1
|
E3 Ubiquitin Ligase Regulators of Notch Receptor Endocytosis: From Flies to Humans. Biomolecules 2022; 12:biom12020224. [PMID: 35204725 PMCID: PMC8961608 DOI: 10.3390/biom12020224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Notch is a developmental receptor, conserved in the evolution of the metazoa, which regulates cell fate proliferation and survival in numerous developmental contexts, and also regulates tissue renewal and repair in adult organisms. Notch is activated by proteolytic removal of its extracellular domain and the subsequent release of its intracellular domain, which then acts in the nucleus as part of a transcription factor complex. Numerous regulatory mechanisms exist to tune the amplitude, duration and spatial patterning of this core signalling mechanism. In Drosophila, Deltex (Dx) and Suppressor of dx (Su(dx)) are E3 ubiquitin ligases which interact with the Notch intracellular domain to regulate its endocytic trafficking, with impacts on both ligand-dependent and ligand-independent signal activation. Homologues of Dx and Su(dx) have been shown to also interact with one or more of the four mammalian Notch proteins and other target substrates. Studies have shown similarities, specialisations and diversifications of the roles of these Notch regulators. This review collates together current research on vertebrate Dx and Su(dx)-related proteins, provides an overview of their various roles, and discusses their contributions to cell fate regulation and disease.
Collapse
|
2
|
Zhou D, Stobdan T, Visk D, Xue J, Haddad GG. Genetic interactions regulate hypoxia tolerance conferred by activating Notch in excitatory amino acid transporter 1-positive glial cells in Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab038. [PMID: 33576765 PMCID: PMC8022968 DOI: 10.1093/g3journal/jkab038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is a critical pathological element in many human diseases, including ischemic stroke, myocardial infarction, and solid tumors. Of particular significance and interest of ours are the cellular and molecular mechanisms that underlie susceptibility or tolerance to low O2. Previous studies have demonstrated that Notch signaling pathway regulates hypoxia tolerance in both Drosophila melanogaster and humans. However, the mechanisms mediating Notch-conferred hypoxia tolerance are largely unknown. In this study, we delineate the evolutionarily conserved mechanisms underlying this hypoxia tolerant phenotype. We determined the role of a group of conserved genes that were obtained from a comparative genomic analysis of hypoxia-tolerant D.melanogaster populations and human highlanders living at the high-altitude regions of the world (Tibetans, Ethiopians, and Andeans). We developed a novel dual-UAS/Gal4 system that allows us to activate Notch signaling in the Eaat1-positive glial cells, which remarkably enhances hypoxia tolerance in D.melanogaster, and, simultaneously, knock down a candidate gene in the same set of glial cells. Using this system, we discovered that the interactions between Notch signaling and bnl (fibroblast growth factor), croc (forkhead transcription factor C), or Mkk4 (mitogen-activated protein kinase kinase 4) are important for hypoxia tolerance, at least in part, through regulating neuronal development and survival under hypoxic conditions. Becausethese genetic mechanisms are evolutionarily conserved, this group of genes may serve as novel targets for developing therapeutic strategies and have a strong potential to be translated to humans to treat/prevent hypoxia-related diseases.
Collapse
Affiliation(s)
- Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Tsering Stobdan
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - DeeAnn Visk
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jin Xue
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabriel G Haddad
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
3
|
Yusuf IO, Chen HM, Cheng PH, Chang CY, Tsai SJ, Chuang JI, Wu CC, Huang BM, Sun HS, Chen CM, Yang SH. Fibroblast Growth Factor 9 Stimulates Neuronal Length Through NF-kB Signaling in Striatal Cell Huntington's Disease Models. Mol Neurobiol 2021; 58:2396-2406. [PMID: 33421017 DOI: 10.1007/s12035-020-02220-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Proper development of neuronal cells is important for brain functions, and impairment of neuronal development may lead to neuronal disorders, implying that improvement in neuronal development may be a therapeutic direction for these diseases. Huntington's disease (HD) is a neurodegenerative disease characterized by impairment of neuronal structures, ultimately leading to neuronal death and dysfunctions of the central nervous system. Based on previous studies, fibroblast growth factor 9 (FGF9) may provide neuroprotective functions in HD, and FGFs may enhance neuronal development and neurite outgrowth. However, whether FGF9 can provide neuronal protective functions through improvement of neuronal morphology in HD is still unclear. Here, we study the effects of FGF9 on neuronal length in HD and attempt to understand the related working mechanisms. Taking advantage of striatal cell lines from HD knock-in mice, we found that FGF9 increases total neuronal length and upregulates several structural and synaptic proteins under HD conditions. In addition, activation of nuclear factor kappa B (NF-kB) signaling by FGF9 was observed to be significant in HD cells, and blockage of NF-kB leads to suppression of these structural and synaptic proteins induced by FGF9, suggesting the involvement of NF-kB signaling in these effects of FGF9. Taken these results together, FGF9 may enhance total neuronal length through upregulation of NF-kB signaling, and this mechanism could serve as an important mechanism for neuroprotective functions of FGF9 in HD.
Collapse
Affiliation(s)
- Issa Olakunle Yusuf
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsiu-Mei Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chih-Yi Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Institute of Basic Medical Sciences, Taipei, Taiwan
| | - Jih-Ing Chuang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Institute of Basic Medical Sciences, Taipei, Taiwan
| | - Chia-Ching Wu
- Institute of Basic Medical Sciences, Taipei, Taiwan.,Department of Cell Biology and Anatomy, Taipei, Taiwan
| | - Bu-Miin Huang
- Institute of Basic Medical Sciences, Taipei, Taiwan.,Department of Cell Biology and Anatomy, Taipei, Taiwan
| | - H Sunny Sun
- Institute of Basic Medical Sciences, Taipei, Taiwan.,Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shang-Hsun Yang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, 11529, Taiwan. .,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, Taipei, Taiwan.
| |
Collapse
|
4
|
Palazzo I, Deistler K, Hoang TV, Blackshaw S, Fischer AJ. NF-κB signaling regulates the formation of proliferating Müller glia-derived progenitor cells in the avian retina. Development 2020; 147:dev.183418. [PMID: 32291273 DOI: 10.1242/dev.183418] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Retinal regeneration is robust in some cold-blooded vertebrates, but this process is ineffective in warm-blooded vertebrates. Understanding the mechanisms that suppress the reprogramming of Müller glia into neurogenic progenitors is key to harnessing the regenerative potential of the retina. Inflammation and reactive microglia are known to influence the formation of Müller glia-derived progenitor cells (MGPCs), but the mechanisms underlying this interaction are unknown. We used a chick in vivo model to investigate nuclear factor kappa B (NF-κB) signaling, a critical regulator of inflammation, during the reprogramming of Müller glia into proliferating progenitors. We find that components of the NF-κB pathway are dynamically regulated by Müller glia after neuronal damage or treatment with growth factors. Inhibition of NF-κB enhances, whereas activation suppresses, the formation of proliferating MGPCs. Following microglia ablation, the effects of NF-κB-agonists on MGPC-formation are reversed, suggesting that signals provided by reactive microglia influence how NF-κB impacts Müller glia reprogramming. We propose that NF-κB is an important signaling 'hub' that suppresses the reprogramming of Müller glia into proliferating MGPCs and this 'hub' coordinates signals provided by reactive microglia.
Collapse
Affiliation(s)
- Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle Deistler
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Lee VM, Hernandez S, Giang B, Chabot C, Hernandez J, de Bellard ME. Molecular Events Controlling Cessation of Trunk Neural Crest Migration and Onset of Differentiation. Front Cell Dev Biol 2020; 8:199. [PMID: 32318567 PMCID: PMC7147452 DOI: 10.3389/fcell.2020.00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCC) migrate extensively in vertebrate embryos to populate diverse derivatives including ganglia of the peripheral nervous system. Little is known about the molecular mechanisms that lead migrating trunk NCC to settle at selected sites in the embryo, ceasing their migration and initiating differentiation programs. To identify candidate genes involved in these processes, we profiled genes up-regulated in purified post-migratory compared with migratory NCC using a staged, macroarrayed cDNA library. A secondary screen of in situ hybridization revealed that many genes are specifically enhanced in neural crest-derived ganglia, including macrophage migration inhibitory factor (MIF), a ligand for CXCR4 receptor. Through in vivo and in vitro assays, we found that MIF functions as a potent chemoattractant for NCC. These results provide a molecular profile of genes expressed concomitant with gangliogenesis, thus, offering new markers and potential regulatory candidates involved in cessation of migration and onset of differentiation.
Collapse
Affiliation(s)
- Vivian M Lee
- Universal Cells Inc., Seattle, WA, United States
| | - Sergio Hernandez
- Biology Department, California State University Northridge, Northridge, CA, United States
| | - Belle Giang
- Moorpark College, Moorpark, CA, United States
| | - Chris Chabot
- Biology Department, California State University Northridge, Northridge, CA, United States
| | | | - Maria Elena de Bellard
- Biology Department, California State University Northridge, Northridge, CA, United States
| |
Collapse
|
6
|
Clematichinenoside Facilitates Recovery of Neurological and Motor Function in Rats after Cerebral Ischemic Injury through Inhibiting Notch/NF-κB Pathway. J Stroke Cerebrovasc Dis 2019; 28:104288. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2019] [Accepted: 07/07/2019] [Indexed: 11/23/2022] Open
|
7
|
Behera J, Kelly KE, Voor MJ, Metreveli N, Tyagi SC, Tyagi N. Hydrogen Sulfide Promotes Bone Homeostasis by Balancing Inflammatory Cytokine Signaling in CBS-Deficient Mice through an Epigenetic Mechanism. Sci Rep 2018; 8:15226. [PMID: 30323246 PMCID: PMC6189133 DOI: 10.1038/s41598-018-33149-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Previously, we have shown hyperhomocysteinemia (HHcy) to have a detrimental effect on bone remodeling, which is associated with osteoporosis. During transsulfuration, Hcy is metabolized into hydrogen sulfide (H2S), a gasotransmitter molecule known to regulate bone formation. Therefore, in the present study, we examined whether H2S ameliorates HHcy induced epigenetic and molecular alterations leading to osteoporotic bone loss. To test this mechanism, we employed cystathionine-beta-synthase heterozygote knockout mice, fed with a methionine rich diet (CBS+/− +Met), supplemented with H2S-donor NaHS for 8 weeks. Treatment with NaHS, normalizes plasma H2S, and completely prevents trabecular bone loss in CBS+/− mice. Our data showed that HHcy caused inhibition of HDAC3 activity and subsequent inflammation by imbalancing redox homeostasis. The mechanistic study revealed that inflammatory cytokines (IL-6, TNF-α) are transcriptionally activated by an acetylated lysine residue in histone (H3K27ac) of chromatin by binding to its promoter and subsequently regulating gene expression. A blockade of HDAC3 inhibition in CBS+/− mice by HDAC activator ITSA-1, led to the remodeling of histone landscapes in the genome and thereby attenuated histone acetylation-dependent inflammatory signaling. We also confirmed that RUNX2 was sulfhydrated by administration of NaHS. Collectively, restoration of H2S may provide a novel treatment for CBS-deficiency induced metabolic osteoporosis.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Kimberly E Kelly
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Michael J Voor
- Department of Orthopaedic Surgery, School of Medicine, University of Louisville, Louisville, KY, 40292, USA.,Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Naira Metreveli
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Suresh C Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
8
|
Cheng YC, Huang YC, Yeh TH, Shih HY, Lin CY, Lin SJ, Chiu CC, Huang CW, Jiang YJ. Deltex1 is inhibited by the Notch-Hairy/E(Spl) signaling pathway and induces neuronal and glial differentiation. Neural Dev 2015; 10:28. [PMID: 26714454 PMCID: PMC4696291 DOI: 10.1186/s13064-015-0055-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/20/2015] [Indexed: 12/23/2022] Open
Abstract
Background Notch signaling has been conserved throughout evolution and plays a fundamental role in various neural developmental processes and the pathogenesis of several human cancers and genetic disorders. However, how Notch signaling regulates various cellular processes remains unclear. Although Deltex proteins have been identified as cytoplasmic downstream elements of the Notch signaling pathway, few studies have been reported on their physiological role. Results We isolated zebrafish deltex1 (dtx1) and showed that this gene is primarily transcribed in the developing nervous system, and its spatiotemporal expression pattern suggests a role in neural differentiation. The transcription of dtx1 was suppressed by the direct binding of the Notch downstream transcription factors Her2 and Her8a. Overexpressing the complete coding sequence of Dtx1 was necessary for inducing neuronal and glial differentiation. By contrast, disrupting Dtx1 expression by using a Dtx1 construct without the RING finger domain reduced neuronal and glial differentiation. This effect was phenocopied by the knockdown of endogenous Dtx1 expression by using morpholinos, demonstrating the essential function of the RING finger domain and confirming the knockdown specificity. Cell proliferation and apoptosis were unaltered in Dtx1-overexpressed and -deficient zebrafish embryos. Examination of the expression of her2 and her8a in embryos with altered Dtx1 expression showed that Dxt1-induced neuronal differentiation did not require a regulatory effect on the Notch–Hairy/E(Spl) pathway. However, both Dtx1 and Notch activation induced glial differentiation, and Dtx1 and Notch activation negatively inhibited each other in a reciprocal manner, which achieves a proper balance for the expression of Dtx1 and Notch to facilitate glial differentiation. We further confirmed that the Dtx1–Notch–Hairy/E(Spl) cascade was sufficient to induce neuronal and glial differentiation by concomitant injection of an active form of Notch with dtx1, which rescued the neuronogenic and gliogenic defects caused by the activation of Notch signaling. Conclusions Our results demonstrated that Dtx1 is regulated by Notch–Hairy/E(Spl) signaling and is a major factor specifically regulating neural differentiation. Thus, our results provide new insights into the mediation of neural development by the Notch signaling pathway. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0055-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Taoyuan, 33383, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan.
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi branch, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Section of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Hung-Yu Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Taoyuan, 33383, Taiwan
| | - Ching-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Taoyuan, 33383, Taiwan
| | - Sheng-Jia Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Taoyuan, 33383, Taiwan
| | - Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Ching-Wen Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Taoyuan, 33383, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
9
|
Fujita K, Ogawa R, Kawawaki S, Ito K. Roles of chromatin remodelers in maintenance mechanisms of multipotency of mouse trunk neural crest cells in the formation of neural crest-derived stem cells. Mech Dev 2014; 133:126-45. [PMID: 24836203 DOI: 10.1016/j.mod.2014.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/05/2023]
Abstract
We analyzed roles of two chromatin remodelers, Chromodomain Helicase DNA-binding protein 7 (CHD7) and SWItch/Sucrose NonFermentable-B (SWI/SNF-B), and Bone Morphogenetic Protein (BMP)/Wnt signaling in the maintenance of the multipotency of mouse trunk neural crest cells, leading to the formation of mouse neural crest-derived stem cells (mouse NCSCs). CHD7 was expressed in the undifferentiated neural crest cells and in the dorsal root ganglia (DRG) and sciatic nerve, typical tissues containing NCSCs. BMP/Wnt signaling stimulated the expression of CHD7 and participated in maintaining the multipotency of neural crest cells. Furthermore, the promotion of CHD7 expression maintained the multipotency of these cells. The inhibition of CHD7 and SWI/SNF-B expression significantly suppressed the maintenance of the multipotency of these cells. In addition, BMP/Wnt treatment promoted CHD7 expression and caused the increase of the percentage of multipotent cells in DRG. Thus, the present data suggest that the chromatin remodelers as well as BMP/Wnt signaling play essential roles in the maintenance of the multipotency of mouse trunk neural crest cells and in the formation of mouse NCSCs.
Collapse
MESH Headings
- Animals
- Apoptosis
- Bone Morphogenetic Proteins/metabolism
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/metabolism
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- Mice
- Multipotent Stem Cells/cytology
- Multipotent Stem Cells/metabolism
- Neural Crest/cytology
- Neural Crest/metabolism
- Neural Stem Cells/cytology
- Neural Stem Cells/metabolism
- RNA, Small Interfering/genetics
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- SOXE Transcription Factors/genetics
- SOXE Transcription Factors/metabolism
- Sciatic Nerve/cytology
- Sciatic Nerve/embryology
- Sciatic Nerve/metabolism
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wnt Signaling Pathway
Collapse
Affiliation(s)
- Kyohei Fujita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryuhei Ogawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Syunsaku Kawawaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuo Ito
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
10
|
Worlitzer MMA, Schwamborn JC. The Notch co-repressor protein NKAP is highly expressed in adult mouse subventricular zone neural progenitor cells. Neuroscience 2014; 266:138-49. [PMID: 24583034 DOI: 10.1016/j.neuroscience.2014.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/20/2014] [Accepted: 02/08/2014] [Indexed: 01/07/2023]
Abstract
In the adult mammalian brain niches for neural stem cells are maintained, which enable a steady-state neurogenesis. This process is tightly regulated by multiple niche factors, including Notch and NF-κB signaling. The NF-κB-activating-protein (NKAP) has previously been shown to act as Notch co-repressor component by binding CIR and recruiting HDAC3 in T-cell development and furthermore to regulate NF-κB-dependent transcription. Here, we provide first evidence for the expression of NKAP in neurogenic cells of the adult mammalian brain. NKAP is highly expressed in Mash1(+) transit amplifying cells and PSA-NCAM(+) migrating neuroblasts throughout the subventricular zone (SVZ) and the rostral migratory stream (RMS), as well as in the hippocampus. We further show that NKAP expression levels are downregulated during the course of the RMS. Eventually, most differentiated cells in the olfactory bulb (OB) and the corpus callosum only display low levels of NKAP expression. Finally, large subsets of mature neurons in the OB, the hippocampus and the thalamus express NKAP at high levels, suggesting an additional role of NKAP outside of SVZ progenitor cells.
Collapse
Affiliation(s)
- M M A Worlitzer
- Westfälische Wilhelms-Universität Münster, ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Von-Esmarch-Straße 56, 48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF) Münster, Germany
| | - J C Schwamborn
- Westfälische Wilhelms-Universität Münster, ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Von-Esmarch-Straße 56, 48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF) Münster, Germany; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
11
|
Oved K, Morag A, Pasmanik-Chor M, Rehavi M, Shomron N, Gurwitz D. Genome-wide expression profiling of human lymphoblastoid cell lines implicates integrin beta-3 in the mode of action of antidepressants. Transl Psychiatry 2013; 3:e313. [PMID: 24129413 PMCID: PMC3818017 DOI: 10.1038/tp.2013.86] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/15/2013] [Accepted: 09/08/2013] [Indexed: 01/10/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depression. However, the link between inhibition of serotonin reuptake and remission from depression remains controversial: in spite of the rapid onset of serotonin reuptake inhibition, remission from depression takes several weeks, presumably reflecting synaptogenesis/neurogenesis and neuronal rewiring. We compared genome-wide expression profiles of human lymphoblastoid cell lines from unrelated individuals following treatment with 1 μM paroxetine for 21 days with untreated control cells and examined which genes and microRNAs (miRNAs) showed the most profound and consistent expression changes. ITGB3, coding for integrin beta-3, showed the most consistent altered expression (1.92-fold increase, P=7.5 × 10(-8)) following chronic paroxetine exposure. Using genome-wide miRNA arrays, we observed a corresponding decrease in the expression of two miRNAs, miR-221 and miR-222, both predicted to target ITGB3. ITGB3 is crucial for the activity of the serotonin transporter (SERT), the drug target of SSRIs. Moreover, it is presumably required for the neuronal guidance activity of CHL1, whose expression was formerly identified as a tentative SSRI response biomarker. Further genes whose expression was significantly modulated by chronic paroxetine are also implicated in neurogenesis. Surprisingly, the expression of SERT or serotonin receptors was not modified. Our findings implicate ITGB3 in the mode of action of SSRI antidepressants and provide a novel link between CHL1 and the SERT. Our observations suggest that SSRIs may relieve depression primarily by promoting neuronal synaptogenesis/neurogenesis rather than by modulating serotonin neurotransmission per se.
Collapse
Affiliation(s)
- K Oved
- Department of Human Molecular Genetics and
Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University,
Tel-Aviv, Israel
- Department of Cell and Developmental Biology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
| | - A Morag
- Department of Human Molecular Genetics and
Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University,
Tel-Aviv, Israel
- Department of Physiology and Pharmacology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
| | - M Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of
Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - M Rehavi
- Department of Physiology and Pharmacology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
| | - N Shomron
- Department of Cell and Developmental Biology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
- Sagol School of Neuroscience, Tel-Aviv
University, Tel-Aviv, Israel
| | - D Gurwitz
- Department of Human Molecular Genetics and
Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University,
Tel-Aviv, Israel
| |
Collapse
|
12
|
Bittencourt DA, da Costa MC, Calloni GW, Alvarez-Silva M, Trentin AG. Fibroblast Growth Factor 2 Promotes the Self-Renewal of Bipotent Glial Smooth Muscle Neural Crest Progenitors. Stem Cells Dev 2013; 22:1241-51. [DOI: 10.1089/scd.2012.0585] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Denise Avani Bittencourt
- Departamento de Biologia Celular, Embriologia e Genética, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Neurociências, Campus Universitário—Trindade, Florianópolis, Brazil
| | - Meline Coelho da Costa
- Departamento de Biologia Celular, Embriologia e Genética, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário—Trindade, Florianópolis, Brazil
| | - Giordano Wosgrau Calloni
- Departamento de Biologia Celular, Embriologia e Genética, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário—Trindade, Florianópolis, Brazil
| | - Marcio Alvarez-Silva
- Departamento de Biologia Celular, Embriologia e Genética, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Neurociências, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário—Trindade, Florianópolis, Brazil
| | - Andréa Gonçalves Trentin
- Departamento de Biologia Celular, Embriologia e Genética, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Neurociências, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário—Trindade, Florianópolis, Brazil
| |
Collapse
|
13
|
Abstract
Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|