1
|
Xiong L, Yang G. Description and molecular characterisation of Babesia ailuropodae n. sp., a new piroplasmid species infecting giant pandas. Parasit Vectors 2024; 17:315. [PMID: 39033131 PMCID: PMC11265107 DOI: 10.1186/s13071-024-06402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Babesia spp. are protozoan parasites that infect the red blood cells of domesticated animals, wildlife and humans. A few cases of giant pandas (a flagship species in terms of wildlife conservation) infected with a putative novel Babesia sp. have been reported. However, comprehensive research on the morphological and molecular taxonomic classification of this novel Babesia sp. is still lacking. This study was designed to close this gap and formally describe this new Babesia sp. infecting giant pandas. METHODS Detailed morphological, molecular and phylogenetic analyses were conducted to characterise this Babesia sp. and to assess its systematic relationships with other Babesia spp. Blood samples from giant pandas infected with Babesia were subjected to microscopic examination. The 18S ribosomal RNA (18S rRNA), cytochrome b (cytb) and mitochondrial genome (mitogenome) of the new Babesia sp. were amplified, sequenced and assembled using DNA purified from blood samples taken from infected giant pandas. Based on the newly generated 18S rRNA, cytb and mitogenome sequences, phylogenetic trees were constructed. RESULTS Morphologically, the Babesia sp. from giant pandas exhibited various forms, including round to oval ring-shaped morphologies, resembling those found in other small canine Babesia spp. and displaying typical tetrads. Phylogenetic analyses with the 18S rRNA, cytb and mitogenome sequences revealed that the new Babesia sp. forms a monophyletic group, with a close phylogenetic relationship with the Babesia spp. that infect bears (Ursidae), raccoons (Procyonidae) and canids (Canidae). Notably, the mitogenome structure consisted of six ribosomal large subunit-coding genes (LSU1-6) and three protein-coding genes (cytb, cox3 and cox1) arranged linearly. CONCLUSIONS Based on coupled morphological and genetic analyses, we describe a novel species of the genus Babesia, namely, Babesia ailuropodae n. sp., which infects giant pandas.
Collapse
Affiliation(s)
- Lang Xiong
- Sichuan Agricultural University, Sichuan, China
| | | |
Collapse
|
2
|
Liu Q, Guan XA, Li DF, Zheng YX, Wang S, Xuan XN, Zhao JL, He L. Babesia gibsoni Whole-Genome Sequencing, Assembling, Annotation, and Comparative Analysis. Microbiol Spectr 2023; 11:e0072123. [PMID: 37432130 PMCID: PMC10434002 DOI: 10.1128/spectrum.00721-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 07/12/2023] Open
Abstract
The intracellular protozoan parasite Babesia gibsoni infects canine erythrocytes and causes babesiosis. The hazards to animal health have increased due to the rise of B. gibsoni infections and medication resistance. However, the lack of high-quality full-genome sequencing sets has expanded the obstacles to the development of pathogeneses, drugs, and vaccines. In this study, the whole genome of B. gibsoni was sequenced, assembled, and annotated. The genomic size of B. gibsoni was 7.94 Mbp in total. Four chromosomes with the size of 0.69 Mb, 2.10 Mb, 2.77 Mb, and 2.38 Mb, respectively, 1 apicoplast (28.4 Kb), and 1 mitochondrion (5.9 Kb) were confirmed. KEGG analysis revealed 2,641 putative proteins enriched on 316 pathways, and GO analysis showed 7,571 annotations of the nuclear genome in total. Synteny analysis showed a high correlation between B. gibsoni and B. bovis. A new divergent point of B. gibsoni occurred around 297.7 million years ago, which was earlier than that of B. bovis, B. ovata, and B. bigemina. Orthology analysis revealed 22 and 32 unique genes compared to several Babesia spp. and apicomplexan species. The metabolic pathways of B.gibsoni were characterized, pointing to a minimal size of the genome. A species-specific secretory protein SA1 and 19 homologous genes were identified. Selected specific proteins, including apetala 2 (AP2) factor, invasion-related proteins BgAMA-1 and BgRON2, and rhoptry function proteins BgWH_04g00700 were predicted, visualized, and modeled. Overall, whole-genome sequencing provided molecular-level support for the diagnosis, prevention, clinical treatment, and further research of B. gibsoni. IMPORTANCE The whole genome of B. gibsoni was first sequenced, annotated, and disclosed. The key part of genome composition, four chromosomes, was comparatively analyzed for the first time. A full-scale phylogeny evolution analysis based on the whole-genome-wide data of B. gibsoni was performed, and a new divergent point on the evolutionary path was revealed. In previous reports, molecular studies were often limited by incomplete genomic data, especially in key areas like life cycle regulation, metabolism, and host-pathogen interaction. With the whole-genome sequencing of B. gibsoni, we provide useful genetic data to encourage the exploration of new terrain and make it feasible to resolve the theoretical and practical problems of babesiosis.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Xing-Ai Guan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Dong-Fang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Ya-Xin Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Xue-Nan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro Hokkaido, Japan
| | - Jun-Long Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
3
|
A Multi-copy Nucleic Acid-Based Diagnostic Test for Bovine Tropical Theileriosis. Acta Parasitol 2022; 67:504-510. [PMID: 34146240 DOI: 10.1007/s11686-021-00428-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Bovine tropical theileriosis (BTT) is a haemoprotozoan tick-borne disease that implicates huge losses to livestock in terms of considerable mortality and morbidity in tropical and subtropical regions of the globe. Currently available diagnostic methods have less specificity and sensitivity towards the detection of Theileria species. Therefore, an attempt was made to diagnose Theileria annulata by targeting a multi-copy gene, viz. mitochondrially encoded cytochrome b (MT-CYB) gene via polymerase chain reaction (PCR) in different agro-zones of India. METHODS AND RESULTS 129 cattle blood samples were collected from major livestock rearing regions of India and processed for both molecular and microscopic techniques. Screening of Giemsa-stained thin blood smears was able to detect 14 samples (10.85%) as positive for T. annulata. However, the MT-CYB gene-based PCR assay detected 107 samples (82.94%) positive for T. annulata out of 129 samples. Furthermore, the MT-CYB gene-based PCR assay was standardized in terms of its sensitivity and specificity. Specificity of PCR assay was evaluated against other common haemoprotozoan parasites of tropical countries viz. Babesia bigemina, Anaplasma marginale and Trypanosoma evansi. The multi-copy MT-CYB gene-based PCR assay provided an optimum level of sensitivity (up to the level of 10 femtogram) and high specificity. Haematological examination (Hb, PCV and TLC) of 113 samples revealed significantly (p < 0.05) decreased Hb and PCV levels in positive animals in comparison with the control group of healthy animals. However, the control group had significantly higher (p < 0.001) TLC levels than the positive group. CONCLUSION The MT-CYB gene-based PCR assay was found to be highly sensitive that can accurately detect the occurrence of T. annulata infection in carrier animals which are potential infection sources to healthier populations in naive demographic locations through infected ticks.
Collapse
|
4
|
Sickle Cell Anemia and Babesia Infection. Pathogens 2021; 10:pathogens10111435. [PMID: 34832591 PMCID: PMC8618680 DOI: 10.3390/pathogens10111435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Babesia is an intraerythrocytic, obligate Apicomplexan parasite that has, in the last century, been implicated in human infections via zoonosis and is now widespread, especially in parts of the USA and Europe. It is naturally transmitted by the bite of a tick, but transfused blood from infected donors has also proven to be a major source of transmission. When infected, most humans are clinically asymptomatic, but the parasite can prove to be lethal when it infects immunocompromised individuals. Hemolysis and anemia are two common symptoms that accompany many infectious diseases, and this is particularly true of parasitic diseases that target red cells. Clinically, this becomes an acute problem for subjects who are prone to hemolysis and depend on frequent transfusions, like patients with sickle cell anemia or thalassemia. Little is known about Babesia's pathogenesis in these hemoglobinopathies, and most parallels are drawn from its evolutionarily related Plasmodium parasite which shares the same environmental niche, the RBCs, in the human host. In vitro as well as in vivo Babesia-infected mouse sickle cell disease (SCD) models support the inhibition of intra-erythrocytic parasite proliferation, but mechanisms driving the protection of such hemoglobinopathies against infection are not fully studied. This review provides an overview of our current knowledge of Babesia infection and hemoglobinopathies, focusing on possible mechanisms behind this parasite resistance and the clinical repercussions faced by Babesia-infected human hosts harboring mutations in their globin gene.
Collapse
|
5
|
Sun Y, Jiang B, Zheng W, Wang H, Jiang R, Wang X, Jia N, Yang F, Chen H, Jiang J, Cao W. Isolation and in vitro cultivation of Babesia venatorum (Apicomplexa: Babesiidae), a zoonotic hemoprotozoan from Ixodes persulcatus ticks in China. BIOSAFETY AND HEALTH 2021; 3:210-216. [DOI: 10.1016/j.bsheal.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci 2019; 232:116636. [DOI: 10.1016/j.lfs.2019.116636] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
|
7
|
To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia. Int J Parasitol 2019; 49:153-163. [DOI: 10.1016/j.ijpara.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
|
8
|
Guo J, Miao X, He P, Li M, Wang S, Cui J, Huang C, He L, Zhao J. Babesia gibsoni endemic to Wuhan, China: mitochondrial genome sequencing, annotation, and comparison with apicomplexan parasites. Parasitol Res 2018; 118:235-243. [PMID: 30474737 DOI: 10.1007/s00436-018-6158-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Babesia gibsoni (B. gibsoni), an intracellular apicomplexan protozoan, poses great threat to canine health. Currently, little information is available about the B. gibsoni (WH58) endemic to Wuhan, China. Here, the mitochondrial (mt) genome of B. gibsoni (WH58) was amplified by five pairs of primers and sequenced and annotated by alignment with the reported mt genome sequences of Babesia canis (B. canis, KC207822), Babesia orientalis (KF218819), Babesia bovis (AB499088), and Theileria equi (AB499091). The evolutionary relationships were analyzed with the amino acid sequences of cytochrome c oxidase I (cox1) and cytochrome b (cob) genes in apicomplexan parasite species. Additionally, the mt genomes of Babesia, Theileria, and Plasmodium spp. were compared in size, host infection, form, distribution, and direction of the protein-coding genes. The full size of the mt genome of B. gibsoni (WH58) was 5865 bp with a linear form, containing terminal-inverted repeats on both ends, six large subunit ribosomal RNA fragments, and three protein-coding genes: cox1, cob, and cytochrome c oxidase III (cox3). Babesia, Theileria, and Plasmodium spp. had a similar mt genome size of about 6000 bp. The mt genomes of parasites that cause canine babesiosis showed a slightly smaller size than the other species. Moreover, Babesia microti (R1 strain) was about 11,100 bp in size, which was twice larger than that of the other species. The mt form was linear for Babesia and Theileria spp. but circular for Plasmodium falciparum and Plasmodium knowlesi. Additionally, all the species contained the three protein-coding genes of cox1, cox3, and cob except Toxoplasma gondii (RH strain) which only contained the cox1 and cob genes. The phylogenetic analysis indicated that B. gibsoni (WH58) was more identical to B. gibsoni (AB499087), B. canis (KC207822), and Babesia rossi (KC207823) and most divergent from Babesia conradae in Babesia spp. Despite the highest similarity to B. gibsoni (AB499087) reported in Japan, B. gibsoni (WH58) showed notable differences in the sequence of nucleotides and amino acids and the property in virulence to host and in vitro cultivation. This study compared the mt genomes of the two B. gibsoni isolates and other parasites in the phylum Apicomplexa and provided new insights into their differences and evolutionary relationships.
Collapse
Affiliation(s)
- Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xiaoyan Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Pei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Jie Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Cuiqin Huang
- College of Life Science, Longyan University, Longyan, Fujian, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
9
|
Abstract
Abstract
Canine babesiosis is a tick-borne disease caused by protozoal haemoparasites of different Babesia species. Babesiosis is one of the most important globally extended and quickly spreading tick-borne infections of dogs. This comprehensive review gives an in-depth overview of Babesia species currently identified in dogs together with relevant vector tick species and their geographical distribution, life cycle and transmission of parasite. The main mechanisms in the pathogenesis of babesiosis are described and elucidated by recent literature overview. As Babesia infection causes a disease with very variable clinical manifestations, special attention is given to clinical signs, laboratory features and clinicopathological findings. The diagnosis of canine babesiosis by microscopy, serological and molecular methods is reviewed, together with recent advances in mass spectrometry based assays. Accurate detection and species recognition are important for the selection of the appropriate therapy, monitoring and prediction of the outcome of the disease. Finally, guidelines for the treatment and prevention of canine babesiosis are given.
Collapse
|
10
|
Eichenberger RM, Ramakrishnan C, Russo G, Deplazes P, Hehl AB. Genome-wide analysis of gene expression and protein secretion of Babesia canis during virulent infection identifies potential pathogenicity factors. Sci Rep 2017; 7:3357. [PMID: 28611446 PMCID: PMC5469757 DOI: 10.1038/s41598-017-03445-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite’s exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.
Collapse
Affiliation(s)
| | | | | | - Peter Deplazes
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Cui Y, Yu L. Application of the CRISPR/Cas9 gene editing technique to research on functional genomes of parasites. Parasitol Int 2016; 65:641-644. [PMID: 27586395 DOI: 10.1016/j.parint.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 07/01/2016] [Accepted: 08/28/2016] [Indexed: 11/18/2022]
Abstract
The clustered regularly-interspaced short palindromic repeats (CRISPR) structural family functions as an acquired immune system in prokaryotes. Gene editing techniques have co-opted CRISPR and the associated Cas nucleases to allow for the precise genetic modification of human cells, zebrafish, mice, and other eukaryotes. Indeed, this approach has been used to induce a variety of modifications including directed insertion/deletion (InDel) of bases, gene knock-in, introduction of mutations in both alleles of a target gene, and deletion of small DNA fragments. Thus, CRISPR technology offers a precise molecular tool for directed genome modification with a range of potential applications; further, its high mutation efficiency, simple process, and low cost provide additional advantages over prior editing techniques. This paper will provide an overview of the basic structure and function of the CRISPR gene editing system as well as current and potential applications to research on parasites.
Collapse
Affiliation(s)
- Yubao Cui
- Department of Clinical Laboratory, The Third People's Hospital of Yancheng, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng 224001, Jiangsu Province, PR China.
| | - Lili Yu
- Department of Laboratory Medicine, Yancheng Health Vocational & Technical College, Yancheng 224006, Jiangsu Province, PR China
| |
Collapse
|
12
|
Investigating the diversity of the 18S SSU rRNA hyper-variable region of Theileria in cattle and Cape buffalo (Syncerus caffer) from southern Africa using a next generation sequencing approach. Ticks Tick Borne Dis 2016; 7:869-879. [PMID: 27084674 DOI: 10.1016/j.ttbdis.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 11/21/2022]
Abstract
Molecular classification and systematics of the Theileria is based on the analysis of the 18S rRNA gene. Reverse line blot or conventional sequencing approaches have disadvantages in the study of 18S rRNA diversity and a next-generation 454 sequencing approach was investigated. The 18S rRNA gene was amplified using RLB primers coupled to 96 unique sequence identifiers (MIDs). Theileria positive samples from African buffalo (672) and cattle (480) from southern Africa were combined in batches of 96 and sequenced using the GS Junior 454 sequencer to produce 825711 informative sequences. Sequences were extracted based on MIDs and analysed to identify Theileria genotypes. Genotypes observed in buffalo and cattle were confirmed in the current study, while no new genotypes were discovered. Genotypes showed specific geographic distributions, most probably linked with vector distributions. Host specificity of buffalo and cattle specific genotypes were confirmed and prevalence data as well as relative parasitemia trends indicate preference for different hosts. Mixed infections are common with African buffalo carrying more genotypes compared to cattle. Associative or exclusion co-infection profiles were observed between genotypes that may have implications for speciation and systematics: specifically that more Theileria species may exist in cattle and buffalo than currently recognized. Analysis of primers used for Theileria parva diagnostics indicate that no new genotypes will be amplified by the current primer sets confirming their specificity. T. parva SNP variants that occur in the 18S rRNA hypervariable region were confirmed. A next generation sequencing approach is useful in obtaining comprehensive knowledge regarding 18S rRNA diversity and prevalence for the Theileria, allowing for the assessment of systematics and diagnostic assays based on the 18S gene.
Collapse
|
13
|
Aboge GO, Cao S, Terkawi MA, Masatani T, Goo Y, AbouLaila M, Nishikawa Y, Igarashi I, Suzuki H, Xuan X. Molecular Characterization ofBabesia bovisM17 Leucine Aminopeptidase and Inhibition ofBabesiaGrowth by Bestatin. J Parasitol 2015; 101:536-41. [DOI: 10.1645/15-745.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Morphological and Molecular Descriptors of the Developmental Cycle of Babesia divergens Parasites in Human Erythrocytes. PLoS Negl Trop Dis 2015; 9:e0003711. [PMID: 25955414 PMCID: PMC4425553 DOI: 10.1371/journal.pntd.0003711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/19/2015] [Indexed: 11/19/2022] Open
Abstract
Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites, information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.
Collapse
|
15
|
Ke H, Sigala PA, Miura K, Morrisey JM, Mather MW, Crowley JR, Henderson JP, Goldberg DE, Long CA, Vaidya AB. The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J Biol Chem 2014; 289:34827-37. [PMID: 25352601 DOI: 10.1074/jbc.m114.615831] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heme is an essential cofactor for aerobic organisms. Its redox chemistry is central to a variety of biological functions mediated by hemoproteins. In blood stages, malaria parasites consume most of the hemoglobin inside the infected erythrocytes, forming nontoxic hemozoin crystals from large quantities of heme released during digestion. At the same time, the parasites possess a heme de novo biosynthetic pathway. This pathway in the human malaria parasite Plasmodium falciparum has been considered essential and is proposed as a potential drug target. However, we successfully disrupted the first and last genes of the pathway, individually and in combination. These knock-out parasite lines, lacking 5-aminolevulinic acid synthase and/or ferrochelatase (FC), grew normally in blood-stage culture and exhibited no changes in sensitivity to heme-related antimalarial drugs. We developed a sensitive LC-MS/MS assay to monitor stable isotope incorporation into heme from its precursor 5-[(13)C4]aminolevulinic acid, and this assay confirmed that de novo heme synthesis was ablated in FC knock-out parasites. Disrupting the FC gene also caused no defects in gametocyte generation or maturation but resulted in a greater than 70% reduction in male gamete formation and completely prevented oocyst formation in female Anopheles stephensi mosquitoes. Our data demonstrate that the heme biosynthesis pathway is not essential for asexual blood-stage growth of P. falciparum parasites but is required for mosquito transmission. Drug inhibition of pathway activity is therefore unlikely to provide successful antimalarial therapy. These data also suggest the existence of a parasite mechanism for scavenging host heme to meet metabolic needs.
Collapse
Affiliation(s)
- Hangjun Ke
- From the Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Paul A Sigala
- the Department of Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kazutoyo Miura
- the Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852, and
| | - Joanne M Morrisey
- From the Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Michael W Mather
- From the Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Jan R Crowley
- the Center for Women's Infectious Disease Research and
| | - Jeffrey P Henderson
- the Center for Women's Infectious Disease Research and Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Daniel E Goldberg
- the Department of Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Carole A Long
- the Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852, and
| | - Akhil B Vaidya
- From the Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129,
| |
Collapse
|
16
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1563-1592. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
- ADRU-ARS, United States Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
| | - Daniela A Flores
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- ANPCyT, C1425FQD Ciudad Autonoma de Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
17
|
Yabsley MJ, Shock BC. Natural history of Zoonotic Babesia: Role of wildlife reservoirs. Int J Parasitol Parasites Wildl 2013; 2:18-31. [PMID: 24533312 PMCID: PMC3862492 DOI: 10.1016/j.ijppaw.2012.11.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/25/2012] [Accepted: 11/06/2012] [Indexed: 11/02/2022]
Abstract
Babesiosis is an emerging zoonotic disease on all inhabited continents and various wildlife species are the principal reservoir hosts for zoonotic Babesia species. The primary vectors of Babesia are Ixodid ticks, with the majority of zoonotic species being transmitted by species in the genus Ixodes. Species of Babesia vary in their infectivity, virulence and pathogenicity for people. Various factors (e.g., increased interactions between people and the environment, increased immunosuppression, changes in landscape and climate, and shifts in host and vector species abundance and community structures) have led to an increase in tick-borne diseases in people, including babesiosis. Furthermore, because babesiosis is now a reportable disease in several states in the United States, and it is the most common blood transfusion-associated parasite, recognized infections are expected to increase. Because of the zoonotic nature of these parasites, it is essential that we understand the natural history (especially reservoirs and vectors) so that appropriate control and prevention measures can be implemented. Considerable work has been conducted on the ecology of Babesia microti and Babesia divergens, the two most common causes of babesiosis in the United States and Europe, respectively. However, unfortunately, for many of the zoonotic Babesia species, the reservoir(s) and/or tick vector(s) are unknown. We review the current knowledge regarding the ecology of Babesia among their reservoir and tick hosts with an emphasis of the role on wildlife as reservoirs. We hope to encourage the molecular characterization of Babesia from potential reservoirs and vectors as well from people. These data are necessary so that informed decisions can be made regarding potential vectors and the potential role of wildlife in the ecology of a novel Babesia when it is detected in a human patient.
Collapse
Affiliation(s)
- Michael J. Yabsley
- Corresponding author. Address: The Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 DW Brooks Drive, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA. Tel.: +1 706 542 1741; fax: +1 706 542 5865.
| | - Barbara C. Shock
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- The Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
18
|
Whole genome mapping and re-organization of the nuclear and mitochondrial genomes of Babesia microti isolates. PLoS One 2013; 8:e72657. [PMID: 24023759 PMCID: PMC3762879 DOI: 10.1371/journal.pone.0072657] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Babesia microti is the primary causative agent of human babesiosis, an emerging pathogen that causes a malaria-like illness with possible fatal outcome in immunocompromised patients. The genome sequence of the B. microti R1 strain was reported in 2012 and revealed a distinct evolutionary path for this pathogen relative to that of other apicomplexa. Lacking from the first genome assembly and initial molecular analyses was information about the terminal ends of each chromosome, and both the exact number of chromosomes in the nuclear genome and the organization of the mitochondrial genome remained ambiguous. We have now performed various molecular analyses to characterize the nuclear and mitochondrial genomes of the B. microti R1 and Gray strains and generated high-resolution Whole Genome maps. These analyses show that the genome of B. microti consists of four nuclear chromosomes and a linear mitochondrial genome present in four different structural types. Furthermore, Whole Genome mapping allowed resolution of the chromosomal ends, identification of areas of misassembly in the R1 genome, and genomic differences between the R1 and Gray strains, which occur primarily in the telomeric regions. These studies set the stage for a better understanding of the evolution and diversity of this important human pathogen.
Collapse
|
19
|
Identification and characterization of Cryptosporidium parvum Clec, a novel C-type lectin domain-containing mucin-like glycoprotein. Infect Immun 2013; 81:3356-65. [PMID: 23817613 DOI: 10.1128/iai.00436-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cryptosporidium species are waterborne apicomplexan parasites that cause diarrheal disease worldwide. Although the mechanisms underlying Cryptosporidium-host cell interactions are not well understood, mucin-like glycoproteins of the parasite are known to mediate attachment and invasion in vitro. We identified C. parvum Clec (CpClec), a novel mucin-like glycoprotein that contains a C-type lectin domain (CTLD) and has orthologs in C. hominis and C. muris. CTLD-containing proteins are ligand-binding proteins that function in adhesion and signaling and are present in a wide range of organisms, from humans to viruses. However, this is the first report of a CTLD-containing protein in protozoa and in Apicomplexa. CpClec is predicted to be a type 1 membrane protein, with a CTLD, an O-glycosylated mucin-like domain, a transmembrane domain, and a cytoplasmic tail containing a YXX sorting motif. The predicted structure of CpClec displays several characteristics of canonical CTLD-containing proteins, including a long loop region hydrophobic core associated with calcium-dependent glycan binding as well as predicted calcium- and glycan-binding sites. CpClec expression during C. parvum infection in vitro is maximal at 48 h postinfection, suggesting that it is developmentally regulated. The 120-kDa mass of native CpClec is greater than predicted, most likely due to O-glycosylation. CpClec is localized to the surface of the apical region and to dense granules of sporozoites and merozoites. Taken together, these findings, along with the known functions of C. parvum mucin-like glycoproteins and of CTLD-containing proteins, strongly implicate a significant role for CpClec in Cryptosporidium-host cell interactions.
Collapse
|
20
|
Hikosaka K, Tsuji N, Watanabe YI, Kishine H, Horii T, Igarashi I, Kita K, Tanabe K. Novel type of linear mitochondrial genomes with dual flip-flop inversion system in apicomplexan parasites, Babesia microti and Babesia rodhaini. BMC Genomics 2012; 13:622. [PMID: 23151128 PMCID: PMC3546061 DOI: 10.1186/1471-2164-13-622] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/29/2012] [Indexed: 11/24/2022] Open
Abstract
Background Mitochondrial (mt) genomes vary considerably in size, structure and gene content. The mt genomes of the phylum Apicomplexa, which includes important human pathogens such as the malaria parasite Plasmodium, also show marked diversity of structure. Plasmodium has a concatenated linear mt genome of the smallest size (6-kb); Babesia and Theileria have a linear monomeric mt genome (6.5-kb to 8.2-kb) with terminal inverted repeats; Eimeria, which is distantly related to Plasmodium and Babesia/Theileria, possesses a mt genome (6.2-kb) with a concatemeric form similar to that of Plasmodium; Cryptosporidium, the earliest branching lineage within the phylum Apicomplexa, has no mt genome. We are interested in the evolutionary origin of linear mt genomes of Babesia/Theileria, and have investigated mt genome structures in members of archaeopiroplasmid, a lineage branched off earlier from Babesia/Theileria. Results The complete mt genomes of archaeopiroplasmid parasites, Babesia microti and Babesia rodhaini, were sequenced. The mt genomes of B. microti (11.1-kb) and B. rodhaini (6.9-kb) possess two pairs of unique inverted repeats, IR-A and IR-B. Flip-flop inversions between two IR-As and between two IR-Bs appear to generate four distinct genome structures that are present at an equi-molar ratio. An individual parasite contained multiple mt genome structures, with 20 copies and 2 – 3 copies per haploid nuclear genome in B. microti and B. rodhaini, respectively. Conclusion We found a novel linear monomeric mt genome structure of B. microti and B. rhodhaini equipped with dual flip-flop inversion system, by which four distinct genome structures are readily generated. To our knowledge, this study is the first to report the presence of two pairs of distinct IR sequences within a monomeric linear mt genome. The present finding provides insight into further understanding of evolution of mt genome structure.
Collapse
Affiliation(s)
- Kenji Hikosaka
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gohil S, Herrmann S, Günther S, Cooke BM. Bovine babesiosis in the 21st century: advances in biology and functional genomics. Int J Parasitol 2012; 43:125-32. [PMID: 23068911 DOI: 10.1016/j.ijpara.2012.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Bovine babesiosis caused by the protozoan parasite, Babesia bovis, remains a significant cause of avoidable economic losses to the livestock industry in many countries throughout the world. The molecular mechanisms underlying the pathophysiology of severe disease in susceptible cattle are not well understood and the tools available to study the biology of the parasite, including technologies for genetic manipulation, have only recently been developed. Recent availability of multiple parasite genomes and bioinformatic tools, in combination with the development of new biological reagents, will facilitate our better understanding of the parasite. This will ultimately assist in the identification of novel targets for the development of new therapeutics and vaccines. Here we describe some recent advances in Babesia research and highlight some important challenges for the future.
Collapse
Affiliation(s)
- Sejal Gohil
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
22
|
van Dooren GG, Kennedy AT, McFadden GI. The use and abuse of heme in apicomplexan parasites. Antioxid Redox Signal 2012; 17:634-56. [PMID: 22320355 DOI: 10.1089/ars.2012.4539] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. RECENT ADVANCES In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. CRITICAL ISSUES Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. FUTURE DIRECTIONS Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.
Collapse
Affiliation(s)
- Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | |
Collapse
|
23
|
|
24
|
Sun M, Zhu G, Qin Z, Wu C, Lv M, Liao S, Qi N, Xie M, Cai J. Functional characterizations of malonyl-CoA:acyl carrier protein transacylase (MCAT) in Eimeria tenella. Mol Biochem Parasitol 2012; 184:20-8. [PMID: 22525053 DOI: 10.1016/j.molbiopara.2012.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/17/2022]
Abstract
Eimeria tenella, an apicomplexan parasite in chickens, possesses an apicoplast and its associated metabolic pathways including the Type II fatty acid synthesis (FAS II). Malonyl-CoA:acyl-carry protein transacylase (MCAT) encoded by the fabD gene is one of the essential enzymes in the FAS II system. In the present study, the entire E. tenella MCAT gene (EtfabD) was cloned and sequenced. Immunolabeling located this protein in the apicoplast organelle in coccidial sporozoites. Functional replacement of the fabD gene with amber mutation of E. coli temperature-sensitive LA2-89 strain by E. tenella EtMCAT demonstrated that EcFabD and EtMCAT perform the same biochemical function. The recombinant EtMCAT protein was expressed and its general biochemical features were also determined. An alkaloid natural product corytuberine (CAS: 517-56-6) could specifically inhibit the EtMCAT activity (IC(50)=16.47μM), but the inhibition of parasite growth in vitro by corytuberine was very weak (the predicted MIC(50)=0.65mM).
Collapse
Affiliation(s)
- Mingfei Sun
- Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ferreri LM, Brayton KA, Sondgeroth KS, Lau AO, Suarez CE, McElwain TF. Expression and strain variation of the novel "small open reading frame" (smorf) multigene family in Babesia bovis. Int J Parasitol 2011; 42:131-8. [PMID: 22138017 PMCID: PMC3459096 DOI: 10.1016/j.ijpara.2011.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/11/2011] [Accepted: 10/05/2011] [Indexed: 11/19/2022]
Abstract
Small open reading frame (smorf) genes comprise the second largest Babesia bovis multigene family. All known 44 variant smorf genes are located in close chromosomal proximity to ves1 genes, which encode proteins that mediate cytoadhesion and contribute to immune evasion. In this study, we characterised the general topology of smorf genes and investigated the gene repertoire, transcriptional profile and SMORF expression in two distinct strains, T2Bo and Mo7. Sequence analysis using degenerate primers identified additional smorf genes in each strain and demonstrated that the smorf gene repertoire varies between strains, with conserved and unique genes in both. Smorf genes have multiple semi-conserved and variable blocks, and a large hypervariable insertion in 20 of the 44 genes defines two major branches of the family, termed smorf A and smorf B. A total of 32 smorf genes are simultaneously transcribed in T2Bo strain B. bovis merozoites obtained from deep brain tissue of an acutely infected animal. SMORF peptide-specific antiserum bound in immunoblots to multiple proteins with a range of sizes predicted by smorf genes, confirming translation of smorf gene products from these transcripts. These results indicate that the smorf multigene family is larger than previously described and demonstrate that smorf genes are expressed and are undergoing variation, both within strains and in a lineage-specific pattern independent of strain specificity. The function of these novel proteins is unknown.
Collapse
Affiliation(s)
- Lucas M. Ferreri
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Kelly A. Brayton
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Kerry S. Sondgeroth
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Audrey O.T. Lau
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA 99164, USA
| | - Terry F. McElwain
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
- Corresponding author. Tel.: +1 509 335 6342; fax: +1 509 335 7424.
| |
Collapse
|
26
|
Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol 2011; 180:109-25. [DOI: 10.1016/j.vetpar.2011.05.032] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Abstract
Canine babesiosis caused by different Babesia species is a protozoal tick-borne disease with worldwide distribution and global significance. Historically, Babesia infection in dogs was identified based on the morphologic appearance of the parasite in the erythrocyte. All large forms of Babesia were designated Babesia canis, whereas all small forms of Babesia were considered to be Babesia gibsoni. However, the development of molecular methods has demonstrated that other Babesia species such as Babesia conradae, Babesia microti like piroplasm, Theileria spp. and a yet unnamed large form Babesia spp. infect dogs and cause distinct diseases. Babesia rossi, B. canis and Babesia vogeli previously considered as subspecies are identical morphologically but differ in the severity of clinical manifestations which they induce, their tick vectors, genetic characteristics, and geographic distributions, and are therefore currently considered separate species. The geographic distribution of the causative agent and thus the occurrence of babesiosis are largely dependent on the habitat of relevant tick vector species, with the exception of B. gibsoni where evidence for dog to dog transmission indicates that infection can be transmitted among fighting dog breeds independently of the limitations of vector tick infestation. Knowledge of the prevalence and clinicopathological aspects of Babesia species infecting dogs around the world is of epidemiologic and medical interest. Babesiosis in domestic cats is less common and has mostly been reported from South Africa where infection is mainly due to Babesia felis, a small Babesia that causes anemia and icterus. In addition, Babesia cati was reported from India and sporadic cases of B. canis infection in domestic cats have been reported in Europe, B. canis presentii in Israel and B. vogeli in Thailand. Babesiosis caused by large Babesia spp. is commonly treated with imidocarb dipropionate with good clinical response while small Babesia spp. are more resistant to anti-babesial therapy. Clinical and parasitological cure are often not achieved in the treatment of small Babesia species infections and clinical relapses are frequent. The spectrum of Babesia pathogens that infect dogs and cats is gradually being elucidated with the aid of molecular techniques and meticulous clinical investigation. Accurate detection and species recognition are important for the selection of the correct therapy and prediction of the course of disease.
Collapse
|
28
|
Diversity in the 18S SSU rRNA V4 hyper-variable region of Theileria spp. in Cape buffalo (Syncerus caffer) and cattle from southern Africa. Parasitology 2011; 138:766-79. [PMID: 21349232 DOI: 10.1017/s0031182011000187] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sequence variation within the 18S SSU rRNA V4 hyper-variable region can affect the accuracy of real-time hybridization probe-based diagnostics for the detection of Theileria spp. infections. This is relevant for assays that use non-specific primers, such as the real-time hybridization assay for T. parva (Sibeko et al. 2008). To assess the effect of sequence variation on this test, the Theileria 18S gene from 62 buffalo and 49 cattle samples was cloned and ∼1000 clones sequenced. Twenty-six genotypes were detected which included known and novel genotypes for the T. buffeli, T. mutans, T. taurotragi and T. velifera clades. A novel genotype related to T. sp. (sable) was also detected in 1 bovine sample. Theileria genotypic diversity was higher in buffalo compared to cattle. Polymorphism within the T. parva hyper-variable region was confirmed by aberrant real-time melting peaks and supported by sequencing of the S5 ribosomal gene. Analysis of the S5 gene suggests that this gene can be a marker for species differentiation. T. parva, T. sp. (buffalo) and T. sp. (bougasvlei) remain the only genotypes amplified by the primer set of the hybridization assay. Therefore, the 18S sequence diversity observed does not seem to affect the current real-time hybridization assay for T. parva.
Collapse
|
29
|
Hikosaka K, Watanabe YI, Kobayashi F, Waki S, Kita K, Tanabe K. Highly conserved gene arrangement of the mitochondrial genomes of 23 Plasmodium species. Parasitol Int 2011; 60:175-80. [PMID: 21329764 DOI: 10.1016/j.parint.2011.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/25/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure and organization. The genus Plasmodium, the causative agent of malaria, has the smallest mt genome in the form of a tandemly repeated, linear element of 6 kb. The Plasmodium mt genome encodes only three protein genes (cox1, cox3 and cob) and large- and small-subunit ribosomal RNA (rRNA) genes, which are highly fragmented with 19 identified rRNA pieces. The complete mt genome sequences of 21 Plasmodium species have been published but a thorough investigation of the arrangement of rRNA gene fragments has been undertaken for only Plasmodium falciparum, the human malaria parasite. In this study, we determined the arrangement of mt rRNA gene fragments in 23 Plasmodium species, including two newly determined mt genome sequences from P. gallinaceum and P. vinckei vinckei, as well as Leucocytozoon caulleryi, an outgroup of Plasmodium. Comparative analysis reveals complete conservation of the arrangement of rRNA gene fragments in the mt genomes of all the 23 Plasmodium species and L. caulleryi. Surveys for a new rRNA gene fragment using hidden Markov models enriched with recent mt genome sequences led us to suggest the mtR-26 sequence as a novel candidate LSU rRNA fragment in the mt genomes of the 24 species. Additionally, we found 22-25 bp-inverted repeat sequences, which may be involved in the generation of lineage-specific mt genome arrangements after divergence from a common ancestor of the genera Eimeria and Plasmodium/Leucocytozoon.
Collapse
Affiliation(s)
- Kenji Hikosaka
- Laboratory of Malariology, International Research Center of Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Hikosaka K, Nakai Y, Watanabe YI, Tachibana SI, Arisue N, Palacpac NMQ, Toyama T, Honma H, Horii T, Kita K, Tanabe K. Concatenated mitochondrial DNA of the coccidian parasite Eimeria tenella. Mitochondrion 2010; 11:273-8. [PMID: 21047565 DOI: 10.1016/j.mito.2010.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/12/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
Apicomplexan parasites of the genus Plasmodium, pathogens causing malaria, and the genera Babesia and Theileria, aetiological agents of piroplasmosis, are closely related. However, their mitochondrial (mt) genome structures are highly divergent: Plasmodium has a concatemer of 6-kb unit and Babesia/Theileria a monomer of 6.6- to 8.2-kb with terminal inverted repeats. Fragmentation of ribosomal RNA (rRNA) genes and gene arrangements are remarkably distinctive. To elucidate the evolutionary origin of this structural divergence, we determined the mt genome of Eimeria tenella, pathogens of coccidiosis in domestic fowls. Analysis revealed that E. tenella mt genome was concatemeric with similar protein-coding genes and rRNA gene fragments to Plasmodium. Copy number was 50-fold of the nuclear genome. Evolution of structural divergence in the apicomplexan mt genomes is discussed.
Collapse
Affiliation(s)
- Kenji Hikosaka
- International Research Center of Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bilgic HB, Karagenç T, Shiels B, Tait A, Eren H, Weir W. Evaluation of cytochrome b as a sensitive target for PCR based detection of T. annulata carrier animals. Vet Parasitol 2010; 174:341-7. [PMID: 20880635 DOI: 10.1016/j.vetpar.2010.08.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 07/29/2010] [Accepted: 08/23/2010] [Indexed: 11/30/2022]
Abstract
Bovine tropical theileriosis, caused by the tick-borne protozoan Theileria annulata, imposes a serious constraint upon breed improvement programmes and livestock production in tropical and sub-tropical regions of the world. Animals that recover from primary infection serve as carriers and play a critical role in the epidemiology of the disease, acting as reservoirs of infection. However, conclusive identification of carrier animals can be problematic. This study describes assessment of candidate target genes for PCR assay-based detection of T. annulata infected carrier animals. Following in silico screening and rejection of three major multi-copy gene families, an assay based on PCR amplification of a 312 bp segment of the T. annulata gene for cytochrome b (Cytob1 assay) was established. Sensitivity was evaluated using serial dilutions of blood obtained from experimentally infected calves, while specificity was confirmed by testing DNA representing twelve different T. annulata stocks and other Theileria and Babesia species. Direct comparison with other target genes and published data indicated that Cytob1 PCR-based assays provide the greatest level of sensitivity, combined with a high level of specificity and the ability to detect different T. annulata genotypes. It can be concluded that the cytochrome b gene is the optimal target for PCR amplification and its incorporation in a Reverse Line Blot Assay offers the most sensitive method yet devised to detect the parasite in carrier animals. The use of this assay will increase the accuracy of epidemiological studies aimed at improving disease control in endemically unstable regions.
Collapse
Affiliation(s)
- Huseyin B Bilgic
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Işikli Mevki, 09016 Aydin, Turkey. huseyin
| | | | | | | | | | | |
Collapse
|
32
|
Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 2010; 20:470-81. [PMID: 20688255 DOI: 10.1016/j.tcb.2010.05.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 01/24/2023]
Abstract
Armadillo (ARM)-repeat proteins form a large family with diverse and fundamental functions in many eukaryotes. ARM-repeat proteins have largely been characterised in multicellular organisms and much is known about how a subset of these proteins function. The structure of ARM-repeats allows proteins containing them to be functionally very versatile. Are the ARM-repeat proteins in 'little creatures' as multifunctional as their better-studied relatives? The time is now right to start analysing ARM-repeat proteins in these new systems to better understand their cell biology. Here, we review recent advances in understanding the many cellular roles of both well-known and novel ARM-repeat proteins.
Collapse
|
33
|
Cserti-Gazdewich CM. Plasmodium falciparum malaria and carbohydrate blood group evolution. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1751-2824.2010.01380.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Genotypic diversity of merozoite surface antigen 1 of Babesia bovis within an endemic population. Mol Biochem Parasitol 2010; 172:107-12. [PMID: 20371255 PMCID: PMC2941823 DOI: 10.1016/j.molbiopara.2010.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022]
Abstract
Multiple genetically distinct strains of a pathogen circulate and compete for dominance within populations of animal reservoir hosts. Understanding the basis for genotypic strain structure is critical for predicting how pathogens respond to selective pressures and how shifts in pathogen population structure can lead to disease outbreaks. Evidence from related Apicomplexans such as Plasmodium, Toxoplasma, Cryptosporidium and Theileria suggests that various patterns of population dynamics exist, including but not limited to clonal, oligoclonal, panmictic and epidemic genotypic strain structures. In Babesia bovis, genetic diversity of variable merozoite surface antigen (VMSA) genes has been associated with disease outbreaks, including in previously vaccinated animals. However, the extent of VMSA diversity within a defined population in an endemic area has not been examined. We analyzed genotypic diversity and temporal change of MSA-1, a member of the VMSA family, in individual infected animals within a reservoir host population. Twenty-eight distinct MSA-1 genotypes were identified within the herd. All genotypically distinct MSA-1 sequences clustered into three groups based on sequence similarity. Two thirds of the animals tested changed their dominant MSA-1 genotypes during a 6-month period. Five animals within the population contained multiple genotypes. Interestingly, the predominant genotypes within those five animals also changed over the 6-month sampling period, suggesting ongoing transmission or emergence of variant MSA-1 genotypes within the herd. This study demonstrated an unexpected level of diversity for a single copy gene in a haploid genome, and illustrates the dynamic genotype structure of B. bovis within an individual animal in an endemic region. Co-infection with multiple diverse MSA-1 genotypes provides a basis for more extensive genotypic shifts that characterizes outbreak strains.
Collapse
|
35
|
Hikosaka K, Watanabe YI, Tsuji N, Kita K, Kishine H, Arisue N, Palacpac NMQ, Kawazu SI, Sawai H, Horii T, Igarashi I, Tanabe K. Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria. Mol Biol Evol 2009; 27:1107-16. [PMID: 20034997 DOI: 10.1093/molbev/msp320] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure, and organization. The genus Plasmodium, causative agent of malaria, of the phylum Apicomplexa, has the smallest mt genome in the form of a circular and/or tandemly repeated linear element of 6 kb, encoding only three protein genes (cox1, cox3, and cob). The closely related genera Babesia and Theileria also have small mt genomes (6.6 kb) that are monomeric linear with an organization distinct from Plasmodium. To elucidate the structural divergence and evolution of mt genomes between Babesia/Theileria and Plasmodium, we determined five new sequences from Babesia bigemina, B. caballi, B. gibsoni, Theileria orientalis, and T. equi. Together with previously reported sequences of B. bovis, T. annulata, and T. parva, all eight Babesia and Theileria mt genomes are linear molecules with terminal inverted repeats (TIRs) on both ends containing three protein-coding genes (cox1, cox3, and cob) and six large subunit (LSU) ribosomal RNA (rRNA) gene fragments. The organization and transcriptional direction of protein-coding genes and the rRNA gene fragments were completely conserved in the four Babesia species. In contrast, notable variation occurred in the four Theileria species. Although the genome structures of T. annulata and T. parva were nearly identical to those of Babesia, an inversion in the 3-kb central region was found in T. orientalis. Moreover, the T. equi mt genome is the largest (8.2 kb) and most divergent with unusually long TIR sequences, in which cox3 and two LSU rRNA gene fragments are located. The T. equi mt genome showed little synteny to the other species. These results suggest that the Theileria mt genome is highly diverse with lineage-specific evolution in two Theileria species: genome inversion in T. orientalis and gene-embedded long TIR in T. equi.
Collapse
Affiliation(s)
- Kenji Hikosaka
- Laboratory of Malariology, International Research Center of Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zarlenga DS, Gasbarre LC. From parasite genomes to one healthy world: Are we having fun yet? Vet Parasitol 2009; 163:235-49. [PMID: 19560277 DOI: 10.1016/j.vetpar.2009.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In 1990, the Human Genome Sequencing Project was established. This laid the ground work for an explosion of sequence data that has since followed. As a result of this effort, the first complete genome of an animal, Caenorhabditis elegans was published in 1998. The sequence of Drosophila melanogaster was made available in March, 2000 and in the following year, working drafts of the human genome were generated with the completed sequence (92%) being released in 2003. Recent advancements and next-generation technologies have made sequencing common place and have infiltrated every aspect of biological research, including parasitology. To date, sequencing of 32 apicomplexa and 24 nematode genomes are either in progress or near completion, and over 600k nematode EST and 200k apicomplexa EST submissions fill the databases. However, the winds have shifted and efforts are now refocusing on how best to store, mine and apply these data to problem solving. Herein we tend not to summarize existing X-omics datasets or present new technological advances that promise future benefits. Rather, the information to follow condenses up-to-date-applications of existing technologies to problem solving as it relates to parasite research. Advancements in non-parasite systems are also presented with the proviso that applications to parasite research are in the making.
Collapse
Affiliation(s)
- Dante S Zarlenga
- USDA, ARS, ANRI Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA.
| | | |
Collapse
|
37
|
Abstract
SUMMARYPeptidases of parasitic protozoa are currently under intense investigation in order to identify novel virulence factors, drug targets, and vaccine candidates, except in Babesia. Leucine aminopeptidases in protozoa, such as Plasmodium and Leishmania, have been identified to be involved in free amino acid regulation. We report here the molecular and enzymatic characterization, as well as the localization of a leucine aminopeptidase, a member of the M17 cytosolic aminopeptidase family, from B. gibsoni (BgLAP). A functional recombinant BgLAP (rBgLAP) expressed in Escherichia coli efficiently hydrolysed synthetic substrates for aminopeptidase, a leucine substrate. Enzyme activity of the rBgLAP was found to be optimum at pH 8·0 and at 37°C. The substrate profile was slightly different from its homologue in P. falciprum. The activity was also strongly dependent on metal divalent cations, and was inhibited by bestatin, which is a specific inhibitor for metalloprotease. These results indicated that BgLAP played an important role in free amino acid regulation.
Collapse
|