1
|
Liu Z, Shi C, Wang B, Zhang X, Ding J, Gao P, Yuan X, Liu Z, Zhang H. Cytochrome P450 enzymes in the black-spotted frog ( Pelophylax nigromaculatus): molecular characterization and upregulation of expression by sulfamethoxazole. Front Physiol 2024; 15:1412943. [PMID: 38784115 PMCID: PMC11112259 DOI: 10.3389/fphys.2024.1412943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cytochrome P450 (CYP) enzymes are crucial for the detoxification of xenobiotics, cellular metabolism, and homeostasis. This study investigated the molecular characterization of CYP enzymes in the black-spotted frog, Pelophylax nigromaculatus, and examined the regulation of CYP expression in response to chronic exposure to the antibiotic sulfamethoxazole (SMX) at various environmental concentrations (0, 1, 10, and 100 μg/L). The full-length cDNA of Pn-CYP26B1 was identified. The sequence included open reading frames of 1,536 bp, encoding proteins comprising 511 amino acids. The signature motif, FxxGxxxCxG, was highly conserved when compared with a number of selected animal species. SMX significantly upregulated the expression of the protein CYP26B1 in frog livers at concentrations of 1 and 10 μg/L. SMX showed an affinity for CYP26B1 of -7.6 kcal/mol, indicating a potential mechanism for SMX detoxification or adaptation of the frog. These findings contributed to our understanding of the environmental impact of antibiotics on amphibian species and underscored the importance of CYP enzymes in maintaining biochemical homeostasis under exposure to xenobiotic stress.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, China
| | - Chaoli Shi
- Hangzhou Normal University, Hangzhou, China
| | | | | | - Jiafeng Ding
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Panpan Gao
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Xia Yuan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| |
Collapse
|
2
|
Kim YI, O'Rourke R, Sagerström CG. scMultiome analysis identifies embryonic hindbrain progenitors with mixed rhombomere identities. eLife 2023; 12:e87772. [PMID: 37947350 PMCID: PMC10662952 DOI: 10.7554/elife.87772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023] Open
Abstract
Rhombomeres serve to position neural progenitors in the embryonic hindbrain, thereby ensuring appropriate neural circuit formation, but the molecular identities of individual rhombomeres and the mechanism whereby they form has not been fully established. Here, we apply scMultiome analysis in zebrafish to molecularly resolve all rhombomeres for the first time. We find that rhombomeres become molecularly distinct between 10hpf (end of gastrulation) and 13hpf (early segmentation). While the embryonic hindbrain transiently contains alternating odd- versus even-type rhombomeres, our scMultiome analyses do not detect extensive odd versus even molecular characteristics in the early hindbrain. Instead, we find that each rhombomere displays a unique gene expression and chromatin profile. Prior to the appearance of distinct rhombomeres, we detect three hindbrain progenitor clusters (PHPDs) that correlate with the earliest visually observed segments in the hindbrain primordium that represent prospective rhombomere r2/r3 (possibly including r1), r4, and r5/r6, respectively. We further find that the PHPDs form in response to Fgf and RA morphogens and that individual PHPD cells co-express markers of multiple mature rhombomeres. We propose that the PHPDs contain mixed-identity progenitors and that their subdivision into individual rhombomeres requires the resolution of mixed transcription and chromatin states.
Collapse
Affiliation(s)
- Yong-Il Kim
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical SchoolAuroraUnited States
| | - Rebecca O'Rourke
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical SchoolAuroraUnited States
| | - Charles G Sagerström
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical SchoolAuroraUnited States
| |
Collapse
|
3
|
Hawkins MR, Wingert RA. Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease. Biomedicines 2023; 11:biomedicines11041180. [PMID: 37189798 DOI: 10.3390/biomedicines11041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish to humans in both development and disease. This makes the zebrafish a natural model for further interrogation into the functions of RA and RA-associated maladies for the sake of basic research, as well as human health. In this review, we explore both foundational and recent studies using zebrafish as a translational model for investigating RA from the molecular to the organismal scale.
Collapse
Affiliation(s)
- Matthew R Hawkins
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
4
|
Kim YI, O’Rourke R, Sagerström CG. scMultiome analysis identifies embryonic hindbrain progenitors with mixed rhombomere identities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525932. [PMID: 36747868 PMCID: PMC9900950 DOI: 10.1101/2023.01.27.525932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rhombomeres serve to position neural progenitors in the embryonic hindbrain, thereby ensuring appropriate neural circuit formation, but the molecular identities of individual rhombomeres and the mechanism whereby they form have not been fully established. Here we apply scMultiome analysis in zebrafish to molecularly resolve all rhombomeres for the first time. We find that rhombomeres become molecularly distinct between 10hpf (end of gastrulation) and 13hpf (early segmentation). While the mature hindbrain consists of alternating odd- versus even-type rhombomeres, our scMultiome analyses do not detect extensive odd versus even characteristics in the early hindbrain. Instead, we find that each rhombomere displays a unique gene expression and chromatin profile. Prior to the appearance of distinct rhombomeres, we detect three hindbrain progenitor clusters (PHPDs) that correlate with the earliest visually observed segments in the hindbrain primordium and that represent prospective rhombomere r2/r3 (possibly including r1), r4 and r5/r6, respectively. We further find that the PHPDs form in response to Fgf and RA morphogens and that individual PHPD cells co-express markers of multiple mature rhombomeres. We propose that the PHPDs contain mixed-identity progenitors and that their subdivision into individual mature rhombomeres requires resolution of mixed transcription and chromatin states.
Collapse
Affiliation(s)
| | | | - Charles G. Sagerström
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, 12801 E. 17th Avenue, Aurora, CO 80045
| |
Collapse
|
5
|
Song M, Yuan X, Racioppi C, Leslie M, Stutt N, Aleksandrova A, Christiaen L, Wilson MD, Scott IC. GATA4/5/6 family transcription factors are conserved determinants of cardiac versus pharyngeal mesoderm fate. SCIENCE ADVANCES 2022; 8:eabg0834. [PMID: 35275720 PMCID: PMC8916722 DOI: 10.1126/sciadv.abg0834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
GATA4/5/6 transcription factors play essential, conserved roles in heart development. To understand how GATA4/5/6 modulates the mesoderm-to-cardiac fate transition, we labeled, isolated, and performed single-cell gene expression analysis on cells that express gata5 at precardiac time points spanning zebrafish gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic gata5/6 expression. In the absence of Gata5/6, the population structure of mesendoderm-derived cells was substantially altered. In addition to the expected absence of cardiac mesoderm, we confirmed a concomitant expansion of cranial-pharyngeal mesoderm. Moreover, Gata5/6 loss led to extensive changes in chromatin accessibility near cardiac and pharyngeal genes. Functional analyses in zebrafish and the tunicate Ciona, which has a single GATA4/5/6 homolog, revealed that GATA4/5/6 acts upstream of tbx1 to exert essential and cell-autonomous roles in promoting cardiac and inhibiting pharyngeal mesoderm identity. Overall, cardiac and pharyngeal mesoderm fate choices are achieved through an evolutionarily conserved GATA4/5/6 regulatory network.
Collapse
Affiliation(s)
- Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nathan Stutt
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anastasiia Aleksandrova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| |
Collapse
|
6
|
The Cdx transcription factors and retinoic acid play parallel roles in antero-posterior position of the pectoral fin field during gastrulation. Mech Dev 2020; 164:103644. [PMID: 32911082 DOI: 10.1016/j.mod.2020.103644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
The molecular regulators that determine the precise position of the vertebrate limb along the anterio-posterior axis have not been identified. One model suggests that a combination of hox genes in the lateral plate mesoderm (LPM) promotes formation of the limb field, however redundancy among duplicated paralogs has made this model difficult to confirm. In this study, we identify an optimal window during mid-gastrulation stages when transient mis-regulation of retinoic acid signaling or the caudal related transcription factor, Cdx4, both known regulators of hox genes, can alter the position of the pectoral fin field. We show that increased levels of either RA or Cdx4 during mid-gastrulation are sufficient to rostrally shift the position of the pectoral fin field at the expense of surrounding gene expression in the anterior lateral plate mesoderm (aLPM). Alternatively, embryos deficient for both Cdx4 and Cdx1a (Cdx-deficient) form pectoral fins that are shifted towards the posterior and reveal an additional effect on size of the pectoral fin buds. Prior to formation of the pectoral fin buds, the fin field in Cdx-deficient embryos is visibly expanded into the posterior LPM (pLPM) region at the expense of surrounding gene expression. The effects on gene expression immediately post-gastrulation and during somitogenesis support a model where RA and Cdx4 act in parallel to regulate the position of the pectoral fin. Our transient method is a potentially useful model for studying the mechanisms of limb positioning along the AP axis.
Collapse
|
7
|
Isoherranen N, Zhong G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol Ther 2019; 204:107400. [PMID: 31419517 PMCID: PMC6881548 DOI: 10.1016/j.pharmthera.2019.107400] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
The Cytochrome P450 (CYP) family 26 enzymes contribute to retinoic acid (RA) metabolism and homeostasis in humans, mammals and other chordates. The three CYP26 family enzymes, CYP26A1, CYP26B1 and CYP26C1 have all been shown to metabolize all-trans-retinoic acid (atRA) it's 9-cisRA and 13-cisRA isomers and primary metabolites 4-OH-RA and 4-oxo-RA with high efficiency. While no crystal structures of CYP26 enzymes are available, the binding of various ligands has been extensively explored via homology modeling. All three CYP26 enzymes are inducible by treatment with atRA in various prenatal and postnatal tissues and cell types. However, current literature shows that in addition to regulation by atRA, CYP26 enzyme expression is also regulated by other endogenous processes and inflammatory cytokines. In humans and in animal models the expression patterns of CYP26 enzymes have been shown to be tissue and cell type specific, and the expression of the CYP26 enzymes is believed to regulate the formation of critical atRA concentration gradients in various tissue types. Yet, very little data exists on direct disease associations of altered CYP26 expression or activity. Nevertheless, data is emerging describing a variety of human genetic variations in the CYP26 enzymes that are associated with different pathologies. Interestingly, some of these genetic variants result in increased activity of the CYP26 enzymes potentially leading to complex gene-environment interactions due to variability in dietary intake of retinoids. This review highlights the current knowledge of structure-function of CYP26 enzymes and focuses on their role in human retinoid metabolism in different tissues.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Wang H, Holland PWH, Takahashi T. Gene profiling of head mesoderm in early zebrafish development: insights into the evolution of cranial mesoderm. EvoDevo 2019; 10:14. [PMID: 31312422 PMCID: PMC6612195 DOI: 10.1186/s13227-019-0128-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background The evolution of the head was one of the key events that marked the transition from invertebrates to vertebrates. With the emergence of structures such as eyes and jaws, vertebrates evolved an active and predatory life style and radiated into diversity of large-bodied animals. These organs are moved by cranial muscles that derive embryologically from head mesoderm. Compared with other embryonic components of the head, such as placodes and cranial neural crest cells, our understanding of cranial mesoderm is limited and is restricted to few species. Results Here, we report the expression patterns of key genes in zebrafish head mesoderm at very early developmental stages. Apart from a basic anterior–posterior axis marked by a combination of pitx2 and tbx1 expression, we find that most gene expression patterns are poorly conserved between zebrafish and chick, suggesting fewer developmental constraints imposed than in trunk mesoderm. Interestingly, the gene expression patterns clearly show the early establishment of medial–lateral compartmentalisation in zebrafish head mesoderm, comprising a wide medial zone flanked by two narrower strips. Conclusions In zebrafish head mesoderm, there is no clear molecular regionalisation along the anteroposterior axis as previously reported in chick embryos. In contrast, the medial–lateral regionalisation is formed at early developmental stages. These patterns correspond to the distinction between paraxial mesoderm and lateral plate mesoderm in the trunk, suggesting a common groundplan for patterning head and trunk mesoderm. By comparison of these expression patterns to that of amphioxus homologues, we argue for an evolutionary link between zebrafish head mesoderm and amphioxus anteriormost somites. Electronic supplementary material The online version of this article (10.1186/s13227-019-0128-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijia Wang
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Peter W H Holland
- 2Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Tokiharu Takahashi
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
9
|
Addison M, Xu Q, Cayuso J, Wilkinson DG. Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain. Dev Cell 2018; 45:606-620.e3. [PMID: 29731343 PMCID: PMC5988564 DOI: 10.1016/j.devcel.2018.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 10/25/2022]
Abstract
The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity.
Collapse
Affiliation(s)
- Megan Addison
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Qiling Xu
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jordi Cayuso
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
10
|
Liu C, Lin C, Yao J, Wei Q, Xing G, Cao X. Dynamic expression analysis of armc10, the homologous gene of human GPRASP2, in zebrafish embryos. Mol Med Rep 2017; 16:5931-5937. [PMID: 28849214 PMCID: PMC5865771 DOI: 10.3892/mmr.2017.7357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/23/2017] [Indexed: 02/01/2023] Open
Abstract
G protein‑coupled receptor‑associated sorting protein 2 (GPRASP2), a member of the GASP family, has been reported to be involved in the modulation of transcription. However, few studies have revealed the role of GPRASP2 in the development and progression of diseases. As a model organism, zebrafish have been widely used to investigate human diseases. In the present study, zebrafish armadillo repeat‑containing 10 (armc10), an orthologous gene of human GPRASP2 was identified, and the spatial and temporal expression patterns of armc10 in zebrafish during early embryonic development were revealed. Bioinformatics analyses showed that ARMC10 protein sequences were highly conserved. Reverse transcription polymerase chain reaction analysis and whole mount in situ hybridization revealed that zebrafish armc10 was maternally expressed and was detected at a weak level up to 12 h post‑fertilization (hpf), however, its expression increased to a high level at 24 hpf. At the 75% epiboly stage and 12 hpf, armc10 was widely expressed in the embryo. At 24 hpf, armc10 mRNA was expressed in the nervous system of the zebrafish head. When the embryo was 2 days old, the wide expression of armc10 was maintained in the nervous system of the zebrafish head. At 72 hpf, the mRNA expression of armc10 was located specifically in the otic vesicles in addition to the nervous system of the head. At 96 hpf, the expression of armc10 was maintained in the otic vesicles and the nervous system of the head. The results of the present study provided novel insight into the spatial and temporal mRNA expression of armc10 in zebrafish, for the further investigation of nervous system diseases.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Biotechnology, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Changsong Lin
- Department of Biotechnology, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jun Yao
- Department of Biotechnology, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Qinjun Wei
- Department of Biotechnology, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xin Cao
- Department of Biotechnology, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
11
|
Montalbano A, Juergensen L, Roeth R, Weiss B, Fukami M, Fricke-Otto S, Binder G, Ogata T, Decker E, Nuernberg G, Hassel D, Rappold GA. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency. EMBO Mol Med 2016; 8:1455-1469. [PMID: 27861128 PMCID: PMC5167135 DOI: 10.15252/emmm.201606623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022] Open
Abstract
Mutations in the homeobox gene SHOX cause SHOX deficiency, a condition with clinical manifestations ranging from short stature without dysmorphic signs to severe mesomelic skeletal dysplasia. In rare cases, individuals with SHOX deficiency are asymptomatic. To elucidate the factors that modify disease severity/penetrance, we studied a three-generation family with SHOX deficiency. The variant p.Phe508Cys of the retinoic acid catabolizing enzyme CYP26C1 co-segregated with the SHOX variant p.Val161Ala in the affected individuals, while the SHOX mutant alone was present in asymptomatic individuals. Two further cases with SHOX deficiency and damaging CYP26C1 variants were identified in a cohort of 68 individuals with LWD The identified CYP26C1 variants affected its catabolic activity, leading to an increased level of retinoic acid. High levels of retinoic acid significantly decrease SHOX expression in human primary chondrocytes and zebrafish embryos. Individual morpholino knockdown of either gene shortens the pectoral fins, whereas depletion of both genes leads to a more severe phenotype. Together, our findings describe CYP26C1 as the first genetic modifier for SHOX deficiency.
Collapse
Affiliation(s)
- Antonino Montalbano
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Lonny Juergensen
- Department of Internal Medicine III - Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Birgit Weiss
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Gerhard Binder
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Eva Decker
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Gudrun Nuernberg
- Center for Molecular Medicine, Cologne, Germany
- Cologne Center for Genomics, Cologne, Germany
| | - David Hassel
- Department of Internal Medicine III - Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Cyp26 Enzymes Facilitate Second Heart Field Progenitor Addition and Maintenance of Ventricular Integrity. PLoS Biol 2016; 14:e2000504. [PMID: 27893754 PMCID: PMC5125711 DOI: 10.1371/journal.pbio.2000504] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Although retinoic acid (RA) teratogenicity has been investigated for decades, the mechanisms underlying RA-induced outflow tract (OFT) malformations are not understood. Here, we show zebrafish embryos deficient for Cyp26a1 and Cyp26c1 enzymes, which promote RA degradation, have OFT defects resulting from two mechanisms: first, a failure of second heart field (SHF) progenitors to join the OFT, instead contributing to the pharyngeal arch arteries (PAAs), and second, a loss of first heart field (FHF) ventricular cardiomyocytes due to disrupted cell polarity and extrusion from the heart tube. Molecularly, excess RA signaling negatively regulates fibroblast growth factor 8a (fgf8a) expression and positively regulates matrix metalloproteinase 9 (mmp9) expression. Although restoring Fibroblast growth factor (FGF) signaling can partially rescue SHF addition in Cyp26 deficient embryos, attenuating matrix metalloproteinase (MMP) function can rescue both ventricular SHF addition and FHF integrity. These novel findings indicate a primary effect of RA-induced OFT defects is disruption of the extracellular environment, which compromises both SHF recruitment and FHF ventricular integrity. Retinoic acid (RA) is the most active metabolic product of vitamin A. The embryonic heart is particularly sensitive to inappropriate RA levels, with cardiac outflow tract (OFT) defects among the most common RA-induced malformations. However, the mechanisms underlying these RA-induced defects are not understood. Cyp26 enzymes facilitate degradation of RA and thus are required to limit RA levels in early development. Here, we present evidence that loss of Cyp26 enzymes induces cardiac OFT defects through two mechanisms. First, we find that Cyp26-deficient zebrafish embryos fail to add later-differentiating ventricular cardiac progenitors to the OFT, with some of these progenitors instead contributing to the nearby arch arteries. Second, Cyp26-deficient embryos cannot maintain the integrity of the nascent heart tube, with ventricular cells within the heart tube losing their polarity and being extruded. Our data indicate that excess expression of matrix metalloproteinase 9, an enzyme that degrades the extracellular matrix, underlies both the cardiac progenitor addition and heart tube integrity defects seen in Cyp26-deficient embryos. Our findings highlight perturbation of the extracellular matrix as a major cause of RA-induced cardiac OFT defects that specifically disrupt ventricular development at later stages than previously appreciated.
Collapse
|
13
|
Liu C, Yao J, Wei Q, Xing G, Cao X. Spatial and temporal expression patterns of Osbpl2a and Osbpl2b during zebrafish embryonic development. Int J Pediatr Otorhinolaryngol 2016; 84:174-9. [PMID: 27063776 DOI: 10.1016/j.ijporl.2016.02.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The mutated OSBPL2 (OMIM: 606731), encoding oxysterol binding protein-like protein 2, was recently identified as a novel causative gene for autosomal dominant nonsyndromic hearing loss (ADNSHL). We reported the expression patterns of Osbpl2 in zebrafish, in order to further understand the role of OSBPL2 in hearing formation and development. METHODS Zebrafish was used as an animal model, and the expression of Osbpl2 was investigated by whole mount in situ hybridization. RESULTS Bioinformatics analysis indicates that zebrafish has two homologues of Osbpl2 gene (Osbpl2a and Osbpl2b) and Osbpl2b is the orthologous gene of human OSBPL2. No expression of Osbpl2a and Osbpl2b mRNA is detected at 75% epiboly. The zygotical expression of the two genes has not been started at 11-somite stage. At 24h post-fertilization (hpf), both Osbpl2a and Osbpl2b are found at ventricle zone of brain, however, the expression level of Osbpl2a is higher than that of Osbpl2b. When embryos are 48hpf, the expression level of Osbpl2a and Osbpl2b becomes higher at the ventricle zone. At 72hpf, Osbpl2b is only found at liver primordium, while Osbpl2a is not detected anywhere obviously. At 96hpf, Osbpl2b is found at pharyngeal arches, liver, digestive tract and otic vesicle, while Osbpl2a remains undetected. CONCLUSION Osbpl2b was demonstrated to be the orthologous gene of human OSBPL2, which has strong maternal expression, while Osbpl2a was detected without obvious maternal expression. This work would contribute to the further study of the molecular mechanism and function of OSBPL2 implicated with ADNSHL.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Biotechnology, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jun Yao
- Department of Biotechnology, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qinjun Wei
- Department of Biotechnology, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Guangqian Xing
- Department of Otolaryngology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Xin Cao
- Department of Biotechnology, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
14
|
Chang J, Skromne I, Ho RK. CDX4 and retinoic acid interact to position the hindbrain-spinal cord transition. Dev Biol 2016; 410:178-189. [PMID: 26773000 DOI: 10.1016/j.ydbio.2015.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022]
Abstract
The sub-division of the posterior-most territory of the neural plate results in the formation of two distinct neural structures, the hindbrain and the spinal cord. Although many of the molecular signals regulating the development of these individual structures have been elucidated, the mechanisms involved in delineating the boundary between the hindbrain and spinal cord remain elusive. Two molecules, retinoic acid (RA) and the Cdx4 transcription factor have been previously implicated as important regulators of hindbrain and spinal cord development, respectively. Here, we provide evidence that suggests multiple regulatory interactions occur between RA signaling and the Cdx4 transcription factor to establish the anterior-posterior (AP) position of the transition between the hindbrain and spinal cord. Using chemical inhibitors to alter RA concentrations and morpholinos to knock-down Cdx4 function in zebrafish, we show that Cdx4 acts to prevent RA degradation in the presumptive spinal cord domain by suppressing expression of the RA degradation enzyme, Cyp26a1. In the hindbrain, RA signaling modulates its own concentration by activating the expression of cyp26a1 and inhibiting the expansion of cdx4. Therefore, interactions between Cyp26a1 and Cdx4 modulate RA levels along the AP axis to segregate the posterior neural plate into the hindbrain and spinal cord territories.
Collapse
Affiliation(s)
- Jessie Chang
- Committee on Developmental Biology, University of Chicago, Chicago, IL 60637, USA
| | - Isaac Skromne
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Robert K Ho
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th St, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Maier EC, Whitfield TT. RA and FGF signalling are required in the zebrafish otic vesicle to pattern and maintain ventral otic identities. PLoS Genet 2014; 10:e1004858. [PMID: 25473832 PMCID: PMC4256275 DOI: 10.1371/journal.pgen.1004858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
During development of the zebrafish inner ear, regional patterning in the ventral half of the otic vesicle establishes zones of gene expression that correspond to neurogenic, sensory and non-neural cell fates. FGF and Retinoic acid (RA) signalling from surrounding tissues are known to have an early role in otic placode induction and otic axial patterning, but how external signalling cues are translated into intrinsic patterning during otic vesicle (OV) stages is not yet understood. FGF and RA signalling pathway members are expressed in and around the OV, suggesting important roles in later patterning or maintenance events. We have analysed the temporal requirement of FGF and RA signalling for otic development at stages after initial anteroposterior patterning has occurred. We show that high level FGF signalling acts to restrict sensory fates, whereas low levels favour sensory hair cell development; in addition, FGF is both required and sufficient to promote the expression of the non-neural marker otx1b in the OV. RA signalling has opposite roles: it promotes sensory fates, and restricts otx1b expression and the development of non-neural fates. This is surprisingly different from the earlier requirement for RA signalling in specification of non-neural fates via tbx1 expression, and highlights the shift in regulation that takes place between otic placode and vesicle stages in zebrafish. Both FGF and RA signalling are required for the development of the otic neurogenic domain and the generation of otic neuroblasts. In addition, our results indicate that FGF and RA signalling act in a feedback loop in the anterior OV, crucial for pattern refinement. The vertebrate inner ear is a complex three-dimensional structure with hearing and balance functions. To form a functional ear in the embryo, it is crucial that the right cells develop at the right time and in the right place. These cells include the sensory hair cells that detect sound and movement, neurons that relay sensory information to the brain, and structural cells. We have investigated patterning and maintenance events in the developing ear of the zebrafish embryo. We show that two signalling pathways, FGF and Retinoic Acid (RA), act in an antagonistic manner to regulate the numbers of sensory hair cells that develop, together with the expression of a key gene, otx1b, required for the development of structural cells. However, the two signalling pathways act in concert to regulate the emergence of neuronal cells. Our data also indicate that FGF and RA signalling form a feedback loop, placing them at the heart of the regulatory network that ensures correct patterning is maintained in the ear. Both FGF and RA signalling are employed to generate hair cells and neurons for replacement therapies to treat hearing loss. Understanding the roles of FGF and RA signalling underpins the development of such therapies.
Collapse
Affiliation(s)
- Esther C. Maier
- MRC Centre for Developmental and Biomedical Genetics, Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Tanya T. Whitfield
- MRC Centre for Developmental and Biomedical Genetics, Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Zhang J, Yao J, Wang R, Zhang Y, Liu S, Sun L, Jiang Y, Feng J, Liu N, Nelson D, Waldbieser G, Liu Z. The cytochrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq data sets. Biochim Biophys Acta Gen Subj 2014; 1840:2813-28. [PMID: 24780645 DOI: 10.1016/j.bbagen.2014.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cytochrome P450s (CYPs) encode one of the most diverse enzyme superfamily in nature. They catalyze oxidative reactions of endogenous molecules and exogenous chemicals. METHODS We identified CYPs genes through in silico analysis using EST, RNA-Seq and genome databases of channel catfish. Phylogenetic analyses and conserved syntenic analyses were conducted to determine their identities and orthologies. Meta-analysis of RNA-Seq databases was conducted to analyze expression profile of CYP genes following bacterial infection. RESULTS A full set of 61 CYP genes was identified and characterized in channel catfish. Phylogenetic tree and conserved synteny provided strong evidence of their identities and orthorlogy. Lineage-specific gene duplication was evident in a number of clans in channel catfish. CYP46A1 is missing in the catfish genome as observed with syntenic analysis and RT-PCR analysis. Thirty CYPs were found up- or down-regulated in liver, while seven and eight CYPs were observed regulated in intestine and gill following bacterial infection. CONCLUSION We systematically identified and characterized a full set of 61 CYP genes in channel catfish and studied their expression profiles after bacterial infection. While bacterial challenge altered the expression of large numbers of CYP genes, the mechanisms and significance of these changes are not known. GENERAL SIGNIFICANCE This work provides an example to systematically study CYP genes in non-model species. Moreover, it provides a basis for further toxicological and physiological studies in channel catfish.
Collapse
Affiliation(s)
- Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Yanliang Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Jianbin Feng
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - David Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, USA
| | - Geoff Waldbieser
- USDA, ARS, Catfish Genetics Research Unit, 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
17
|
Rodríguez-Marí A, Cañestro C, BreMiller RA, Catchen JM, Yan YL, Postlethwait JH. Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One 2013; 8:e73951. [PMID: 24040125 PMCID: PMC3769385 DOI: 10.1371/journal.pone.0073951] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
To help understand the elusive mechanisms of zebrafish sex determination, we studied the genetic machinery regulating production and breakdown of retinoic acid (RA) during the onset of meiosis in gonadogenesis. Results uncovered unexpected mechanistic differences between zebrafish and mammals. Conserved synteny and expression analyses revealed that cyp26a1 in zebrafish and its paralog Cyp26b1 in tetrapods independently became the primary genes encoding enzymes available for gonadal RA-degradation, showing lineage-specific subfunctionalization of vertebrate genome duplication (VGD) paralogs. Experiments showed that zebrafish express aldh1a2, which encodes an RA-synthesizing enzyme, in the gonad rather than in the mesonephros as in mouse. Germ cells in bipotential gonads of all zebrafish analyzed were labeled by the early meiotic marker sycp3, suggesting that in zebrafish, the onset of meiosis is not sexually dimorphic as it is in mouse and is independent of Stra8, which is required in mouse but was lost in teleosts. Analysis of dead-end knockdown zebrafish depleted of germ cells revealed the germ cell-independent onset and maintenance of gonadal aldh1a2 and cyp26a1 expression. After meiosis initiated, somatic cell expression of cyp26a1 became sexually dimorphic: up-regulated in testes but not ovaries. Meiotic germ cells expressing the synaptonemal complex gene sycp3 occupied islands of somatic cells that lacked cyp26a1 expression, as predicted by the hypothesis that Cyp26a1 acts as a meiosis-inhibiting factor. Consistent with this hypothesis, females up-regulated cyp26a1 in oocytes that entered prophase-I meiotic arrest, and down-regulated cyp26a1 in oocytes resuming meiosis. Co-expression of cyp26a1 and the pluripotent germ cell stem cell marker pou5f1(oct4) in meiotically arrested oocytes was consistent with roles in mouse to promote germ cell survival and to prevent apoptosis, mechanisms that are central for tipping the sexual fate of gonads towards the female pathway in zebrafish.
Collapse
Affiliation(s)
- Adriana Rodríguez-Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (JHP); (CC)
| | - Ruth A. BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Julian M. Catchen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (JHP); (CC)
| |
Collapse
|
18
|
Lara-Ramírez R, Zieger E, Schubert M. Retinoic acid signaling in spinal cord development. Int J Biochem Cell Biol 2013; 45:1302-13. [PMID: 23579094 DOI: 10.1016/j.biocel.2013.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022]
Abstract
Retinoic acid (RA) is an important signaling molecule mediating intercellular communication through vertebrate development. Here, we present and discuss recent information on the roles of the RA signaling pathway in spinal cord development. RA is an important player in the patterning and definition of the spinal cord territory from very early stages of development, even before the appearance of the neural plate and further serves a role in the patterning of the spinal cord both along the dorsoventral and anteroposterior axes, particularly in the promotion of neuronal differentiation. It is thus required to establish a variety of neuronal cell types at specific positions of the spinal cord. The main goal of this review is to gather information from vertebrate models, including fish, frogs, chicken and mice, and to put this information in a comparative context in an effort to visualize how the RA pathway was incorporated into the evolving vertebrate spinal cord and to identify mechanisms that are both common and different in the various vertebrate models. In doing so, we try to reconstruct how spinal cord development has been regulated by the RA signaling cascade through vertebrate diversification, highlighting areas which require further studies to obtain a better understanding of the evolutionary events that shaped this structure in the vertebrate lineage.
Collapse
Affiliation(s)
- Ricardo Lara-Ramírez
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, UMR 7009 - CNRS/UPMC, EvoInSiDe Team, Observatoire Océanologique, 181 Chemin du Lazaret, BP 28, 06230 Villefranche-sur-Mer, France
| | | | | |
Collapse
|
19
|
Slavotinek AM, Mehrotra P, Nazarenko I, Tang PLF, Lao R, Cameron D, Li B, Chu C, Chou C, Marqueling AL, Yahyavi M, Cordoro K, Frieden I, Glaser T, Prescott T, Morren MA, Devriendt K, Kwok PY, Petkovich M, Desnick RJ. Focal facial dermal dysplasia, type IV, is caused by mutations in CYP26C1. Hum Mol Genet 2012; 22:696-703. [PMID: 23161670 DOI: 10.1093/hmg/dds477] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Focal facial dermal dysplasia (FFDD) Type IV is a rare syndrome characterized by facial lesions resembling aplasia cutis in a preauricular distribution along the line of fusion of the maxillary and mandibular prominences. To identify the causative gene(s), exome sequencing was performed in a family with two affected siblings. Assuming autosomal recessive inheritance, two novel sequence variants were identified in both siblings in CYP26C1-a duplication of seven base pairs, which was maternally inherited, c.844_851dupCCATGCA, predicting p.Glu284fsX128 and a missense mutation, c.1433G>A, predicting p.Arg478His, that was paternally inherited. The duplication predicted a frameshift mutation that led to a premature stop codon and premature chain termination, whereas the missense mutation was not functional based on its in vitro expression in mammalian cells. The FFDD skin lesions arise along the sites of fusion of the maxillary and mandibular prominences early in facial development, and Cyp26c1 was expressed exactly along the fusion line for these facial prominences in the first branchial arch in mice. Sequencing of four additional, unrelated Type IV FFDD patients and eight Type II or III TWIST2-negative FFDD patients revealed that three of the Type IV patients were homozygous for the duplication, whereas none of the Type II or III patients had CYP26C1 mutations. The seven base pairs duplication was present in 0.3% of healthy controls and 0.3% of patients with other birth defects. These findings suggest that the phenotypic manifestations of FFDD Type IV can be non-penetrant or underascertained. Thus, FFDD Type IV results from the loss of function mutations in CYP26C1.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143-0316, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Uno T, Ishizuka M, Itakura T. Cytochrome P450 (CYP) in fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:1-13. [PMID: 22418068 DOI: 10.1016/j.etap.2012.02.004] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 05/31/2023]
Abstract
Cytochrome P450 (CYP) enzymes are members of the hemoprotein superfamily, and are involved in the mono-oxygenation reactions of a wide range of endogenous and exogenous compounds in mammals and plants. Characterization of CYP genes in fish has been carried out intensively over the last 20 years. In Japanese pufferfish (Takifugu rubripes), 54 genes encoding P450s have been identified. Across all species of fish, 137 genes encoding P450s have been identified. These genes are classified into 18 CYP families: namely, CYP1, CYP2, CYP3, CYP4, CYP5, CYP7, CYP8, CYP11, CYP17, CYP19, CYP20, CYP21, CYP24, CYP26, CYP27, CYP39, CYP46 and CYP51.We pinpointed eight CYP families: namely, CYP1, CYP2, CYP3, CYP4, CYP11, CYP17, CYP19 and CYP26 in this review because these CYP families are studied in detail. Studies of fish P450s have provided insights into the regulation of P450 genes by environmental stresses including water pollution. In this review, we present an overview of the CYP families in fish.
Collapse
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Nada-ku Hyogo, Japan.
| | | | | |
Collapse
|
21
|
Kam RKT, Deng Y, Chen Y, Zhao H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2012; 2:11. [PMID: 22439772 PMCID: PMC3325842 DOI: 10.1186/2045-3701-2-11] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
Retinoic acid (RA) is a morphogen derived from retinol (vitamin A) that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR) and retinoic acid X receptor (RXR) which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.
Collapse
Affiliation(s)
- Richard Kin Ting Kam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P, R, China.
| | | | | | | |
Collapse
|
22
|
Li C, Luo L, Awerman J, McGrath P. Whole Zebrafish Cytochrome P450 Assay for Assessing Drug Metabolism and Safety. Zebrafish 2011. [DOI: 10.1002/9781118102138.ch9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
23
|
Linney E, Donerly S, Mackey L, Dobbs-McAuliffe B. The negative side of retinoic acid receptors. Neurotoxicol Teratol 2011; 33:631-40. [PMID: 21767634 PMCID: PMC3208776 DOI: 10.1016/j.ntt.2011.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/03/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
This is a review of research that supports a hypothesis regarding early restriction of gene expression in the vertebrate embryo. We hypothesize that vertebrate retinoic acid receptors (RARs for several vertebrates but rars for zebrafish) are part of an embryonic, epigenetic switch whose default position, at the time of fertilization is "OFF". This is due to the assemblage of a rar-corepressor-histone deacetylase complex on retinoic acid response elements (RAREs) in regulatory regions of a subset of genes. In addition, selective and precise allocation of retinoic acid during early development through the interaction of Phase I enzymes throws the switch "ON" in a predictable, developmental manner. We are proposing that this is a basic, early embryonic switch that can cause the initiation of cascades of gene expression that are responsible for at least some early, diversification of cell phenotypes. Dehydrogenases and a subset of cytochrome p450 genes (cyp26a1, cyp26b1, and cyp26c1) play the major role in providing the retinoic acid and limiting its access. We also suggest that this mechanism may be playing a significant role in the repression of genes in undifferentiated stem cells.
Collapse
Affiliation(s)
- Elwood Linney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States.
| | | | | | | |
Collapse
|
24
|
Gongal PA, March LD, Holly VL, Pillay LM, Berry-Wynne KM, Kagechika H, Waskiewicz AJ. Hmx4 regulates Sonic hedgehog signaling through control of retinoic acid synthesis during forebrain patterning. Dev Biol 2011; 355:55-64. [DOI: 10.1016/j.ydbio.2011.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 02/01/2023]
|
25
|
Chamcheu JC, Siddiqui IA, Syed DN, Adhami VM, Liovic M, Mukhtar H. Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys 2011; 508:123-37. [PMID: 21176769 PMCID: PMC3142884 DOI: 10.1016/j.abb.2010.12.019] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
Keratins, the major structural protein of all epithelia are a diverse group of cytoskeletal scaffolding proteins that form intermediate filament networks, providing structural support to keratinocytes that maintain the integrity of the skin. Expression of keratin genes is usually regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Amongst the 54 known functional keratin genes in humans, about 22 different genes including, the cornea, hair and hair follicle-specific keratins have been implicated in a wide range of hereditary diseases. The exact phenotype of each disease usually reflects the spatial expression level and the types of mutated keratin genes, the location of the mutations and their consequences at sub-cellular levels as well as other epigenetic and/or environmental factors. The identification of specific pathogenic mutations in keratin disorders formed the basis of our understanding that led to re-classification, improved diagnosis with prognostic implications, prenatal testing and genetic counseling in severe keratin genodermatoses. Molecular defects in cutaneous keratin genes encoding for keratin intermediate filaments (KIFs) causes keratinocytes and tissue-specific fragility, accounting for a large number of genetic disorders in human skin and its appendages. These diseases are characterized by keratinocytes fragility (cytolysis), intra-epidermal blistering, hyperkeratosis, and keratin filament aggregation in severely affected tissues. Examples include epidermolysis bullosa simplex (EBS; K5, K14), keratinopathic ichthyosis (KPI; K1, K2, K10) i.e. epidermolytic ichthyosis (EI; K1, K10) and ichthyosis bullosa of Siemens (IBS; K2), pachyonychia congenita (PC; K6a, K6b, K16, K17), epidermolytic palmo-plantar keratoderma (EPPK; K9, (K1)), monilethrix (K81, K83, K86), ectodermal dysplasia (ED; K85) and steatocystoma multiplex. These keratins also have been identified to have roles in apoptosis, cell proliferation, wound healing, tissue polarity and remodeling. This review summarizes and discusses the clinical, ultrastructural, molecular genetics and biochemical characteristics of a broad spectrum of keratin-related genodermatoses, with special clinical emphasis on EBS, EI and PC. We also highlight current and emerging model tools for prognostic future therapies. Hopefully, disease modeling and in-depth understanding of the molecular pathogenesis of the diseases may lead to the development of novel therapies for several hereditary cutaneous diseases.
Collapse
Affiliation(s)
- Jean Christopher Chamcheu
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Imtiaz A. Siddiqui
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Deeba N. Syed
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Vaqar M. Adhami
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Slovenia
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Hasan Mukhtar
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
26
|
Hermsen SA, van den Brandhof EJ, van der Ven LT, Piersma AH. Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies. Toxicol In Vitro 2011; 25:745-53. [DOI: 10.1016/j.tiv.2011.01.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/05/2011] [Accepted: 01/09/2011] [Indexed: 10/18/2022]
|
27
|
Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jönsson ME, Nelson DR, Stegeman JJ. Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genomics 2010; 11:643. [PMID: 21087487 PMCID: PMC3012610 DOI: 10.1186/1471-2164-11-643] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. RESULTS Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. There are orthologous relationships for some CYP1 s and some CYP3 s between zebrafish and human. In contrast, zebrafish have 47 CYP2 genes, compared to 16 in human, with only two (CYP2R1 and CYP2U1) recognized as orthologous based on sequence. Analysis of shared synteny identified CYP2 gene clusters evolutionarily related to mammalian CYP2 s, as well as unique clusters. CONCLUSIONS Transcript profiling by microarray and quantitative PCR revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different sets of genes over the course of development. Transcripts of some CYP occur also in oocytes. The results provide a foundation for the use of zebrafish as a model in toxicological, pharmacological and chemical disease research.
Collapse
Affiliation(s)
- Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Andrew G McArthur
- Andrew McArthur Consulting, 11 Roanoke Road, Hamilton, Ontario, Canada
| | - Akira Kubota
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Juliano Zanette
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS 96201-900, Brazil
| | - Thiago Parente
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria E Jönsson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - David R Nelson
- Department of Molecular Sciences, University of Tennessee, Memphis, TN, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
28
|
Gongal PA, French CR, Waskiewicz AJ. Aberrant forebrain signaling during early development underlies the generation of holoprosencephaly and coloboma. Biochim Biophys Acta Mol Basis Dis 2010; 1812:390-401. [PMID: 20850526 DOI: 10.1016/j.bbadis.2010.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 09/08/2010] [Indexed: 01/10/2023]
Abstract
In this review, we highlight recent literature concerning the signaling mechanisms underlying the development of two neural birth defects, holoprosencephaly and coloboma. Holoprosencephaly, the most common forebrain defect, occurs when the cerebral hemispheres fail to separate and is typically associated with mispatterning of embryonic midline tissue. Coloboma results when the choroid fissure in the eye fails to close. It is clear that Sonic hedgehog (Shh) signaling regulates both forebrain and eye development, with defects in Shh, or components of the Shh signaling cascade leading to the generation of both birth defects. In addition, other intercellular signaling pathways are known factors in the incidence of holoprosencephaly and coloboma. This review will outline recent advances in our understanding of forebrain and eye embryonic pattern formation, with a focus on zebrafish studies of Shh and retinoic acid pathways. Given the clear overlap in the mechanisms that generate both diseases, we propose that holoprosencephaly and coloboma can represent mild and severe aspects of single phenotypic spectrum resulting from aberrant forebrain development. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Patricia A Gongal
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
29
|
Gonzalez-Quevedo R, Lee Y, Poss KD, Wilkinson DG. Neuronal regulation of the spatial patterning of neurogenesis. Dev Cell 2010; 18:136-47. [PMID: 20152184 PMCID: PMC2822724 DOI: 10.1016/j.devcel.2009.11.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 10/05/2009] [Accepted: 11/13/2009] [Indexed: 11/25/2022]
Abstract
Precise regulation of neurogenesis is achieved in specific regions of the vertebrate nervous system by formation of distinct neurogenic and nonneurogenic zones. We have investigated how neurogenesis becomes confined to zones adjacent to rhombomere boundaries in the zebrafish hindbrain. The nonneurogenic zone at segment centers comprises a distinct progenitor population that expresses fibroblast growth factor (fgfr) 2, erm, sox9b, and the retinoic acid degrading enzyme, cyp26b1. FGF receptor activation upregulates expression of these genes and inhibits neurogenesis in segment centers. Cyp26 activity is a key effector inhibiting neuronal differentiation, suggesting antagonistic interactions with retinoid signaling. We identify the critical FGF ligand, fgf20a, which is expressed by specific neurons located in the mantle region at the center of segments, adjacent to the nonneurogenic zone. Fgf20a mutants have ectopic neurogenesis and lack the segment center progenitor population. Our findings reveal how signaling from neurons induces formation of a nonneurogenic zone of neural progenitors.
Collapse
Affiliation(s)
- Rosa Gonzalez-Quevedo
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Yoonsung Lee
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G. Wilkinson
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
30
|
Arellano-Aguilar O, Montoya RM, Garcia CM. Endogenous Functions and Expression of Cytochrome P450 Enzymes in Teleost Fish: A Review. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/10641260903243487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
31
|
Abstract
Retinoic acid (RA) is a critical signaling molecule that regulates gene transcription and the cell cycle. Understanding of RA signaling has increased dramatically over the past decades, but the connection between whole body RA homeostasis and gene regulation in individual cells is still unclear. It has been proposed that cytochrome P450 family 26 (CYP26) enzymes have a role in determining the cellular exposure to RA by inactivating RA in cells that do not need RA. The CYP26 enzymes have been shown to metabolize RA efficiently and they are also inducible by RA in selected systems. However, their expression patterns in different cell types and a mechanistic understanding of their function is still lacking. Based on preliminary kinetic data and protein expression levels, one may predict that if CYP26A1 is expressed in the liver at even very low levels, it will be the major RA hydroxylase in this tissue. As such, it is an attractive pharmacological target for drug development when one aims to increase circulating or cellular RA concentrations. To further the understanding of how CYP26 enzymes contribute to the regulation of RA homeostasis, structural information of the CYP26s, commercially available recombinant enzymes and good specific and sensitive antibodies are needed.
Collapse
Affiliation(s)
- Jayne E. Thatcher
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Cyp26 enzymes function in endoderm to regulate pancreatic field size. Proc Natl Acad Sci U S A 2009; 106:7864-9. [PMID: 19416885 DOI: 10.1073/pnas.0813108106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The control of organ size and position relies, at least in part, upon appropriate regulation of the signals that specify organ progenitor fields. Pancreatic cell fates are specified by retinoic acid (RA), and proper size and localization of the pancreatic field are dependent on tight control of RA signaling. Here we show that the RA-degrading Cyp26 enzymes play a critical role in defining the normal anterior limit of the pancreatic field. Disruption of Cyp26 function causes a dramatic expansion of pancreatic cell types toward the anterior of the embryo. The cyp26a1 gene is expressed in the anterior trunk endoderm at developmental stages when RA is signaling to specify pancreas, and analysis of cyp26a1/giraffe (gir) mutant zebrafish embryos confirms that cyp26a1 plays the primary role in setting the anterior limit of the pancreas. Analysis of the gir mutants further reveals that cyp26b1 and cyp26c1 function redundantly to partially compensate for loss of Cyp26a1 function. We used cell transplantation to determine that Cyp26a1 functions directly in endoderm to modulate RA signaling and limit the pancreatic field. Taken together with our finding that endodermal expression of cyp26 genes is subject to positive regulation by RA, our data reveal a feedback loop within the endoderm. Such feedback can maintain consistent levels of RA signaling, despite environmental fluctuations in RA concentration, thus ensuring a consistent size and location of the pancreatic field.
Collapse
|
33
|
Hu P, Tian M, Bao J, Xing G, Gu X, Gao X, Linney E, Zhao Q. Retinoid regulation of the zebrafish cyp26a1 promoter. Dev Dyn 2008; 237:3798-808. [PMID: 19035346 PMCID: PMC2735207 DOI: 10.1002/dvdy.21801] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cyp26A1 is a major enzyme that controls retinoic acid (RA) homeostasis by metabolizing RA into bio-inactive metabolites. Previous research revealed that the mouse Cyp26A1 promoter has two canonical RA response elements (RAREs) that underlie the regulation of the gene by RA. Analyzing the 2,533-base pairs (2.5 k) genomic sequence upstream of zebrafish cyp26a1 start codon, we report that the two RAREs are conserved in zebrafish cyp26a1 promoter. Mutagenesis demonstrated that the two RAREs work synergistically in RA inducibility of cyp26a1. Fusing the 2.5 k (kilobase pairs) fragment to the enhanced yellow fluorescent protein (eYFP) reporter gene, we have generated two transgenic lines of zebrafish [Tg(cyp26a1:eYFP)]. The transgenic zebrafish display expression patterns similar to that of cyp26a1 gene in vivo. Consistent with the in vitro results, the reporter activity is RA inducible in embryos. Taken together, our results demonstrate that the 2.5 k fragment underlies the regulation of the zebrafish cyp26a1 gene by RA.
Collapse
Affiliation(s)
- Ping Hu
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, Jiangsu, China
| | - Miao Tian
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jie Bao
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, Jiangsu, China
| | - Guangdong Xing
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xingxing Gu
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiang Gao
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, Jiangsu, China
| | - Elwood Linney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Qingshun Zhao
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Laue K, Jänicke M, Plaster N, Sonntag C, Hammerschmidt M. Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development 2008; 135:3775-87. [PMID: 18927157 PMCID: PMC3608526 DOI: 10.1242/dev.021238] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal syndromes are among the most common birth defects. Vertebrate skeletogenesis involves two major cell types: cartilage-forming chondrocytes and bone-forming osteoblasts. In vitro, both are under the control of retinoic acid (RA), but its exact in vivo effects remained elusive. Here, based on the positional cloning of the dolphin mutation, we have studied the role of the RA-oxidizing enzyme Cyp26b1 during cartilage and bone development in zebrafish. cyp26b1 is expressed in condensing chondrocytes as well as in osteoblasts and their precursors. cyp26b1 mutants and RA-treated wild-type fish display a reduction in midline cartilage and the hyperossification of facial and axial bones, leading to fusions of vertebral primordia, a defect not previously described in the context of RA signaling. Fusions of cervical vertebrae were also obtained by treating mouse fetuses with the specific Cyp26 inhibitor R115866. Together with data on the expression of osteoblast markers, our results indicate that temporal and spatial restriction of RA signaling by Cyp26 enzymes is required to attenuate osteoblast maturation and/or activity in vivo. cyp26b1 mutants may serve as a model to study the etiology of human vertebral disorders such as Klippel-Feil anomaly.
Collapse
Affiliation(s)
- Kathrin Laue
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| | - Martina Jänicke
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| | - Nikki Plaster
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | - Carmen Sonntag
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | - Matthias Hammerschmidt
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| |
Collapse
|
35
|
Spoorendonk KM, Peterson-Maduro J, Renn J, Trowe T, Kranenbarg S, Winkler C, Schulte-Merker S. Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 2008; 135:3765-74. [PMID: 18927155 DOI: 10.1242/dev.024034] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinoic acid (RA) plays important roles in diverse biological processes ranging from germ cell specification to limb patterning. RA ultimately exerts its effect in the nucleus, but how RA levels are being generated and maintained locally is less clear. Here, we have analyzed the zebrafish stocksteif mutant, which exhibits severe over-ossification of the entire vertebral column. stocksteif encodes cyp26b1, a cytochrome P450 member that metabolizes RA. The mutant is completely phenocopied by treating 4 dpf wild-type embryos with either RA or the pharmacological Cyp26 blocker R115866, thus identifying a previously unappreciated role for RA and cyp26b1 in osteogenesis of the vertebral column. Cyp26b1 is expressed within osteoblast cells, demonstrating that RA levels within these cells need to be tightly controlled. Furthermore, we have examined the effect of RA on osteoblasts in vivo. As numbers of osteoblasts do not change upon RA treatment, we suggest that RA causes increased activity of axial osteoblasts, ultimately resulting in defective skeletogenesis.
Collapse
Affiliation(s)
- Kirsten M Spoorendonk
- Hubrecht Institute, University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The vitamin A derivative retinoic acid performs many functions in vertebrate development and is thought to act as a diffusible morphogen that patterns the anterior-posterior axis of the hindbrain. Recent work in several systems has led to insights into how the spatial distribution of retinoic acid is regulated. These have shown local control of synthesis and degradation, and computational models suggest that degradation by the Cyp26 enzymes plays a critical role in the formation of a morphogen gradient as well as its ability to compensate for fluctuations in RA levels.
Collapse
Affiliation(s)
- Richard J. White
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
37
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 2:125-37. [PMID: 18248172 DOI: 10.1089/zeb.2005.2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Liang D, Zhang M, Bao J, Zhang L, Xu X, Gao X, Zhao Q. Expressions of Raldh3 and Raldh4 during zebrafish early development. Gene Expr Patterns 2008; 8:248-53. [PMID: 18262854 DOI: 10.1016/j.gep.2007.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 11/16/2022]
Abstract
Retinoic acid (RA) plays crucial roles in vertebrate embryogenesis. Four retinal dehydrogenases (Raldhs) that are responsible for RA synthesis have been characterized in mammals. However, only Raldh2 ortholog is identified in zebrafish. Here, we report the identification of raldh3 and raldh4 genes in zebrafish. The predicted proteins encoded by zebrafish raldh3 and raldh4 exhibit 70.0% and 73.5% amino acid identities with mouse Raldh3 and Raldh4, respectively. RT-PCR analyses reveal that both raldh3 and raldh4 mRNAs are present in early development. However, whole mount in situ hybridization shows that raldh3 mRNA is first expressed in the developing eye region of zebrafish embryos at 10-somite stage. At 24 hpf (hours post fertilization), raldh3 mRNA is expressed in the ventral retina of eye. At 36 hpf, the mRNA is also expressed in otic vesicle in addition to ventral retina, and it maintains its expression pattern till 2 dpf (days post fertilization). At 3 dpf, raldh3 mRNA becomes very weak in ventral retina but is present in otic vesicle at a high level. At 5 dpf and 7 dpf, raldh3 is no longer expressed in eyes but is expressed in otic vesicles at a very low level. raldh4 mRNA is initially detected in developing liver and intestine regions at 2 dpf embryos. Its expression level becomes very high in these two regions of embryos from 3 dpf to 5 dpf. Analysis on the sections of 5 dpf embryos reveals that raldh4 is expressed in the epithelium of intestine. At 7 dpf, raldh4 mRNA is only weakly expressed in the epithelium of intestinal bulb.
Collapse
Affiliation(s)
- Dong Liang
- Model Animal Research Center, MOE Key Laboratory of Model Animal and Disease Studies, Nanjing University, Pukou High-tech Development Zone, 12 Xuefu Road, Nanjing, Jiangsu 210061, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Gongal PA, Waskiewicz AJ. Zebrafish model of holoprosencephaly demonstrates a key role for TGIF in regulating retinoic acid metabolism. Hum Mol Genet 2007; 17:525-38. [PMID: 17998248 DOI: 10.1093/hmg/ddm328] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Holoprosencephaly (HPE) is the most common human congenital forebrain defect, affecting specification of forebrain tissue and subsequent division of the cerebral hemispheres. The causes of HPE are multivariate and heterogeneous, and include exposure to teratogens, such as retinoic acid (RA), and mutations in forebrain patterning genes. Many of the defects in HPE patients resemble animal models with aberrant RA levels, which also show severe forebrain abnormalities. RA plays an important role in early neural patterning of the vertebrate embryo: expression of RA-synthesizing enzymes initiates high RA levels in the trunk, which are required for proper anterior-posterior patterning of the hindbrain and spinal cord. In the forebrain and midbrain, RA-degrading enzymes are expressed, protecting these regions from the effects of RA. However, the mechanisms that regulate RA-synthesizing and RA-degrading enzymes are poorly understood. Mutations in the gene TGIF are associated with incidence of HPE. We demonstrate in zebrafish that Tgif plays a key role in regulating RA signaling, and is essential to properly pattern the forebrain. Tgif is necessary for normal initiation of genes that control RA synthesis and degradation, resulting in defects in RA-dependent central nervous system patterning in Tgif-depleted embryos. The loss of the forebrain-specific RA-degrading enzyme cyp26a1 causes a forebrain phenotype that mimics tgif morphants. We propose a model in which Tgif controls forebrain patterning by regulating RA degradation. The consequences of abnormal RA levels for forebrain patterning are profound, and imply that in human patients with TGIF deficiencies, increased forebrain RA levels contribute to the development of HPE.
Collapse
Affiliation(s)
- Patricia A Gongal
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
40
|
Hernandez RE, Putzke AP, Myers JP, Margaretha L, Moens CB. Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development 2007; 134:177-87. [PMID: 17164423 PMCID: PMC1765950 DOI: 10.1242/dev.02706] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoic acid (RA) is essential for normal vertebrate development, including the patterning of the central nervous system. During early embryogenesis, RA is produced in the trunk mesoderm through the metabolism of vitamin A derived from the maternal diet and behaves as a morphogen in the developing hindbrain where it specifies nested domains of Hox gene expression. The loss of endogenous sources of RA can be rescued by treatment with a uniform concentration of exogenous RA, indicating that domains of RA responsiveness can be shaped by mechanisms other than the simple diffusion of RA from a localized posterior source. Here, we show that the cytochrome p450 enzymes of the Cyp26 class, which metabolize RA into polar derivatives, function redundantly to shape RA-dependent gene-expression domains during hindbrain development. In zebrafish embryos depleted of the orthologs of the three mammalian CYP26 genes CYP26A1, CYP26B1 and CYP26C1, the entire hindbrain expresses RA-responsive genes that are normally restricted to nested domains in the posterior hindbrain. Furthermore, we show that Cyp26 enzymes are essential for exogenous RA to rescue hindbrain patterning in RA-depleted embryos. We present a ;gradient-free' model for hindbrain patterning in which differential RA responsiveness along the hindbrain anterior-posterior axis is shaped primarily by the dynamic expression of RA-degrading enzymes.
Collapse
Affiliation(s)
- Rafael E Hernandez
- HHMI and Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
41
|
Wang L, Yao J, Chen L, Chen J, Xue J, Jia W. Expression and possible functional roles of cytochromes P450 2J1 (zfCyp 2J1) in zebrafish. Biochem Biophys Res Commun 2007; 352:850-5. [PMID: 17157820 DOI: 10.1016/j.bbrc.2006.11.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 11/13/2006] [Indexed: 12/08/2022]
Abstract
Cytochrome P450 2J (Cyp2J) subfamilies are recognized as catalysts of arachidonic acid metabolism in extrahepatic tissues of many species. However, to date, no P450 2J have been identified in zebrafish. We describe here a zfCyp2J1 cDNA which encodes a putative protein of 496 amino acids and shares 51%, 51%, 50%, 51% and 50% identity with mouse Cyp2J6, rabbit Cyp2J1, human Cyp2J2, cow Cyp2J2, and rat Cyp2J4, respectively. Despite detectable levels of expression by RT-PCR, no expression was shown by in situ hybridization using whole-mount tissues of the embryos. Gene-specific knockdown by antisense morpholino oligonucleotide had no phenotypic effect on embryonic development. However, over-expression of zfCyp2J1 by injection of the embryos with the cDNA resulted in substantial dose-dependent morphological defects. With adult zebrafish, whole-mount in situ hybridization showed that zfCyp2J1 was expressed predominantly in the brain and gonads. A semi-quantitative RT-PCR analysis further revealed that the zfCyp2J1 transcript was also expressed in the ovary, testis, heart, liver, and kidney. High levels of zfCyp2J1 mRNA were evident in primary growth stage (stage I) oocytes and cortical alveolus stage (stage II) oocytes but nearly undetectable in stage III and matured oocytes. These results suggest that zfCyp2J1 may not be involved in zebrafish embryogenesis but may rather play an important role in the functioning of brain and gonads of the adults. In addition, zfCyp2J1 may play a particularly crucial role in early oocyte maturation.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
42
|
Echeverri K, Oates AC. Coordination of symmetric cyclic gene expression during somitogenesis by Suppressor of Hairless involves regulation of retinoic acid catabolism. Dev Biol 2006; 301:388-403. [PMID: 17098223 DOI: 10.1016/j.ydbio.2006.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/29/2006] [Accepted: 10/05/2006] [Indexed: 01/25/2023]
Abstract
Vertebrate embryos faithfully produce bilaterally symmetric somites that give rise to repetitive body structures such as vertebrae and skeletal muscle. Body segmentation is regulated by a cyclic gene expression system, containing the Delta-Notch pathway and targets, which generates bilaterally symmetric oscillations across the Pre-Somitic Mesoderm (PSM). The position of the forming somite boundary is controlled by interaction of this oscillator with a determination front comprised of opposing gradients of FGF and retinoic acid (RA) signalling. Disruption of RA production leads to asymmetries in cyclic gene expression, but the link between RA and the oscillator is unknown. In somitogenesis, Notch signalling activates target genes through the transcription factor Suppressor of Hairless (Su(H)). Here, we report that two Su(H) genes coordinate bilaterally symmetric positioning of somite boundaries in the zebrafish embryo. Combined Su(H) gene knockdown caused defects in visceral left/right asymmetry, neurogenic lateral inhibition, and symmetrical failure of the segmentation oscillator. However, by selectively down-regulating Su(H)2 or Su(H)1 function using specific antisense morpholinos, we observed asymmetric defects in anterior or posterior somite boundaries, respectively. These morphological abnormalities were reflected by underlying asymmetric cyclic gene expression waves in the presomitic mesoderm, indicating a key role for Su(H) in coordinating the left-right symmetry of this process. Strikingly, expression of the RA-degrading enzyme cyp26a1 in the tailbud was controlled by Su(H) activity, and morpholino knockdown of cyp26a1 alone caused asymmetric cyclic dlc expression, suggesting that excess RA in the tailbud may contribute to the cyclic asymmetries. Indeed, exogenous RA was sufficient to generate asymmetric expression of all cyclic genes. Our observations indicate that one element of the Notch signalling pathway, Su(H), is required for control of RA metabolism in the tailbud and that this regulation is involved in bilateral symmetry of cyclic gene expression and somitogenesis.
Collapse
Affiliation(s)
- Karen Echeverri
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany
| | | |
Collapse
|
43
|
Gu X, Xu F, Song W, Wang X, Hu P, Yang Y, Gao X, Zhao Q. A Novel Cytochrome P450, Zebrafish Cyp26D1, Is Involved in Metabolism of All-trans Retinoic Acid. Mol Endocrinol 2006; 20:1661-72. [PMID: 16455818 DOI: 10.1210/me.2005-0362] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractRetinoid signaling is essential for development of vertebrate embryos, and its action is mainly through retinoic acid (RA) binding to its RA receptors and retinoid-X receptors, while the critical concentration and localization of RA in embryos are determined by the presence and activity of retinal dehydrogenases (for RA synthesis) and cytochrome P450 RAs (Cyp26s) (for degradation of RA). Previously, we identified a novel cyp26 gene (cyp26d1) in zebrafish that is expressed in hindbrain during early development. Using reverse-phase HPLC analyses, we show here that zebrafish Cyp26D1 expressed in 293T cells could metabolize all-trans RA, 9-cis RA, and 13-cis RA, but could not metabolize retinol or retinal. The metabolites of all-trans RA produced by Cyp26D1 were the same as that produced by Cyp26A1, which are mainly 4-hydroxy-all-trans-RA and 4-oxo-all-trans-RA. Performing mRNA microinjection into zebrafish embryos, we demonstrated that overexpression of Cyp26D1 in embryos not only caused the distance between rhombomere 5 and the first somite of the injected embryos to be shorter than control embryos but also resulted in left-right asymmetry of somitogenesis in the injected embryos. These alterations were similar to those caused by the overexpression of cyp26a1 in zebrafish embryos and to that which resulted from treating embryos with 1 μm 4-diethylamino-benzaldehyde (retinal dehydrogenase inhibitor), implying that cyp26d1 can antagonize RA activity in vivo. Together, our in vitro and in vivo results provided direct evidence that zebrafish Cyp26D1 is involved in RA metabolism.
Collapse
Affiliation(s)
- Xingxing Gu
- Model Animal Research Center and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Pukou District, Nanjing 210061, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hamade A, Deries M, Begemann G, Bally-Cuif L, Genêt C, Sabatier F, Bonnieu A, Cousin X. Retinoic acid activates myogenesis in vivo through Fgf8 signalling. Dev Biol 2006; 289:127-40. [PMID: 16316642 DOI: 10.1016/j.ydbio.2005.10.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 09/13/2005] [Accepted: 10/21/2005] [Indexed: 11/21/2022]
Abstract
Retinoic acid (RA) has been shown to regulate muscle differentiation in vitro. Here, we have investigated the role of RA signalling during embryonic myogenesis in zebrafish. We have altered RA signalling from gastrulation stages onwards by either inhibiting endogenous RA synthesis using an inhibitor of retinaldehyde dehydrogenases (DEAB) or by addition of exogenous RA. DEAB reduces expression of the myogenic markers myoD and myogenin in somites, whereas RA induces increased expression of these genes and strongly induces premature myoD expression in the presomitic mesoderm (psm). The expression dynamics of myf5 in presomitic and somitic mesoderm suggest that RA promotes muscle differentiation, a role supported by the fact that RA activates expression of fast myosin, while DEAB represses it. We identify Fgf8 as a major relay factor in RA-mediated activation of myogenesis. We show that fgf8 expression in somites and anterior psm is regulated by RA, and find that in the absence of Fgf8 signalling in the acerebellar mutant RA fails to promote myoD expression. We propose that, in the developing embryo, localised synthesis of RA by Raldh2 in the anterior psm and in somites activates fgf8 expression which in turn induces the expression of myogenic genes and fast muscle differentiation.
Collapse
Affiliation(s)
- Aline Hamade
- UMR866 Différenciation Cellulaire et Croissance, INRA, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Retinoid signaling plays an important role in the developmental patterning of the hindbrain. Studies of the teratogenic effects of retinoids showed early on that the hindbrain suffered patterning defects in cases of retinoid excess or deficiency. Closer examination of these effects in animal models suggested that retinoids might play a physiological role in specifying the antero-posterior axis of the hindbrain. This idea was supported by the localization of retinoid synthetic and degradative enzymes, binding proteins, and receptors to the hindbrain and neighboring regions of the neuroepithelium and the mesoderm. In parallel, it became clear that the molecular patterning of the hindbrain, in terms of the regionalized expression of Hox genes and other developmental regulatory genes, is profoundly influenced by retinoid signaling.
Collapse
Affiliation(s)
- Joel C Glover
- Department of Physiology, PB 1103 Blindern, University of Oslo, 0317 Oslo, Norway
| | | | | |
Collapse
|