an important mechanism for JH-regulated insect reproduction.
Collapse
Affiliation(s)
- Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Wenqiang Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Siegfried Roth
- Institute for Zoology, University of Cologne, D-50674 Cologne, Germany
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
45
|
Elgendy AM, Mohamed AA, Duvic B, Tufail M, Takeda M. Involvement of Cis-Acting Elements in Molecular Regulation of JH-Mediated Vitellogenin Gene 2 of Female Periplaneta americana. Front Physiol 2021; 12:723072. [PMID: 34526913 PMCID: PMC8435907 DOI: 10.3389/fphys.2021.723072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Vitellogenins (Vgs) are yolk protein precursors that are regulated by juvenile hormone (JH) and/or 20-hydroxyecdysone (20E) in insects. JH acts as the principal gonadotropin that stimulates vitellogenesis in hemimetabolous insects. In this study, we cloned and characterized the Periplaneta americana Vitellogenin 2 (Vg2) promoter. Multiple sites for putative transcription factor binding were predicted for the 1,804 bp Vg2 promoter region, such as the Broad-Complex, ecdysone response element (EcRE), GATA, Hairy, JH response element (JHRE), and Methoprene (Met)-binding motif, among others. Luciferase reporter assay has identified that construct -177 bp is enough to support JH III induction but not 20E suppression. This 38 bp region (from -177 to -139 bp) contains two conserved response element half-sites separated by 2 nucleotides spacer (DR2) and is designated as Vg2RE (-168GAGTCACGGAGTCGCCGCTG-149). Mutation assay and luciferase assay data using mutated constructs verified the crucial role of G residues in Vg2RE for binding the isolated fat body nuclear protein. In Sf9 cells, a luciferase reporter placed under the control of a minimal promoter containing Vg2RE was induced by JH III in a dose- and time-dependent manner. Nuclear proteins isolated from previtellogenic female fat body cells bound to Vg2RE, and this binding was outcompeted by a 50-fold excess of cold Drosophila melanogaster DR4 and Galleria mellonella JH binding protein response elements (Chorion factor-I/Ultraspiracle). Affinity pull-down experiment with nuclear extracts of previtellogenic female fat body, using 31-bp probe Vg2RE as bait, yielded a 71 kDa candidate nuclear protein that may mediate the regulatory action of the JH III.
Collapse
Affiliation(s)
- Azza M Elgendy
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.,Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Muhammad Tufail
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan.,Ghazi University, Dera Ghazi Khan, Punjab, Pakistan
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
46
|
Yao S, Yang Y, Xue Y, Zhao W, Liu X, Du M, Yin X, Guan R, Wei J, An S. New insights on the effects of spinosad on the development of Helicoverpa armigera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112452. [PMID: 34198186 DOI: 10.1016/j.ecoenv.2021.112452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Helicoverpa armigera (cotton bollworm) is one of the most destructive pests worldwide. Due to resistance to Bacillus thuringiensis and conventional insecticides, an effective management strategy to control this pest is urgently needed. Spinosad, a natural pesticide, is considered an alternative; however, the mechanism underlying the developmental effects of sublethal spinosad exposure remains elusive. In this study, the mechanism was examined using an insect model of H. armigera. Results confirmed that exposure to sublethal spinosad led to reduced larval wet weight, delayed larval developmental period, caused difficulty in molting, and deformed pupae. Further investigation demonstrated that exposure to sublethal spinosad caused a significant decrease in 20E titer and increase in JH titer, thereby leading to the discordance between 20E and JH titers, and consequently alteration in the expression levels of HR3 and Kr-h1. These results suggested that sublethal spinosad caused hormonal disorders in larvae, which directly affect insect development. Our study serves as a reference and basis for the toxicity evaluation of spinosad on molting and pupation in insect metamorphosis, which may contribute to identifying targets for effective control of cotton bollworm.
Collapse
Affiliation(s)
- Shuangyan Yao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Yang
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuying Xue
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
47
|
Suzuki Y, Shiotsuki T, Jouraku A, Miura K, Minakuchi C. Characterization of E93 in neometabolous thrips Frankliniella occidentalis and Haplothrips brevitubus. PLoS One 2021; 16:e0254963. [PMID: 34293026 PMCID: PMC8297894 DOI: 10.1371/journal.pone.0254963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
Insect metamorphosis into an adult occurs after the juvenile hormone (JH) titer decreases at the end of the juvenile stage. This generally coincides with decreased transcript levels of JH-response transcription factors Krüppel homolog 1 (Kr-h1) and broad (br), and increased transcript levels of the adult specifier E93. Thrips (Thysanoptera) develop through inactive and non-feeding stages referred to as “propupa” and “pupa”, and this type of distinctive metamorphosis is called neometaboly. To understand the mechanisms of hormonal regulation in thrips metamorphosis, we previously analyzed the transcript levels of Kr-h1 and br in two thrips species, Frankliniella occidentalis (Thripidae) and Haplothrips brevitubus (Phlaeothripidae). In both species, the transcript levels of Kr-h1 and br decreased in the “propupal” and “pupal” stages, and their transcription was upregulated by exogenous JH mimic treatment. Here we analyzed the developmental profiles of E93 in these two thrips species. Quantitative RT-PCR revealed that E93 expression started to increase at the end of the larval stage in F. occidentalis and in the “propupal” stage of H. brevitubus, as Kr-h1 and br mRNA levels decreased. Treatment with an exogenous JH mimic at the onset of metamorphosis prevented pupal-adult transition and caused repression of E93. These results indicated that E93 is involved in adult differentiation after JH titer decreases at the end of the larval stage of thrips. By comparing the expression profiles of Kr-h1, br, and E93 among insect species, we propose that the “propupal” and “pupal” stages of thrips have some similarities with the holometabolous prepupal and pupal stages, respectively.
Collapse
Affiliation(s)
- Youhei Suzuki
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takahiro Shiotsuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ken Miura
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
48
|
Guo S, Wu QW, Tian Z, Zhu L, King-Jones K, Zhu F, Wang XP, Liu W. Krüppel homolog 1 regulates photoperiodic reproductive plasticity in the cabbage beetle Colaphellus bowringi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103582. [PMID: 33905880 DOI: 10.1016/j.ibmb.2021.103582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Many insects exhibit reproductive plasticity where the photoperiod determines whether the insect becomes reproductively active or enters diapause. Adult reproductive diapause is a strategy that allows insects to survive harsh environmental conditions. A deficiency in juvenile hormone (JH) leads to reproductive diapause. However, little is known about the molecular mechanisms by which JH signaling regulates reproductive diapause. In this study, we used the cabbage beetle Colaphellus bowringi, a serious pest, to investigate the role of Krüppel homolog 1 (Kr-h1) in controlling photoperiodic plasticity of female reproduction. We focused on Kr-h1, since it acts as a key mediator of JH signaling. We show here that JH-Methoprene-tolerant signaling upregulated the expression of Kr-h1 in reproductively active C. bowringi females when reared under short day conditions. In the long day-treated diapausing females, Kr-h1 transcripts decreased dramatically. Interfering with Kr-h1 function repressed reproductive development by blocking vitellogenesis and ovarian growth. Further, Kr-h1 depletion induced other diapause-like traits, including elevated lipid accumulation and high expression of diapause-related genes. RNA-Seq showed that Kr-h1 played both activating and repressive roles, depending on whether downstream genes were acting in reproduction- or diapause pathways, respectively. Finally, we identified the DNA replication gene mini-chromosome maintenance 4 and two triacylglycerol lipase genes as critical downstream factors of Kr-h1 that are critical for reproductive plasticity in C. bowringi. These results reveal that Kr-h1 is a key component of the regulatory pathway that coordinates reproduction and diapause in insects in response to photoperiodic input.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qing-Wen Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Li Zhu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Fen Zhu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
49
|
The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc Natl Acad Sci U S A 2021; 118:2016878118. [PMID: 33479181 PMCID: PMC7848730 DOI: 10.1073/pnas.2016878118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Metazoan species optimize the timing of reproduction to maximize fitness. To understand how biological clocks direct reproduction, we investigated the neural substrates that produce oogenesis rhythms in the genetically amenable model organism Drosophila melanogaster. The neuropeptide allatostatin C (AstC) is an insect counterpart of the vertebrate neuropeptide somatostatin, which suppresses gonadotropin production. A subset of the brain circadian pacemaker neurons produces AstC. We have uncovered that these clock-associated AstC neurons generate the circadian oogenesis rhythm via brain insulin-producing cells and the insect gonadotropin juvenile hormone. Identification of a conserved neuropeptide pathway that links female reproduction and the biological clock offers insight into the molecular mechanisms that direct reproductive timing. The link between the biological clock and reproduction is evident in most metazoans. The fruit fly Drosophila melanogaster, a key model organism in the field of chronobiology because of its well-defined networks of molecular clock genes and pacemaker neurons in the brain, shows a pronounced diurnal rhythmicity in oogenesis. Still, it is unclear how the circadian clock generates this reproductive rhythm. A subset of the group of neurons designated “posterior dorsal neuron 1” (DN1p), which are among the ∼150 pacemaker neurons in the fly brain, produces the neuropeptide allatostatin C (AstC-DN1p). Here, we report that six pairs of AstC-DN1p send inhibitory inputs to the brain insulin-producing cells, which express two AstC receptors, star1 and AICR2. Consistent with the roles of insulin/insulin-like signaling in oogenesis, activation of AstC-DN1p suppresses oogenesis through the insulin-producing cells. We show evidence that AstC-DN1p activity plays a role in generating an oogenesis rhythm by regulating juvenile hormone and vitellogenesis indirectly via insulin/insulin-like signaling. AstC is orthologous to the vertebrate neuropeptide somatostatin (SST). Like AstC, SST inhibits gonadotrophin secretion indirectly through gonadotropin-releasing hormone neurons in the hypothalamus. The functional and structural conservation linking the AstC and SST systems suggest an ancient origin for the neural substrates that generate reproductive rhythms.
Collapse
|
50
|
Mizuno Y, Imura E, Kurogi Y, Shimada-Niwa Y, Kondo S, Tanimoto H, Hückesfeld S, Pankratz MJ, Niwa R. A population of neurons that produce hugin and express the diuretic hormone 44 receptor gene projects to the corpora allata in Drosophila melanogaster. Dev Growth Differ 2021; 63:249-261. [PMID: 34021588 DOI: 10.1111/dgd.12733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
The corpora allata (CA) are essential endocrine organs that biosynthesize and secrete the sesquiterpenoid hormone, namely juvenile hormone (JH), to regulate a wide variety of developmental and physiological events in insects. CA are directly innervated with neurons in many insect species, implying the innervations to be important for regulating JH biosynthesis. Although this is also true for the model organism Drosophila melanogaster, neurotransmitters produced in the CA-projecting neurons are yet to be identified. In this study on D. melanogaster, we aimed to demonstrate that a subset of neurons producing the neuropeptide hugin, the invertebrate counterpart of the vertebrate neuromedin U, directly projects to the adult CA. A synaptic vesicle marker in the hugin neurons was observed at their axon termini located on the CA, which were immunolabeled with a newly-generated antibody to the JH biosynthesis enzyme JH acid O-methyltransferase. We also found the CA-projecting hugin neurons to likely express a gene encoding the specific receptor for diuretic hormone 44 (Dh44). Moreover, our data suggest that the CA-projecting hugin neurons have synaptic connections with the upstream neurons producing Dh44. Unexpectedly, the inhibition of CA-projecting hugin neurons did not significantly alter the expression levels of the JH-inducible gene Krüppel-homolog 1, which implies that the CA-projecting neurons are not involved in JH biosynthesis but rather in other known biological processes. This is the first study to identify a specific neurotransmitter of the CA-projecting neurons in D. melanogaster, and to anatomically characterize a neuronal pathway of the CA-projecting neurons and their upstream neurons.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Eisuke Imura
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yoshitomo Kurogi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|