1
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Bearne SL. Design and evaluation of substrate-product analog inhibitors for racemases and epimerases utilizing a 1,1-proton transfer mechanism. Methods Enzymol 2023; 690:397-444. [PMID: 37858537 DOI: 10.1016/bs.mie.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Racemases and epimerases catalyze the inversion of stereochemistry at asymmetric carbon atoms to generate stereoisomers that often play important roles in normal and pathological physiology. Consequently, there is interest in developing inhibitors of these enzymes for drug discovery. A strategy for the rational design of substrate-product analog (SPA) inhibitors of racemases and epimerases utilizing a direct 1,1-proton transfer mechanism is elaborated. This strategy assumes that two groups on the asymmetric carbon atom remain fixed at active-site binding determinants, while the hydrogen and third, motile group move during catalysis, with the latter potentially traveling between an R- and S-pocket at the active site. SPAs incorporate structural features of the substrate and product, often with geminal disubstitution on the asymmetric carbon atom to simultaneously present the motile group to both the R- and S-pockets. For racemases operating on substrates bearing three polar groups (glutamate, aspartate, and serine racemases) or with compact, hydrophobic binding pockets (proline racemase), substituent motion is limited and the design strategy furnishes inhibitors with poor or modest binding affinities. The approach is most successful when substrates have a large, motile hydrophobic group that binds at a plastic and/or capacious hydrophobic site. Potent inhibitors were developed for mandelate racemase, isoleucine epimerase, and α-methylacyl-CoA racemase using the SPA inhibitor design strategy, exhibiting binding affinities ranging from substrate-like to exceeding that of the substrate by 100-fold. This rational approach for designing inhibitors of racemases and epimerases having the appropriate active-site architectures is a useful strategy for furnishing compounds for drug development.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
3
|
Liu M, Li M, He J, He Y, Yang J, Sun Z. Chiral Amino Acid Profiling in Serum Reveals Potential Biomarkers for Alzheimer's Disease. J Alzheimers Dis 2023; 94:291-301. [PMID: 37248903 DOI: 10.3233/jad-230142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disease, and increasing evidence has linked dysregulation of amino acids to AD pathogenesis. However, the existing studies often ignore the chirality of amino acids, and some results are inconsistent and controversial. The changes of amino acid profiles in AD from the perspective of enantiomers remain elusive. OBJECTIVE The purpose of this study is to investigate whether the levels of amino acids, especially D-amino acids, are deregulated in the peripheral serum of AD patients, with the ultimate goal of discovering novel biomarkers for AD. METHODS The chiral amino acid profiles were determined by HPLC-MS/MS with a pre-column derivatization method. Experimental data obtained from 37 AD patients and 34 healthy controls (HC) were statistically analyzed. RESULTS Among the 35 amino acids detected, D-proline, D/total-proline ratio, D-aspartate, and D/total-aspartate ratio were decreased, while D-phenylalanine was elevated in AD compared to HC. Significant age-dependent increases in D-proline, D/total-proline ratio, and D-phenylalanine were observed in HC, but not in AD. Receiver operator characteristic analyses of the combination of D-proline, D-aspartate, D-phenylalanine, and age for discriminating AD from HC provided satisfactory area under the curve (0.87), specificity (97.0%), and sensitivity (83.8%). Furthermore, the D-aspartate level was significantly decreased with the progression of AD, as assessed by the Clinical Dementia Rating Scale and Mini-Mental State Examination. CONCLUSION The panels of D-proline, D-phenylalanine, and D-aspartate in peripheral serum may serve as novel biomarker candidates for AD. The latter parameter is further associated with the severity of AD.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mo Li
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Jing He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Gateau C, Melo GD, Uriac P, Tasseau O, Renault J, Blondel A, Gouault N, Barbut F, Minoprio P. Irreversible inhibitors of the proline racemase (PRAC) unveil innovative mechanism of action as antibacterial against Clostridioides difficile. Chem Biol Drug Des 2021; 99:513-526. [PMID: 34918458 DOI: 10.1111/cbdd.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Proline racemases (PRAC), catalyzing the L-proline and D-proline interconversion, are essential factors in eucaryotic pathogenes such as Trypanosoma cruzi, Trypanosoma vivax and Clostridioides difficile. If the discovery of irreversible inhibitors of Trypanosoma cruzi PRAC (TcPRAC) led to innovative therapy of the Chagas disease, no inhibitors of CdPRAC have been discovered to date. However, Clostridioides difficile, due to an increased incidence in recent years, is considered as a major cause of health threat. In this work, we have taken into account the similarity between TcPRAC and CdPRAC enzymes to design new inhibitors of CdPRAC. Starting from (E) 4-oxopent-2-enoic acid TcPRAC irreversible inhibitors, we synthesized 4-aryl substituted analogues and evaluated their CdPRAC enzymatic inhibition against eleven strains of Clostridioides difficile. This study resulted in promising candidates and allowed for identification of (E)-4-(3-bromothiophen-2-yl)-4-oxobut-2-enoic acid 20 that was chosen for complementary in vivo studies and did not reveal in vivo toxicity.
Collapse
Affiliation(s)
- Cécile Gateau
- AP-HP, Hôpital saint Antoine, National Reference Laboratory for Clostridioides difficile, 75012 Paris and Université de Paris, INSERM, UMR-S 1139, 3-PHM, F-75006, paris, France
| | - Guilherme D Melo
- Institut Pasteur, Département Santé Globale, Laboratoire des Processus Infectieux à Trypanosomatidés, 28 rue du Dr. Roux, 75015, Paris, France.,Institut Pasteur, Département Santé Globale, Unité Lyssavirus Epidemiologie et Neuropathologie, 28 rue du Dr. Roux, 75015, Paris, France
| | - Philippe Uriac
- Université de Rennes 1 - Faculté de Pharmacie, ISCR UMR CNRS 6226, Equipe CORINT, 2, Avenue du Pr. Léon Bernard, 35000, Rennes, France
| | - Olivier Tasseau
- Université de Rennes 1 - Faculté de Pharmacie, ISCR UMR CNRS 6226, Equipe CORINT, 2, Avenue du Pr. Léon Bernard, 35000, Rennes, France
| | - Jacques Renault
- Université de Rennes 1 - Faculté de Pharmacie, ISCR UMR CNRS 6226, Equipe CORINT, 2, Avenue du Pr. Léon Bernard, 35000, Rennes, France
| | - Arnaud Blondel
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité de Bioinformatique Structurale, CNRS, UMR 3528, 25 rue du Dr. Roux, 75015, Paris, France
| | - Nicolas Gouault
- Université de Rennes 1 - Faculté de Pharmacie, ISCR UMR CNRS 6226, Equipe CORINT, 2, Avenue du Pr. Léon Bernard, 35000, Rennes, France
| | - Frédéric Barbut
- AP-HP, Hôpital saint Antoine, National Reference Laboratory for Clostridioides difficile, 75012 Paris and Université de Paris, INSERM, UMR-S 1139, 3-PHM, F-75006, paris, France
| | - Paola Minoprio
- Institut Pasteur, Département Santé Globale, Laboratoire des Processus Infectieux à Trypanosomatidés, 28 rue du Dr. Roux, 75015, Paris, France.,Plateforme Scientifique Pasteur - USP, Av. Prof. Lucio Martins Rodrigues, 370, CEP 05508-020, Sao Paulo, Brazil
| |
Collapse
|
5
|
Fischer C, Ahn YC, Vederas JC. Catalytic mechanism and properties of pyridoxal 5'-phosphate independent racemases: how enzymes alter mismatched acidity and basicity. Nat Prod Rep 2020; 36:1687-1705. [PMID: 30994146 DOI: 10.1039/c9np00017h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to March 2019 Amino acid racemases and epimerases are key enzymes that invert the configuration of common amino acids and supply many corresponding d-isomers in living organisms. Some d-amino acids are inherently bioactive, whereas others are building blocks for important biomolecules, for example lipid II, the bacterial cell wall precursor. Peptides containing them have enhanced proteolytic stability and can act as important recognition elements in mammalian systems. Selective inhibition of certain amino acid racemases (e.g. glutamate racemase) is believed to offer a promising target for new antibacterial drugs effective against pathogens resistant to current antibiotics. Many amino acid racemases employ imine formation with pyridoxal phosphate (PLP) as a cofactor to accelerate the abstraction of the alpha proton. However, the group reviewed herein achieves racemization of free amino acids without the use of cofactors or metals, and uses a thiol/thiolate pair for deprotonation and reprotonation. All bacteria and higher plants contain such enzymes, for example diaminopimelate epimerase, which is required for lysine biosynthesis in these organisms. This process cannot be accomplished without an enzyme catalyst as the acidities of a thiol and the substrate α-hydrogen are inherently mismatched by at least 10 orders of magnitude. This review describes the structural and mechanistic studies on PLP-independent racemases and the evolving view of key enzymatic machinery that accomplishes these remarkable transformations.
Collapse
Affiliation(s)
- Conrad Fischer
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2.
| | | | | |
Collapse
|
6
|
Byun S, Park HJ, Joo JC, Kim YH. Enzymatic Synthesis of D-pipecolic Acid by Engineering the Substrate Specificity of Trypanosoma cruzi Proline Racemase and Its Molecular Docking Study. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0367-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Watanabe Y, Watanabe S, Itoh Y, Watanabe Y. Crystal structure of substrate-bound bifunctional proline racemase/hydroxyproline epimerase from a hyperthermophilic archaeon. Biochem Biophys Res Commun 2019; 511:135-140. [PMID: 30773259 DOI: 10.1016/j.bbrc.2019.01.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 11/30/2022]
Abstract
The hypothetical OCC_00372 protein from Thermococcus litoralis is a member of the ProR superfamily from hyperthermophilic archaea and exhibits unique bifunctional proline racemase/hydroxyproline 2-epimerase activity. However, the molecular mechanism of the broad substrate specificity and extreme thermostability of this enzyme (TlProR) remains unclear. Here we determined the crystal structure of TlProR at 2.7 Å resolution. Of note, a substrate proline molecule, derived from expression host Escherichia coli cells, was tightly bound in the active site of TlProR. The substrate bound structure and mutational analyses suggested that Trp241 is involved in hydroxyproline recognition by making a hydrogen bond between the indole group of Trp241 and the hydroxyl group of hydroxyproline. Additionally, Tyr171 may contribute to the thermostability by making hydrogen bonds between the hydroxyl group of Tyr171 and catalytic residues. Our structural and functional analyses provide a structural basis for understanding the molecular mechanism of substrate specificity and thermostability of ProR superfamily proteins.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| | - Yoshika Itoh
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Yasuo Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| |
Collapse
|
8
|
Müller U, Schaub GA, Mossmann H, Köhler G, Carsetti R, Hölscher C. Immunosuppression in Experimental Chagas Disease Is Mediated by an Alteration of Bone Marrow Stromal Cell Function During the Acute Phase of Infection. Front Immunol 2018; 9:2794. [PMID: 30619242 PMCID: PMC6295583 DOI: 10.3389/fimmu.2018.02794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 01/29/2023] Open
Abstract
After infection with Trypanosoma cruzi, the etiologic agent of Chagas disease, immunosuppression, and apoptosis of mature lymphocytes contribute to the establishment of the parasite in the host and thereby to persistence and pathology in the chronic stage of infection. In a systemic mouse model of experimental Chagas disease, we have demonstrated a strong depletion of mature B cells in the spleen during the first 2 weeks of infection. Remarkably, the decrease in this cell population commenced already in the bone marrow from infected mice and was a concomitant of an increased apoptosis in pro- and pre-B cell populations. Pro- and pre-B cells in the bone marrow showed a significant reduction accompanied by a functional disturbance of bone marrow-derived stromal cells resulting in diminished levels of IL-7, an essential factor for the development of B cell precursors. Ex vivo, stromal cells isolated from the bone marrow of infected mice had a strikingly impaired capacity to maintain the development of pro- and pre-B cells obtained from uninfected animals. Together, the reduction of an active humoral immune response during acute Chagas disease suggests to be an initial immune evasion mechanism of the parasite to establish persistent infection. Therefore, prevention of B cell depletion by rescuing the stromal cells during this early phase, could give rise to new therapeutic approaches.
Collapse
Affiliation(s)
- Uwe Müller
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,Institute of Immunology, Veterinary Medicine, University Leipzig Leipzig, Germany
| | - Günter A Schaub
- Department of Animal Ecology, Evolution, and Biodiversity, Ruhr-Universität-Bochum, Bochum, Germany
| | - Horst Mossmann
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gabriele Köhler
- Department of Pathology, University of Freiburg, Freiburg, Germany
| | - Rita Carsetti
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Christoph Hölscher
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,Infection Immunology, Research Center Borstel, Borstel, Germany
| |
Collapse
|
9
|
Naranjo-Ortíz MA, Brock M, Brunke S, Hube B, Marcet-Houben M, Gabaldón T. Widespread Inter- and Intra-Domain Horizontal Gene Transfer of d-Amino Acid Metabolism Enzymes in Eukaryotes. Front Microbiol 2016; 7:2001. [PMID: 28066338 PMCID: PMC5169069 DOI: 10.3389/fmicb.2016.02001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/29/2016] [Indexed: 01/22/2023] Open
Abstract
Analysis of the growing number of available fully-sequenced genomes has shown that Horizontal Gene Transfer (HGT) in eukaryotes is more common than previously thought. It has been proposed that genes with certain functions may be more prone to HGT than others, but we still have a very poor understanding of the selective forces driving eukaryotic HGT. Recent work uncovered that d-amino acid racemases have been commonly transferred from bacteria to fungi, but their role in the receiving organisms is currently unknown. Here, we set out to assess whether d-amino acid racemases are commonly transferred to and between eukaryotic groups. For this we performed a global survey that used a novel automated phylogeny-based HGT-detection algorithm (Abaccus). Our results revealed that at least 7.0% of the total eukaryotic racemase repertoire is the result of inter- or intra-domain HGT. These transfers are significantly enriched in plant-associated fungi. For these, we hypothesize a possible role for the acquired racemases allowing to exploit minoritary nitrogen sources in plant biomass, a nitrogen-poor environment. Finally, we performed experiments on a transferred aspartate-glutamate racemase in the fungal human pathogen Candida glabrata, which however revealed no obvious biological role.
Collapse
Affiliation(s)
- Miguel A Naranjo-Ortíz
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute Jena Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute JenaJena, Germany; Friedrich Schiller UniversityJena, Germany; Center for Sepsis Control and Care, University HospitalJena, Germany
| | - Marina Marcet-Houben
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
| |
Collapse
|
10
|
Hernández SB, Cava F. Environmental roles of microbial amino acid racemases. Environ Microbiol 2015; 18:1673-85. [DOI: 10.1111/1462-2920.13072] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Sara B. Hernández
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| |
Collapse
|
11
|
Xing Y, Li X, Guo X, Cui Y. Simultaneous determination of 18 d-amino acids in rat plasma by an ultrahigh-performance liquid chromatography-tandem mass spectrometry method: application to explore the potential relationship between Alzheimer’s disease and d-amino acid level alterations. Anal Bioanal Chem 2015; 408:141-50. [DOI: 10.1007/s00216-015-9086-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/19/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
|
12
|
Caballero ZC, Costa-Martins AG, Ferreira RC, P Alves JM, Serrano MG, Camargo EP, Buck GA, Minoprio P, G Teixeira MM. Phylogenetic and syntenic data support a single horizontal transference to a Trypanosoma ancestor of a prokaryotic proline racemase implicated in parasite evasion from host defences. Parasit Vectors 2015; 8:222. [PMID: 25890302 PMCID: PMC4417235 DOI: 10.1186/s13071-015-0829-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 03/25/2015] [Indexed: 02/02/2023] Open
Abstract
Background Proline racemase (PRAC) enzymes of Trypanosoma cruzi (TcPRAC), the agent of Chagas disease, and Trypanosoma vivax (TvPRAC), the agent of livestock trypanosomosis, have been implicated in the B-cells polyclonal activation contributing to immunosuppression and the evasion of host defences. The similarity to prokaryotic PRAC and the absence in Trypanosoma brucei and Trypanosoma congolense have raised many questions about the origin, evolution, and functions of trypanosome PRAC (TryPRAC) enzymes. Findings We identified TryPRAC homologs as single copy genes per haploid genome in 12 of 15 Trypanosoma species, including T. cruzi and T. cruzi marinkellei, T. dionisii, T. erneyi, T. rangeli, T. conorhini and T. lewisi, all parasites of mammals. Polymorphisms in TcPRAC genes matched T. cruzi genotypes: TcI-TcIV and Tcbat have unique genes, while the hybrids TcV and TcVI contain TcPRACA and TcPRACB from parental TcII and TcIII, respectively. PRAC homologs were identified in trypanosomes from anurans, snakes, crocodiles, lizards, and birds. Most trypanosomes have intact PRAC genes. T. rangeli possesses only pseudogenes, maybe in the process of being lost. T. brucei, T. congolense and their allied species, except the more distantly related T. vivax, have completely lost PRAC genes. Conclusions The genealogy of TryPRAC homologs supports an evolutionary history congruent with the Trypanosoma phylogeny. This finding, together with the synteny of PRAC loci, the relationships with prokaryotic PRAC inferred by taxon-rich phylogenetic analysis, and the absence in trypanosomatids of any other genera or in bodonids or euglenids suggest that a common ancestor of Trypanosoma gained PRAC gene by a single and ancient horizontal gene transfer (HGT) from a Firmicutes bacterium more closely related to Gemella and other species of Bacilli than to Clostridium as previously suggested. Our broad phylogenetic study allowed investigation of TryPRAC evolution over long and short timescales. TryPRAC genes diverged to become species-specific and genotype-specific for T. cruzi and T. rangeli, with resulting genealogies congruent with those obtained using vertically inherited genes. The inventory of TryPRAC genes described here is the first step toward the understanding of the roles of PRAC enzymes in trypanosomes differing in life cycles, virulence, and infection and immune evasion strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0829-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zuleima C Caballero
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil. .,Instituto de Investigaciones Científicas y Servicios de Alta Tecnología-AIP (INDICASAT-AIP), Ciudad del Saber, Clayon, Panamá.
| | - Andre G Costa-Martins
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| | - Robson C Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| | - João M P Alves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| | - Myrna G Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University, Virginia, USA.
| | - Erney P Camargo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| | - Gregory A Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Virginia, USA.
| | - Paola Minoprio
- Département Infection et Epidemiologie, Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Paris, France.
| | - Marta M G Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
13
|
Identification and characterization of bifunctional proline racemase/hydroxyproline epimerase from archaea: discrimination of substrates and molecular evolution. PLoS One 2015; 10:e0120349. [PMID: 25786142 PMCID: PMC4364671 DOI: 10.1371/journal.pone.0120349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/21/2015] [Indexed: 12/14/2022] Open
Abstract
Proline racemase (ProR) is a member of the pyridoxal 5’-phosphate-independent racemase family, and is involved in the Stickland reaction (fermentation) in certain clostridia as well as the mechanisms underlying the escape of parasites from host immunity in eukaryotic Trypanosoma. Hydroxyproline epimerase (HypE), which is in the same protein family as ProR, catalyzes the first step of the trans-4-hydroxy-L-proline metabolism of bacteria. Their substrate specificities were previously considered to be very strict, in spite of similarities in their structures and catalytic mechanisms, and no racemase/epimerase from the ProR superfamily has been found in archaea. We here characterized the ProR-like protein (OCC_00372) from the hyperthermophilic archaeon, Thermococcus litoralis (TlProR). This protein could reversibly catalyze not only the racemization of proline, but also the epimerization of 4-hydroxyproline and 3-hydroxyproline with similar kinetic constants. Among the four (putative) ligand binding sites, one amino acid substitution was detected between TlProR (tryptophan at the position of 241) and natural ProR (phenylalanine). The W241F mutant showed a significant preference for proline over hydroxyproline, suggesting that this (hydrophobic and bulky) tryptophan residue played an importance role in the recognition of hydroxyproline (more hydrophilic and bulky than proline), and substrate specificity for hydroxyproline was evolutionarily acquired separately between natural HypE and ProR. A phylogenetic analysis indicated that such unique broad substrate specificity was derived from an ancestral enzyme of this superfamily.
Collapse
|
14
|
Fikru R, Hagos A, Rogé S, Reyna-Bello A, Gonzatti MI, Merga B, Goddeeris BM, Büscher P. A proline racemase based PCR for identification of Trypanosoma vivax in cattle blood. PLoS One 2014; 9:e84819. [PMID: 24416292 PMCID: PMC3885604 DOI: 10.1371/journal.pone.0084819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/21/2013] [Indexed: 11/18/2022] Open
Abstract
A study was conducted to develop a Trypanosoma vivax (T. vivax) specific PCR based on the T. vivax proline racemase (TvPRAC) gene. Forward and reverse primers were designed that bind at 764–783 bp and 983–1002 bp of the gene. To assess its specificity, TvPRAC PCR was conducted on DNA extracted from different haemotropic pathogens: T. vivax from Nigeria, Ethiopia and Venezuela, T. congolense Savannah type, T. brucei brucei, T. evansi, T. equiperdum, T. theileri, Theileria parva, Anaplasma marginale, Babesia bovis and Babesia bigemina and from bovine, goat, mouse, camel and human blood. The analytical sensitivity of the TvPRAC PCR was compared with that of the ITS-1 PCR and the 18S PCR-RFLP on a dilution series of T. vivax DNA in water. The diagnostic performance of the three PCRs was compared on 411 Ethiopian bovine blood specimens collected in a former study. TvPRAC PCR proved to be fully specific for T. vivax, irrespective of its geographical origin. Its analytical sensitivity was lower than that of ITS-1 PCR. On these bovine specimens, TvPRAC PCR detected 8.3% T. vivax infections while ITS-1 PCR and 18S PCR-RFLP detected respectively 22.6 and 6.1% T. vivax infections. The study demonstrates that a proline racemase based PCR could be used, preferably in combination with ITS-1 PCR, as a species-specific diagnostic test for T. vivax infections worldwide.
Collapse
Affiliation(s)
- Regassa Fikru
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
- * E-mail:
| | - Ashenafi Hagos
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia
| | - Stijn Rogé
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Armando Reyna-Bello
- Grupo de Inmunobiología, Centro de Estudios Biomédicos y Veterinarios, Universidad acional Experimental Simón Rodríguez, Caracas, Venezuela
| | - Mary Isabel Gonzatti
- Grupo de Bioquímica e Inmunología de Hemoparásitos, Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
| | - Bekana Merga
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia
| | - Bruno Maria Goddeeris
- Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
15
|
Inhibition of serine and proline racemases by substrate-product analogues. Bioorg Med Chem Lett 2014; 24:390-3. [DOI: 10.1016/j.bmcl.2013.10.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 11/16/2022]
|
16
|
Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi. PLoS One 2013; 8:e69419. [PMID: 23894476 PMCID: PMC3718742 DOI: 10.1371/journal.pone.0069419] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Over the past three decades, L-proline has become recognized as an important metabolite for trypanosomatids. It is involved in a number of key processes, including energy metabolism, resistance to oxidative and nutritional stress and osmoregulation. In addition, this amino acid supports critical parasite life cycle processes by acting as an energy source, thus enabling host-cell invasion by the parasite and subsequent parasite differentiation. In this paper, we demonstrate that L-proline is oxidized to Δ(1)-pyrroline-5-carboxylate (P5C) by the enzyme proline dehydrogenase (TcPRODH, E.C. 1.5.99.8) localized in Trypanosoma cruzi mitochondria. When expressed in its active form in Escherichia coli, TcPRODH exhibits a Km of 16.58±1.69 µM and a Vmax of 66±2 nmol/min mg. Furthermore, we demonstrate that TcPRODH is a FAD-dependent dimeric state protein. TcPRODH mRNA and protein expression are strongly upregulated in the intracellular epimastigote, a stage which requires an external supply of proline. In addition, when Saccharomyces cerevisiae null mutants for this gene (PUT1) were complemented with the TcPRODH gene, diminished free intracellular proline levels and an enhanced sensitivity to oxidative stress in comparison to the null mutant were observed, supporting the hypothesis that free proline accumulation constitutes a defense against oxidative imbalance. Finally, we show that proline oxidation increases cytochrome c oxidase activity in mitochondrial vesicles. Overall, these results demonstrate that TcPRODH is involved in proline-dependant cytoprotection during periods of oxidative imbalance and also shed light on the participation of proline in energy metabolism, which drives critical processes of the T. cruzi life cycle.
Collapse
|
17
|
Berneman A, Montout L, Goyard S, Chamond N, Cosson A, d’Archivio S, Gouault N, Uriac P, Blondel A, Minoprio P. Combined approaches for drug design points the way to novel proline racemase inhibitor candidates to fight Chagas' disease. PLoS One 2013; 8:e60955. [PMID: 23613764 PMCID: PMC3628851 DOI: 10.1371/journal.pone.0060955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/04/2013] [Indexed: 11/18/2022] Open
Abstract
Chagas' disease is caused by Trypanosoma cruzi, a protozoan transmitted to humans by blood-feeding insects, blood transfusion or congenitally. Previous research led us to discover a parasite proline racemase (TcPRAC) and to establish its validity as a target for the design of new chemotherapies against the disease, including its chronic form. A known inhibitor of proline racemases, 2-pyrrolecarboxylic acid (PYC), is water-insoluble. We synthesized soluble pyrazole derivatives, but they proved weak or inactive TcPRAC inhibitors. TcPRAC catalytic site is too small and constrained when bound to PYC to allow efficient search for new inhibitors by virtual screening. Forty-nine intermediate conformations between the opened enzyme structure and the closed liganded one were built by calculating a transition path with a method we developed. A wider range of chemical compounds could dock in the partially opened intermediate active site models in silico. Four models were selected for known substrates and weak inhibitors could dock in them and were used to screen chemical libraries. Two identified soluble compounds, (E)-4-oxopent-2-enoic acid (OxoPA) and its derivative (E)-5-bromo-4-oxopent-2-enoic acid (Br-OxoPA), are irreversible competitive inhibitors that presented stronger activity than PYC on TcPRAC. We show here that increasing doses of OxoPA and Br-OxoPA hamper T. cruzi intracellular differentiation and fate in mammalian host cells. Our data confirm that through to their binding mode, these molecules are interesting and promising as lead compounds for the development of chemotherapies against diseases where active proline racemases play essential roles.
Collapse
Affiliation(s)
- Armand Berneman
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Lory Montout
- Unité de Bioinformatique Structurale, CNRS-UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Sophie Goyard
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Nathalie Chamond
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Alain Cosson
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Simon d’Archivio
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Nicolas Gouault
- Equipe Produits Naturels, Synthèses et Chimie Médicinale, UMR 6226 Sciences Chimiques de Rennes, Université de Rennes 1, Rennes, France
| | - Philippe Uriac
- Equipe Produits Naturels, Synthèses et Chimie Médicinale, UMR 6226 Sciences Chimiques de Rennes, Université de Rennes 1, Rennes, France
| | - Arnaud Blondel
- Unité de Bioinformatique Structurale, CNRS-UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Paola Minoprio
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| |
Collapse
|
18
|
Visser WF, Verhoeven-Duif NM, de Koning TJ. Identification of a human trans-3-hydroxy-L-proline dehydratase, the first characterized member of a novel family of proline racemase-like enzymes. J Biol Chem 2012; 287:21654-62. [PMID: 22528483 DOI: 10.1074/jbc.m112.363218] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A family of eukaryotic proline racemase-like genes has recently been identified. Several members of this family have been well characterized and are known to catalyze the racemization of free proline or trans-4-hydroxyproline. However, the majority of eukaryotic proline racemase-like proteins, including a human protein called C14orf149, lack a specific cysteine residue that is known to be critical for racemase activity. Instead, these proteins invariably contain a threonine residue at this position. The function of these enzymes has remained unresolved until now. In this study, we demonstrate that three enzymes of this type, including human C14orf149, catalyze the dehydration of trans-3-hydroxy-L-proline to Δ(1)-pyrroline-2-carboxylate (Pyr2C). These are the first enzymes of this subclass of proline racemase-like genes for which the enzymatic activity has been resolved. C14orf149 is also the first human enzyme that acts on trans-3-hydroxy-L-proline. Interestingly, a mutant enzyme in which the threonine in the active site is mutated back into cysteine regained 3-hydroxyproline epimerase activity. This result suggests that the enzymatic activity of these enzymes is dictated by a single residue. Presumably, human C14orf149 serves to degrade trans-3-hydroxy-L-proline from the diet and originating from the degradation of proteins that contain this amino acid, such as collagen IV, which is an important structural component of basement membrane.
Collapse
Affiliation(s)
- Wouter F Visser
- Department of Metabolic Diseases, University Medical Center Utrecht/Wilhelmina Children's Hospital Utrecht, 3508 AB Utrecht, The Netherlands.
| | | | | |
Collapse
|
19
|
Thymus atrophy and double-positive escape are common features in infectious diseases. J Parasitol Res 2012; 2012:574020. [PMID: 22518275 PMCID: PMC3307005 DOI: 10.1155/2012/574020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/20/2011] [Indexed: 11/21/2022] Open
Abstract
The thymus is a primary lymphoid organ in which bone marrow-derived T-cell precursors undergo differentiation, leading to migration of positively selected thymocytes to the T-cell-dependent areas of secondary lymphoid organs. This organ can undergo atrophy, caused by several endogenous and exogenous factors such as ageing, hormone fluctuations, and infectious agents. This paper will focus on emerging data on the thymic atrophy caused by infectious agents. We present data on the dynamics of thymus lymphocytes during acute Trypanosoma cruzi infection, showing that the resulting thymus atrophy comprises the abnormal release of thymic-derived T cells and may have an impact on host immune response.
Collapse
|
20
|
D'Archivio S, Medina M, Cosson A, Chamond N, Rotureau B, Minoprio P, Goyard S. Genetic engineering of Trypanosoma (Dutonella) vivax and in vitro differentiation under axenic conditions. PLoS Negl Trop Dis 2011; 5:e1461. [PMID: 22216367 PMCID: PMC3246432 DOI: 10.1371/journal.pntd.0001461] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/16/2011] [Indexed: 12/02/2022] Open
Abstract
Trypanosoma vivax is one of the most common parasites responsible for animal trypanosomosis, and although this disease is widespread in Africa and Latin America, very few studies have been conducted on the parasite's biology. This is in part due to the fact that no reproducible experimental methods had been developed to maintain the different evolutive forms of this trypanosome under laboratory conditions. Appropriate protocols were developed in the 1990s for the axenic maintenance of three major animal Trypanosoma species: T. b. brucei, T. congolense and T. vivax. These pioneer studies rapidly led to the successful genetic manipulation of T. b. brucei and T. congolense. Advances were made in the understanding of these parasites' biology and virulence, and new drug targets were identified. By contrast, challenging in vitro conditions have been developed for T. vivax in the past, and this per se has contributed to defer both its genetic manipulation and subsequent gene function studies. Here we report on the optimization of non-infective T. vivax epimastigote axenic cultures and on the process of parasite in vitro differentiation into metacyclic infective forms. We have also constructed the first T. vivax specific expression vector that drives constitutive expression of the luciferase reporter gene. This vector was then used to establish and optimize epimastigote transfection. We then developed highly reproducible conditions that can be used to obtain and select stably transfected mutants that continue metacyclogenesis and are infectious in immunocompetent rodents. Trypanosoma vivax is a major parasite of domestic animals in Africa and Americas. Most studies on this parasite have focused on gathering epidemiological data in the field. Studies on its biology, metabolism and interaction with the host immune system have been hindered by a lack of suitable tools for its maintenance in vitro and its genetic engineering. The work presented herein focused on determining axenic conditions for culturing and growing insect (epimastigote) forms of T. vivax and prompting their differentiation into metacyclic forms that are infectious for the mammalian host. In addition, we describe the development of appropriate vectors for parasite transgenesis and selection in vitro and their use in analyzing genetically modified parasite lines. Finally, we report on the construction of the first T. vivax recombinant strain that stably expresses a foreign gene that maintains its infectivity in immunocompetent mice. Our work is a significant breakthrough in the field as it should lead, in the future, to the identification of parasite genes that are relevant to its biology and fate, and to work that may shed light on the intricacies of T. vivax–host interactions.
Collapse
Affiliation(s)
- Simon D'Archivio
- Laboratoire des Processus Infectieux à Trypanosoma, Department of Infection and Epidemiology, Paris, France
| | - Mathieu Medina
- Laboratoire des Processus Infectieux à Trypanosoma, Department of Infection and Epidemiology, Paris, France
| | - Alain Cosson
- Laboratoire des Processus Infectieux à Trypanosoma, Department of Infection and Epidemiology, Paris, France
| | - Nathalie Chamond
- Laboratoire des Processus Infectieux à Trypanosoma, Department of Infection and Epidemiology, Paris, France
- Laboratoire de Cristallographie et RMN Biologiques - Université Paris Descartes France, CNRS UMR 8015, Paris, France
| | - Brice Rotureau
- Unité de Biologie Cellulaire des Trypanosomes, CNRS URA 2581, Department of Parasitology, Paris, France
| | - Paola Minoprio
- Laboratoire des Processus Infectieux à Trypanosoma, Department of Infection and Epidemiology, Paris, France
- * E-mail:
| | - Sophie Goyard
- Laboratoire des Processus Infectieux à Trypanosoma, Department of Infection and Epidemiology, Paris, France
| |
Collapse
|
21
|
Conti P, Tamborini L, Pinto A, Blondel A, Minoprio P, Mozzarelli A, De Micheli C. Drug Discovery Targeting Amino Acid Racemases. Chem Rev 2011; 111:6919-46. [DOI: 10.1021/cr2000702] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Conti
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS-URA 2185, Département de Biologie Structurale et Chimie, 25 rue du Dr. Roux, 75724 Paris, France
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosoma; Département d’Infection et Epidémiologie; 25 rue du Dr. Roux, 75724 Paris, France
| | - Andrea Mozzarelli
- Dipartimento di Biochimica e Biologia Molecolare, via G. P. Usberti 23/A, 43100 Parma, Italy
- Istituto di Biostrutture e Biosistemi, viale Medaglie d’oro, Roma, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
22
|
Friedman M, Levin CE. Nutritional and medicinal aspects of D-amino acids. Amino Acids 2011; 42:1553-82. [PMID: 21519915 DOI: 10.1007/s00726-011-0915-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | | |
Collapse
|
23
|
Chamond N, Cosson A, Blom-Potar MC, Jouvion G, D'Archivio S, Medina M, Droin-Bergère S, Huerre M, Goyard S, Minoprio P. Trypanosoma vivax infections: pushing ahead with mouse models for the study of Nagana. I. Parasitological, hematological and pathological parameters. PLoS Negl Trop Dis 2010; 4:e792. [PMID: 20706595 PMCID: PMC2919405 DOI: 10.1371/journal.pntd.0000792] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 07/14/2010] [Indexed: 11/18/2022] Open
Abstract
African trypanosomiasis is a severe parasitic disease that affects both humans and livestock. Several different species may cause animal trypanosomosis and although Trypanosoma vivax (sub-genus Duttonella) is currently responsible for the vast majority of debilitating cases causing great economic hardship in West Africa and South America, little is known about its biology and interaction with its hosts. Relatively speaking, T. vivax has been more than neglected despite an urgent need to develop efficient control strategies. Some pioneering rodent models were developed to circumvent the difficulties of working with livestock, but disappointedly were for the most part discontinued decades ago. To gain more insight into the biology of T. vivax, its interactions with the host and consequently its pathogenesis, we have developed a number of reproducible murine models using a parasite isolate that is infectious for rodents. Firstly, we analyzed the parasitical characteristics of the infection using inbred and outbred mouse strains to compare the impact of host genetic background on the infection and on survival rates. Hematological studies showed that the infection gave rise to severe anemia, and histopathological investigations in various organs showed multifocal inflammatory infiltrates associated with extramedullary hematopoiesis in the liver, and cerebral edema. The models developed are consistent with field observations and pave the way for subsequent in-depth studies into the pathogenesis of T. vivax - trypanosomosis. While most research efforts have focused on T. b. brucei trypanosomosis, infections caused by T. vivax and T. congolense which predominate in livestock and small ruminants have been subject to little study. In order to circumvent the major constraints inherent to studying T. vivax/host interactions in the field, we developed in vivo murine models of T. vivax trypanosomosis. We show here that the mouse experimental model reproduce most features of the infection in cattle. More than reflecting only the main parasitological parameters of the animal infection, the mouse model can be used to elucidate the immunopathological mechanisms involved in parasite evasion and persistence, and the tissue damage seen during infection and disease. Studies planned for the future will allow us to further investigate T. vivax–induced immunopathology in an experimental context for which all the necessary tools are now available.
Collapse
Affiliation(s)
- Nathalie Chamond
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Alain Cosson
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Marie Christine Blom-Potar
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Grégory Jouvion
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Simon D'Archivio
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Mathieu Medina
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Sabrina Droin-Bergère
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Michel Huerre
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Sophie Goyard
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Paola Minoprio
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Trypanosoma vivax infections: pushing ahead with mouse models for the study of Nagana. II. Immunobiological dysfunctions. PLoS Negl Trop Dis 2010; 4. [PMID: 20711524 PMCID: PMC2919407 DOI: 10.1371/journal.pntd.0000793] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 07/14/2010] [Indexed: 01/22/2023] Open
Abstract
Trypanosoma vivax is the main species involved in trypanosomosis, but very little is known about the immunobiology of the infective process caused by this parasite. Recently we undertook to further characterize the main parasitological, haematological and pathological characteristics of mouse models of T. vivax infection and noted severe anemia and thrombocytopenia coincident with rising parasitemia. To gain more insight into the organism's immunobiology, we studied lymphocyte populations in central (bone marrow) and peripherical (spleen and blood) tissues following mouse infection with T. vivax and showed that the immune system apparatus is affected both quantitatively and qualitatively. More precisely, after an initial increase that primarily involves CD4+ T cells and macrophages, the number of splenic B cells decreases in a step-wise manner. Our results show that while infection triggers the activation and proliferation of Hematopoietic Stem Cells, Granulocyte-Monocyte, Common Myeloid and Megacaryocyte Erythrocyte progenitors decrease in number in the course of the infection. An in-depth analysis of B-cell progenitors also indicated that maturation of pro-B into pre-B precursors seems to be compromised. This interferes with the mature B cell dynamics and renewal in the periphery. Altogether, our results show that T. vivax induces profound immunological alterations in myeloid and lymphoid progenitors which may prevent adequate control of T. vivax trypanosomosis. Trypanosoma vivax is responsible for animal trypanosomosis, or Nagana, in cattle and small ruminants. Under experimental conditions, the outbred mouse model infected with a well studied West African T. vivax isolate reproduces the main characteristics of the infection and pathology observed in livestock. Anemia and non-specific (parasite-directed) polyclonal hypergammaglobulinemia are the most common disorders coincident with the rise in parasitemia. Our results presented here show that the decrease in peripheral B cell populations does not seem to be compensated by newly arriving B cells from the bone marrow. The infection nevertheless prompts intense production of stem cells that mature into myeloid and lymphoid precursors. In spite of this, B cell numbers are specifically reduced in the periphery as the infection progresses. Thus, negative feedback seems to be set in motion by the infection in the bone marrow, more precisely affecting the maturation of B precursors and consequently the output of mature B cells. The origin of these phenomena is unclear but this doubtless creates a homeostatic imbalance that contributes to the inefficient immune response against T. vivax infection.
Collapse
|
25
|
Coatnoan N, Berneman A, Chamond N, Minoprio P. Proline racemases: insights into Trypanosoma cruzi peptides containing D-proline. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:295-300. [DOI: 10.1590/s0074-02762009000900039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 06/08/2009] [Indexed: 11/21/2022] Open
|