1
|
Uniyal P, Panwar S, Bhatt A, Marianesan AB, Kumar R, Singh TG, Tyagi Y, Bushi G, Gaidhane AM, Kumar B. An update on current type 2 diabetes mellitus (T2DM) druggable targets and drugs targeting them. Mol Divers 2025:10.1007/s11030-025-11149-y. [PMID: 40080341 DOI: 10.1007/s11030-025-11149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia and affects millions of people globally. Even after advancement and development in medical science, it is a big task to achieve victory over type 2 diabetes mellitus (T2DM). T2DM can be a reason for fatal events like stroke, cardiac failure, nephropathy, and retinopathy. Many advanced antidiabetic drugs have been introduced in the market in the past two decades, leading researchers to hunt for new target proteins and their potential modulators that can help develop newer antidiabetic drugs. This review article comprises a broad literature of the latest developments in the management of T2DM concerning new target proteins, their inhibitors, or drugs from the clinical arena employed for the successful management of symptoms of T2DM using mono, dual, or triple combination medication therapy. The review categorizes antidiabetic drugs into three general classes that include conventional drug targets, currently explored targets, and upcoming emerging targets. The review aims to merge information on the medicines affecting these targets, their mechanisms, followed by the chemical structures, and recent advancements.
Collapse
Affiliation(s)
- Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Surbhi Panwar
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Akanksha Bhatt
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Arockia Babu Marianesan
- Institute of Pharmaceutical Research, GLA University, 17, Km Stone, National Highway #2, Delhi-Mathura Road, Mathura, India
| | - Roshan Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
| | - Thakur Gurjeet Singh
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Yogita Tyagi
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premanagar, Dehradun, Uttarakhand, 248007, India
| | - Ganesh Bushi
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abhay M Gaidhane
- School of Epidemiology and Public Health, Jawaharlal Nehru Medical College, and Global Health Academy, Datta Meghe Institute of Higher Education, Wardha, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Dist. Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
2
|
Das P, Majumder R, Sen N, Nandi SK, Ghosh A, Mandal M, Basak P. A computational analysis to evaluate deleterious SNPs of GSK3β, a multifunctional and regulatory protein, for metabolism, wound healing, and migratory processes. Int J Biol Macromol 2024; 256:128262. [PMID: 37989431 DOI: 10.1016/j.ijbiomac.2023.128262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
This study focused on GSK-3β, a critical serine/threonine kinase with diverse cellular functions. However, there is limited understanding of the impact of non-synonymous single nucleotide polymorphisms (nsSNPs) on its structure and function. Through an exhaustive in-silico investigation 12 harmful nsSNPs were predicted from a pool of 172 acquired from the NCBI dbSNP database using 12 established tools that detects deleterious SNPs. Consistently, these nsSNPs were discovered in locations with high levels of conservation. Notably, the three harmful nsSNPs F67C, A83T, and T138I were situated in the active/binding site of GSK-3β, which may affect the protein's capacity to bind to substrates and other proteins. Molecular dynamics simulations revealed that the F67C and T138I mutants had stable structures, indicating rigidness, whereas the A83T mutant was unstable. Analysis of secondary structures revealed different modifications in all mutant forms, which may affect the stability, functioning, and interactions of the protein. These mutations appear to alter the structural dynamics of GSK-3β, which may have functional ramifications, such as the formation of novel secondary structures and variations in coil-to-helix transitions. In conclusion, this study illuminates the possible structural and functional ramifications of these GSK-3 nsSNPs, revealing how protein compactness, stiffness, and interactions may affect biological activities.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | - Ranabir Majumder
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, India
| | - Nandita Sen
- Molecular biology wing, Dept of Biotechnology, PES University, Bangalore, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Guwahati Unit, Guwahati, Assam, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India.
| |
Collapse
|
3
|
Danazumi AU, Ishmam IT, Idris S, Izert MA, Balogun EO, Górna MW. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis. Eur J Pharm Sci 2023; 186:106451. [PMID: 37088149 PMCID: PMC11032742 DOI: 10.1016/j.ejps.2023.106451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
African trypanosomiasis (AT) is a hemoparasitic disease caused by infection with African trypanosomes and it is prevalent in many sub-Saharan African countries, affecting both humans and domestic animals. The disease is transmitted mostly by haematophagous insects of the genus Glossina while taking blood meal, in the process spreading the parasites from an infected animal to an uninfected animal. The disease is fatal if untreated, and the available drugs are generally ineffective and resulting in toxicities. Therefore, it is still pertinent to explore novel methods and targets for drug discovery. Proteolysis-targeting chimeras (PROTACs) present a new strategy for development of therapeutic molecules that mimic cellular proteasomal-mediated protein degradation to target proteins involved in different disease types. PROTACs have been used to degrade proteins involved in various cancers, neurodegenerative diseases, and immune disorders with remarkable success. Here, we highlight the problems associated with the current treatments for AT, discuss the concept of PROTACs and associated targeted protein degradation (TPD) approaches, and provide some insights on the future potential for the use of these emerging technologies (PROTACs and TPD) for the development of new generation of anti-Trypanosoma drugs and the first "TrypPROTACs".
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Matylda Anna Izert
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Sebastián-Pérez V, Martínez de Iturrate P, Nácher-Vázquez M, Nóvoa L, Pérez C, Campillo NE, Gil C, Rivas L. Naphthoquinone as a New Chemical Scaffold for Leishmanicidal Inhibitors of Leishmania GSK-3. Biomedicines 2022; 10:biomedicines10051136. [PMID: 35625873 PMCID: PMC9139002 DOI: 10.3390/biomedicines10051136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
More than 1 billion people live in areas endemic for leishmaniasis, which is a relevant threat for public health worldwide. Due to the inadequate treatments, there is an urgent need to develop novel alternative drugs and to validate new targets to fight this disease. One appealing approach is the selective inhibition of protein kinases (PKs), enzymes involved in a wide range of processes along the life cycle of Leishmania. Several PKs, including glycogen synthase kinase 3 (GSK-3), have been validated as essential for this parasite by genetic or pharmacological methods. Recently, novel chemical scaffolds have been uncovered as Leishmania GSK-3 inhibitors with antiparasitic activity. In order to find new inhibitors of this enzyme, a virtual screening of our in-house chemical library was carried out on the structure of the Leishmania GSK-3. The virtual hits identified were experimentally assayed both for leishmanicidal activity and for in vitro inhibition of the enzyme. The best hits have a quinone scaffold. Their optimization through a medicinal chemistry approach led to a set of new compounds, provided a frame to establish biochemical and antiparasitic structure–activity relationships, and delivered molecules with an improved selectivity index. Altogether, this study paves the way for a systemic search of this class of inhibitors for further development as potential leishmanicidal drugs.
Collapse
Affiliation(s)
- Victor Sebastián-Pérez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
| | - Paula Martínez de Iturrate
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
| | - Montserrat Nácher-Vázquez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
| | - Luis Nóvoa
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
| | | | - Nuria E. Campillo
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
- Correspondence: (C.G.); (L.R.)
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
- Correspondence: (C.G.); (L.R.)
| |
Collapse
|
5
|
Sharma M, Choudhury H, Roy R, Michaels SA, Ojo KK, Bansal A. CDPKs: The critical decoders of calcium signal at various stages of malaria parasite development. Comput Struct Biotechnol J 2021; 19:5092-5107. [PMID: 34589185 PMCID: PMC8453137 DOI: 10.1016/j.csbj.2021.08.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Calcium ions are used as important signals during various physiological processes. In malaria parasites, Plasmodium spp., calcium dependent protein kinases (CDPKs) have acquired the unique ability to sense and transduce calcium signals at various critical steps during the lifecycle, either through phosphorylation of downstream substrates or mediating formation of high molecular weight protein complexes. Calcium signaling cascades establish important crosstalk events with signaling pathways mediated by other secondary messengers such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). CDPKs play critical roles at various important physiological steps during parasite development in vertebrates and mosquitoes. They are also important for transmission of the parasite between the two hosts. Combined with the fact that CDPKs are not present in humans, they continue to be pursued as important targets for development of anti-malarial drugs.
Collapse
Affiliation(s)
- Manish Sharma
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Himashree Choudhury
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajarshi Roy
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samantha A. Michaels
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109 USA
| | - Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109 USA
| | - Abhisheka Bansal
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Efstathiou A, Smirlis D. Leishmania Protein Kinases: Important Regulators of the Parasite Life Cycle and Molecular Targets for Treating Leishmaniasis. Microorganisms 2021; 9:microorganisms9040691. [PMID: 33801655 PMCID: PMC8066228 DOI: 10.3390/microorganisms9040691] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmania is a protozoan parasite of the trypanosomatid family, causing a wide range of diseases with different clinical manifestations including cutaneous, mucocutaneous and visceral leishmaniasis. According to WHO, one billion people are at risk of Leishmania infection as they live in endemic areas while there are 12 million infected people worldwide. Annually, 0.9-1.6 million new infections are reported and 20-50 thousand deaths occur due to Leishmania infection. As current chemotherapy for treating leishmaniasis exhibits numerous drawbacks and due to the lack of effective human vaccine, there is an urgent need to develop new antileishmanial therapy treatment. To this end, eukaryotic protein kinases can be ideal target candidates for rational drug design against leishmaniasis. Eukaryotic protein kinases mediate signal transduction through protein phosphorylation and their inhibition is anticipated to be disease modifying as they regulate all essential processes for Leishmania viability and completion of the parasitic life cycle including cell-cycle progression, differentiation and virulence. This review highlights existing knowledge concerning the exploitation of Leishmania protein kinases as molecular targets to treat leishmaniasis and the current knowledge of their role in the biology of Leishmania spp. and in the regulation of signalling events that promote parasite survival in the insect vector or the mammalian host.
Collapse
|
7
|
Martínez de Iturrate P, Sebastián-Pérez V, Nácher-Vázquez M, Tremper CS, Smirlis D, Martín J, Martínez A, Campillo NE, Rivas L, Gil C. Towards discovery of new leishmanicidal scaffolds able to inhibit Leishmania GSK-3. J Enzyme Inhib Med Chem 2020; 35:199-210. [PMID: 31752556 PMCID: PMC6882465 DOI: 10.1080/14756366.2019.1693704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 01/06/2023] Open
Abstract
Previous reports have validated the glycogen synthase kinase-3 (GSK-3) as a druggable target against the human protozoan parasite Leishmania. This prompted us to search for new leishmanicidal scaffolds as inhibitors of this enzyme from our in-house library of human GSK-3β inhibitors, as well as from the Leishbox collection of leishmanicidal compounds developed by GlaxoSmithKline. As a result, new leishmanicidal inhibitors acting on Leishmania GSK-3 at micromolar concentrations were found. These inhibitors belong to six different chemical classes (thiadiazolidindione, halomethylketone, maleimide, benzoimidazole, N-phenylpyrimidine-2-amine and oxadiazole). In addition, the binding mode of the most active compounds into Leishmania GSK-3 was approached using computational tools. On the whole, we have uncovered new chemical scaffolds with an appealing prospective in the development and use of Leishmania GSK-3 inhibitors against this infectious protozoan.
Collapse
Affiliation(s)
| | | | | | | | - Despina Smirlis
- Microbiology Department, Hellenic Pasteur Institute, Athens, Greece
| | - Julio Martín
- Global Health R&D, GlaxoSmithKline, Tres Cantos, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Luis Rivas
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
8
|
Corpas-López V, Tabraue-Chávez M, Sixto-López Y, Panadero-Fajardo S, Alves de Lima Franco F, Domínguez-Seglar JF, Morillas-Márquez F, Franco-Montalbán F, Díaz-Gavilán M, Correa-Basurto J, López-Viota J, López-Viota M, Pérez del Palacio J, de la Cruz M, de Pedro N, Martín-Sánchez J, Gómez-Vidal JA. O-Alkyl Hydroxamates Display Potent and Selective Antileishmanial Activity. J Med Chem 2020; 63:5734-5751. [DOI: 10.1021/acs.jmedchem.9b02016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Victoriano Corpas-López
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Mavys Tabraue-Chávez
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Sonia Panadero-Fajardo
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Fernando Alves de Lima Franco
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José F. Domínguez-Seglar
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Francisco Morillas-Márquez
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Francisco Franco-Montalbán
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Mónica Díaz-Gavilán
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Julián López-Viota
- Departamento de Farmacia y Tecnologı́a Farmacéutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Margarita López-Viota
- Departamento de Farmacia y Tecnologı́a Farmacéutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | | | | | - Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico de la Salud, 18016 Granada, Spain
| | - Joaquina Martín-Sánchez
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José A. Gómez-Vidal
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| |
Collapse
|
9
|
Indirubin Analogues Inhibit Trypanosoma brucei Glycogen Synthase Kinase 3 Short and T. brucei Growth. Antimicrob Agents Chemother 2019; 63:AAC.02065-18. [PMID: 30910902 DOI: 10.1128/aac.02065-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
The protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT). The disease is fatal if it remains untreated, whereas most drug treatments are inadequate due to high toxicity, difficulties in administration, and low central nervous system penetration. T. brucei glycogen synthase kinase 3 short (TbGSK3s) is essential for parasite survival and thus represents a potential drug target that could be exploited for HAT treatment. Indirubins, effective leishmanicidals, provide a versatile scaffold for the development of potent GSK3 inhibitors. Herein, we report on the screening of 69 indirubin analogues against T. brucei bloodstream forms. Of these, 32 compounds had potent antitrypanosomal activity (half-maximal effective concentration = 0.050 to 3.2 μM) and good selectivity for the analogues over human HepG2 cells (range, 7.4- to over 641-fold). The majority of analogues were potent inhibitors of TbGSK3s, and correlation studies for an indirubin subset, namely, the 6-bromosubstituted 3'-oxime bearing an extra bulky substituent on the 3' oxime [(6-BIO-3'-bulky)-substituted indirubins], revealed a positive correlation between kinase inhibition and antitrypanosomal activity. Insights into this indirubin-TbGSK3s interaction were provided by structure-activity relationship studies. Comparison between 6-BIO-3'-bulky-substituted indirubin-treated parasites and parasites silenced for TbGSK3s by RNA interference suggested that the above-described compounds may target TbGSK3s in vivo To further understand the molecular basis of the growth arrest brought about by the inhibition or ablation of TbGSK3s, we investigated the intracellular localization of TbGSK3s. TbGSK3s was present in cytoskeletal structures, including the flagellum and basal body area. Overall, these results give insights into the mode of action of 6-BIO-3'-bulky-substituted indirubins that are promising hits for antitrypanosomal drug discovery.
Collapse
|
10
|
Bumped kinase inhibitor 1369 is effective against Cystoisospora suis in vivo and in vitro. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:9-19. [PMID: 30959327 PMCID: PMC6453670 DOI: 10.1016/j.ijpddr.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
Cystoisosporosis is a leading diarrheal disease in suckling piglets. With the confirmation of resistance against the only available drug toltrazuril, there is a substantial need for novel therapeutics to combat the infection and its negative effects on animal health. In closely related apicomplexan species, bumped kinase inhibitors (BKIs) targeting calcium-dependent protein kinase 1 (CDPK1) were shown to be effective in inhibiting host-cell invasion and parasite growth. Therefore, the gene coding for Cystoisospora suis CDPK1 (CsCDPK1) was identified and cloned to investigate activity and thermal stabilization of the recombinant CsCDPK1 enzyme by BKI 1369. In this comprehensive study, the efficacy, safety and pharmacokinetics of BKI 1369 in piglets experimentally infected with Cystoisospora suis (toltrazuril-sensitive, Wien-I and toltrazuril-resistant, Holland-I strains) were determined in vivo and in vitro using an established animal infection model and cell culture, respectively. BKI 1369 inhibited merozoite proliferation in intestinal porcine epithelial cells-1 (IPEC-1) by at least 50% at a concentration of 40 nM, and proliferation was almost completely inhibited (>95%) at 200 nM. Nonetheless, exposure of infected cultures to 200 nM BKI 1369 for five days did not induce structural alterations in surviving merozoites as confirmed by transmission electron microscopy. Five-day treatment with BKI 1369 (10 mg/kg BW twice a day) effectively suppressed oocyst excretion and diarrhea and improved body weight gains in treated piglets without obvious side effects for both toltrazuril-sensitive, Wien-I and resistant, Holland-I C. suis strains. The plasma concentration of BKI 1369 in piglets increased to 11.7 μM during treatment, suggesting constant drug accumulation and exposure of parasites to the drug. Therefore, oral applications of BKI 1369 could potentially be a therapeutic alternative against porcine cystoisosporosis. For use in pigs, future studies on BKI 1369 should be directed towards ease of drug handling and minimizing treatment frequencies. Oral application of BKI 1369 effectively reduced oocyst excretion and diarrhea in Cystoisospora suis infected piglets. 200 nM of BKI 1369 almost completely suppressed parasite proliferation in vitro. IC50 and IC95 concentrations of BKI 1369 did not induce morphological alterations in in vitro cultured merozoites. Cystoisosporasuis CDPK1, the putative target of BKI 1369, has glycine as gatekeeper residue.
Collapse
|
11
|
Hombach-Barrigah A, Bartsch K, Smirlis D, Rosenqvist H, MacDonald A, Dingli F, Loew D, Späth GF, Rachidi N, Wiese M, Clos J. Leishmania donovani 90 kD Heat Shock Protein - Impact of Phosphosites on Parasite Fitness, Infectivity and Casein Kinase Affinity. Sci Rep 2019; 9:5074. [PMID: 30911045 PMCID: PMC6434042 DOI: 10.1038/s41598-019-41640-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmania parasites are thought to control protein activity at the post-translational level, e.g. by protein phosphorylation. In the pathogenic amastigote, the mammalian stage of Leishmania parasites, heat shock proteins show increased phosphorylation, indicating a role in stage-specific signal transduction. Here we investigate the impact of phosphosites in the L. donovani heat shock protein 90. Using a chemical knock-down/genetic complementation approach, we mutated 11 confirmed or presumed phosphorylation sites and assessed the impact on overall fitness, morphology and in vitro infectivity. Most phosphosite mutations affected the growth and morphology of promastigotes in vitro, but with one exception, none of the phosphorylation site mutants had a selective impact on the in vitro infection of macrophages. Surprisingly, aspartate replacements mimicking the negative charge of phosphorylated serines or threonines had mostly negative impacts on viability and infectivity. HSP90 is a substrate for casein kinase 1.2-catalysed phosphorylation in vitro. While several putative phosphosite mutations abrogated casein kinase 1.2 activity on HSP90, only Ser289 could be identified as casein kinase target by mass spectrometry. In summary, our data show HSP90 as a downstream client of phosphorylation-mediated signalling in an organism that depends on post-transcriptional gene regulation.
Collapse
Affiliation(s)
| | | | - Despina Smirlis
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
- Hellenic Pasteur Institute, Athens, Greece
| | - Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
- Novo Nordisk A/S, Gentofte, Denmark
| | - Andrea MacDonald
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| | - Gerald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
12
|
Borba JV, Silva AC, Ramos PI, Grazzia N, Miguel DC, Muratov EN, Furnham N, Andrade CH. Unveiling the Kinomes of Leishmania infantum and L. braziliensis Empowers the Discovery of New Kinase Targets and Antileishmanial Compounds. Comput Struct Biotechnol J 2019; 17:352-361. [PMID: 30949306 PMCID: PMC6429582 DOI: 10.1016/j.csbj.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania (NTD) endemic in 98 countries. Although some drugs are available, current treatments deal with issues such as toxicity, low efficacy, and emergence of resistance. Therefore, there is an urgent need to identify new targets for the development of new antileishmanial drugs. Protein kinases (PKs), which play an essential role in many biological processes, have become potential drug targets for many parasitic diseases. A refined bioinformatics pipeline was applied in order to define and compare the kinomes of L. infantum and L. braziliensis, species that cause cutaneous and visceral manifestations of leishmaniasis in the Americas, the latter being potentially fatal if untreated. Respectively, 224 and 221 PKs were identified in L. infantum and L. braziliensis overall. Almost all unclassified eukaryotic PKs were assigned to six of nine major kinase groups and, consequently, most have been classified into family and subfamily. Furthermore, revealing the kinomes for both Leishmania species allowed for the prioritization of potential drug targets that could be explored for discovering new drugs against leishmaniasis. Finally, we used a drug repurposing approach and prioritized seven approved drugs and investigational compounds to be experimentally tested against Leishmania. Trametinib and NMS-1286937 inhibited the growth of L. infantum and L. braziliensis promastigotes and amastigotes and therefore might be good candidates for the drug repurposing pipeline.
Collapse
Affiliation(s)
- Joyce V.B. Borba
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| | - Arthur C. Silva
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| | - Pablo I.P. Ramos
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, 40296-710, Brazil
| | - Nathalia Grazzia
- LEBIL – Laboratory of Leishmania Biology Infection Studies, Department of Animal Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Danilo C. Miguel
- LEBIL – Laboratory of Leishmania Biology Infection Studies, Department of Animal Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eugene N. Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Carolina H. Andrade
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| |
Collapse
|
13
|
The Akt-like kinase of Leishmania panamensis: As a new molecular target for drug discovery. Acta Trop 2018; 177:171-178. [PMID: 29037519 DOI: 10.1016/j.actatropica.2017.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 09/11/2017] [Accepted: 10/09/2017] [Indexed: 01/15/2023]
Abstract
The Akt-like kinase of Leishmania spp. is a cytoplasmic orthologous protein of the serine/threonine kinase B-PKB/human-Akt group, which is involved in the cellular survival of these parasites. By the application of a computational strategy we obtained two specific inhibitors of the Akt-like protein of L. panamensis (UBMC1 and UBMC4), which are predicted to bind specifically to the pleckstrin domain (PH) of the enzyme. We show that the Akt-like of Leishmania panamensis is phospho-activated in parasites under nutritional and thermic stress, this phosphorylation is blocked by the UBMC1 and UMBC2 and such inhibition leads to cell death. Amongst the effects caused by the inhibitors on the parasites we found high percentage of hypodiploidy and loss of mitochondrial membrane potential. Ultrastructural studies showed highly vacuolated cytoplasm, as well as shortening of the flagellum, loss of nuclear membrane integrity and DNA fragmentation. Altogether the presented results suggest that the cell death caused by UMBC1 and UMBC4 may be associated to an apoptosis-like process. The compounds present an inhibitory concentration (IC50) over intracellular amastigotes of L. panamensis of 9.2±0.8μM for UBMC1 and 4.6±1.9μM for UBMC4. The cytotoxic activity for UBMC1 and UBMC4 in human macrophages derived from monocytes (huMDM) was 29±1.2μM and >40μM respectively. Our findings strongly support that the presented compounds can be plausible candidates as a new therapeutic alternative for the inhibition of specific kinases of the parasite.
Collapse
|
14
|
Varela-M RE, Ochoa R, Muskus CE, Muro A, Mollinedo F. Identification of a RAC/AKT-like gene in Leishmania parasites as a putative therapeutic target in leishmaniasis. Parasit Vectors 2017; 10:458. [PMID: 29017516 PMCID: PMC5633885 DOI: 10.1186/s13071-017-2379-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Background Leishmaniasis is one of the world’s most neglected diseases caused by at least 20 different species of the protozoan parasite Leishmania. Although new drugs have become recently available, current therapy for leishmaniasis is still unsatisfactory. A subgroup of serine/threonine protein kinases named as related to A and C protein kinases (RAC), or protein kinase B (PKB)/AKT, has been identified in several organisms including Trypanosoma cruzi parasites. PKB/AKT plays a critical role in mammalian cell signaling promoting cell survival and is a major drug target in cancer therapy. However, the role of protozoan parasitic PKB/AKT remains to be elucidated. Results We have found that anti-human AKT antibodies recognized a protein of about 57 kDa in Leishmania spp. parasites. Anti-human phospho-AKT(Thr308) antibodies identified a protein in extracts from Leishmania spp. that was upregulated following parasite exposure to stressful conditions, such as nutrient deprivation or heat shock. Incubation of AKT inhibitor X with Leishmania spp. promastigotes under stressful conditions or with Leishmania-infected macrophages led to parasite cell death. We have identified and cloned a novel gene from Leishmania donovani named Ld-RAC/AKT-like gene, encoding a 510-amino acid protein of approximately 57.6 kDa that shows a 26.5% identity with mammalian AKT1. Ld-RAC/AKT-like protein contains major mammalian PKB/AKT hallmarks, including the typical pleckstrin, protein kinase and AGC kinase domains. Unlike mammalian AKT that contains key phosphorylation sites at Thr308 and Ser473 in the activation loop and hydrophobic motif, respectively, Ld-RAC/AKT-like protein has a Thr residue in both motifs. By domain sequence comparison, we classified AKT proteins from different origins in four major subcategories that included different parasites. Conclusions Our data suggest that Ld-RAC/AKT-like protein represents a Leishmania orthologue of mammalian AKT involved in parasite stress response and survival, and therefore could become a novel therapeutic and druggable target in leishmaniasis therapy. In addition, following comparative sequence analyses, we found the RAC/AKT-like proteins from Leishmania constitute a subgroup by themselves within a general AKT-like protein family. Electronic supplementary material The online version of this article (10.1186/s13071-017-2379-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rubén E Varela-M
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Ciencias Básicas, Universidad Santiago de Cali, Campus Pampalinda, Santiago de Cali, Colombia
| | - Rodrigo Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia
| | - Carlos E Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia
| | - Antonio Muro
- Laboratorio de Inmunología Parasitaria y Molecular, IBSAL-CIETUS, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain. .,Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain.
| |
Collapse
|
15
|
Palomo V, Martinez A. Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2014-2015). Expert Opin Ther Pat 2016; 27:657-666. [PMID: 27828716 DOI: 10.1080/13543776.2017.1259412] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Glycogen synthase kinase (GSK-3) is a serine/threonine kinase that phosphorylates more than one hundred different sequences within proteins in a variety of different pathways. It is a key component of a remarkably large number of cellular processes and diseases. Imbalance of GSK-3 activity is involved in various prevalent pathological diseases, such as diabetes, neurodegenerative diseases and cancer. Understanding its role in different disorders has been central in the last several decades and there has been a significantly large development of GSK-3 inhibitors, some of which, show promising results for the treatment of these devastating diseases. Areas covered: This review covers patent literature on GSK-3 inhibitors and their applications published and/or granted between 2014 and 2015. Expert opinion: GSK-3 inhibitors have gained a prominent role in regenerative medicine based in their ability to modulate stem cells. Moreover, some allosteric modulators of GSK-3 emerge as safe compounds for chronic treatments.
Collapse
Affiliation(s)
- Valle Palomo
- a Centro de Investigaciones Biologicas-CSIC , Translational Medicinal and Biological Chemistry Laboratory , Madrid , Spain
| | - Ana Martinez
- a Centro de Investigaciones Biologicas-CSIC , Translational Medicinal and Biological Chemistry Laboratory , Madrid , Spain
| |
Collapse
|
16
|
Ojo KK, Dangoudoubiyam S, Verma SK, Scheele S, DeRocher AE, Yeargan M, Choi R, Smith TR, Rivas KL, Hulverson MA, Barrett LK, Fan E, Maly DJ, Parsons M, Dubey JP, Howe DK, Van Voorhis WC. Selective inhibition of Sarcocystis neurona calcium-dependent protein kinase 1 for equine protozoal myeloencephalitis therapy. Int J Parasitol 2016; 46:871-880. [PMID: 27729271 DOI: 10.1016/j.ijpara.2016.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 01/12/2023]
Abstract
Sarcocystis neurona is the most frequent cause of equine protozoal myeloencephalitis, a debilitating neurological disease of horses that can be difficult to treat. We identified SnCDPK1, the S. neurona homologue of calcium-dependent protein kinase 1 (CDPK1), a validated drug target in Toxoplasma gondii. SnCDPK1 shares the glycine "gatekeeper" residue of the well-characterized T. gondii enzyme, which allows the latter to be targeted by bumped kinase inhibitors. This study presents detailed molecular and phenotypic evidence that SnCDPK1 can be targeted for rational drug development. Recombinant SnCDPK1 was tested against four bumped kinase inhibitors shown to potently inhibit both T. gondii (Tg) CDPK1 and T. gondii tachyzoite growth. SnCDPK1 was inhibited by low nanomolar concentrations of these BKIs and S. neurona growth was inhibited at 40-120nM concentrations. Thermal shift assays confirmed these bumped kinase inhibitors bind CDPK1 in S. neurona cell lysates. Treatment with bumped kinase inhibitors before or after invasion suggests that bumped kinase inhibitors interfere with S. neurona mammalian host cell invasion in the 0.5-2.5μM range but interfere with intracellular division at 2.5μM. In vivo proof-of-concept experiments were performed in a murine model of S. neurona infection. The experimental infected groups treated for 30days with compound BKI-1553 (n=10 mice) had no signs of disease, while the infected control group had severe signs and symptoms of infection. Elevated antibody responses were found in 100% of control infected animals, but only 20% of BKI-1553 treated infected animals. Parasites were found in brain tissues of 100% of the control infected animals, but only in 10% of the BKI-1553 treated animals. The bumped kinase inhibitors used in these assays have been chemically optimized for potency, selectivity and pharmacokinetic properties, and hence are good candidates for treatment of equine protozoal myeloencephalitis.
Collapse
Affiliation(s)
- Kayode K Ojo
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA 98109, USA.
| | - Sriveny Dangoudoubiyam
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shiv K Verma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Suzanne Scheele
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Amy E DeRocher
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Michelle Yeargan
- Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA 98109, USA
| | - Tess R Smith
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA 98109, USA
| | - Kasey L Rivas
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA 98109, USA
| | - Matthew A Hulverson
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA 98109, USA
| | - Lynn K Barrett
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA 98109, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Marilyn Parsons
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Daniel K Howe
- Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | - Wesley C Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Ojo KK, Ranade RM, Zhang Z, Dranow DM, Myers JB, Choi R, Nakazawa Hewitt S, Edwards TE, Davies DR, Lorimer D, Boyle SM, Barrett LK, Buckner FS, Fan E, Van Voorhis WC. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis. PLoS One 2016; 11:e0160350. [PMID: 27500735 PMCID: PMC4976878 DOI: 10.1371/journal.pone.0160350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022] Open
Abstract
We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment.
Collapse
Affiliation(s)
- Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Ranae M. Ranade
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David M. Dranow
- Beryllium, Bainbridge Island, Washington, United States of America
| | - Janette B. Myers
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Steve Nakazawa Hewitt
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | | | | | - Donald Lorimer
- Beryllium, Bainbridge Island, Washington, United States of America
| | - Stephen M. Boyle
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Lynn K. Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Frederick S. Buckner
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
18
|
Guyett PJ, Xia S, Swinney DC, Pollastri MP, Mensa-Wilmot K. Glycogen Synthase Kinase 3β Promotes the Endocytosis of Transferrin in the African Trypanosome. ACS Infect Dis 2016; 2:518-28. [PMID: 27626104 DOI: 10.1021/acsinfecdis.6b00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human parasite Trypanosoma brucei proliferates in the blood of its host, where it takes up iron via receptor-mediated endocytosis of transferrin (Tf). Mechanisms of Tf endocytosis in the trypanosome are not fully understood. Small molecule lapatinib inhibits Tf endocytosis in T. brucei and associates with protein kinase GSK3β (TbGSK3β). Therefore, we hypothesized that Tf endocytosis may be regulated by TbGSK3β, and we used three approaches (both genetic and small molecule) to test this possibility. First, the RNAi knock-down of TbGSK3β reduced Tf endocytosis selectively, without affecting the uptake of haptaglobin-hemoglobin (Hp-Hb) or bovine serum albumin (BSA). Second, the overexpression of TbGSK3β increased the Tf uptake. Third, small-molecule inhibitors of TbGSK3β, TWS119 (IC50 = 600 nM), and GW8510 (IC50 = 8 nM) reduced Tf endocytosis. Furthermore, TWS119, but not GW8510, selectively blocked Tf uptake. Thus, TWS119 phenocopies the selective endocytosis effects of a TbGSK3β knockdown. Two new inhibitors of TbGSK3β, LY2784544 (IC50 = 0.6 μM) and sorafenib (IC50 = 1.7 μM), were discovered in a focused screen: at low micromolar concentrations, they prevented Tf endocytosis as well as trypanosome proliferation (GI50's were 1.0 and 3.1 μM, respectively). These studies show that (a) TbGSK3β regulates Tf endocytosis, (b) TWS119 is a small-molecule tool for investigating the endocytosis of Tf,
Collapse
Affiliation(s)
- Paul J. Guyett
- Department
of Cellular Biology, The Center for Tropical and Emerging Global Diseases, University of Georgia, 724 Biological Sciences Building, Athens, Georgia 30605, United States
| | - Shuangluo Xia
- Institute for Rare and Neglected Disease Drug Discovery (IRND3), 897 Independence Avenue #2C, Mountain View, California 94043, United States
| | - David C. Swinney
- Institute for Rare and Neglected Disease Drug Discovery (IRND3), 897 Independence Avenue #2C, Mountain View, California 94043, United States
| | - Michael P. Pollastri
- Department
of Chemistry and Chemical Biology, Northeastern University, 417 Egan
Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Kojo Mensa-Wilmot
- Department
of Cellular Biology, The Center for Tropical and Emerging Global Diseases, University of Georgia, 724 Biological Sciences Building, Athens, Georgia 30605, United States
| |
Collapse
|
19
|
Screening of inhibitors of glycogen synthase kinase-3β from traditional Chinese medicines using enzyme-immobilized magnetic beads combined with high-performance liquid chromatography. J Chromatogr A 2015; 1425:8-16. [DOI: 10.1016/j.chroma.2015.10.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 12/28/2022]
|
20
|
Rajasekaran R, Chen YPP. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov Today 2015; 20:958-68. [PMID: 25936844 DOI: 10.1016/j.drudis.2015.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/25/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is the most prevalent pathogenic disease in many countries around the world, but there are few drugs available to treat it. Most antileishmanial drugs available are highly toxic, have resistance issues or require hospitalization for their use; therefore, they are not suitable for use in most of the affected countries. Over the past decade, the completion of the genomes of many human pathogens, including that of Leishmania spp., has opened new doors for target identification and validation. Here, we focus on the potential drug targets that can be used for the treatment of leishmaniasis and bring to light how recent technological advances, such as structure-based drug design, structural genomics, and molecular dynamics (MD), can be used to our advantage to develop potent and affordable antileishmanial drugs.
Collapse
Affiliation(s)
| | - Yi-Ping Phoebe Chen
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Selective inhibitors of Plasmodium falciparum glycogen synthase-3 (PfGSK-3): New antimalarial agents? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1644-9. [PMID: 25861860 DOI: 10.1016/j.bbapap.2015.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023]
Abstract
Plasmodium falciparum glycogen synthase kinase-3 (PfGSK-3) is one of the eukaryotic protein kinases that were identified as essential for the parasite causing malaria tropica. Although the physiological functions of PfGSK-3 are still unknown, it had been suggested as a putative target for novel antimalarial drugs. The high structural similarity of PfGSK-3 and its human orthologue HsGSK-3 makes the development of selective PfGSK-3 inhibitors a challenging task. Actually, established GSK-3 inhibitors are either unselective or are more potent for inhibition of the mammalian GSK-3. A high throughput screening campaign identified thieno[2,3-b]pyridines as a new class of PfGSK-3 inhibitors. Systematic variation of the substitution pattern at the parent scaffold led to compounds which selectively inhibited the plasmodial enzyme. These compounds also exhibited activity against erythrocyte stages of the parasites. A hypothetical explanation for the selectivity of the new antimalarial compounds was enunciated based on the results of docking a selective inhibitor into a PfGSK-3 homology model and by comparison of the results with an X-ray structure of HsGSK-3 co-crystallized with a similar but unselective compound. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
|
22
|
Merritt C, Silva L, Tanner AL, Stuart K, Pollastri MP. Kinases as druggable targets in trypanosomatid protozoan parasites. Chem Rev 2014; 114:11280-304. [PMID: 26443079 PMCID: PMC4254031 DOI: 10.1021/cr500197d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher Merritt
- Seattle
Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109-5219, United States
| | - Lisseth
E. Silva
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Angela L. Tanner
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Kenneth Stuart
- Seattle
Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109-5219, United States
| | - Michael P. Pollastri
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Urich R, Grimaldi R, Luksch T, Frearson JA, Brenk R, Wyatt PG. The design and synthesis of potent and selective inhibitors of Trypanosoma brucei glycogen synthase kinase 3 for the treatment of human african trypanosomiasis. J Med Chem 2014; 57:7536-49. [PMID: 25198388 PMCID: PMC4175002 DOI: 10.1021/jm500239b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) is a genetically validated drug target for human African trypanosomiasis (HAT), also called African sleeping sickness. We report the synthesis and biological evaluation of aminopyrazole derivatives as Trypanosoma brucei GSK3 short inhibitors. Low nanomolar inhibitors, which had high selectivity over the off-target human CDK2 and good selectivity over human GSK3β enzyme, have been prepared. These potent kinase inhibitors demonstrated low micromolar levels of inhibition of the Trypanosoma brucei brucei parasite grown in culture.
Collapse
Affiliation(s)
- Robert Urich
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dow Street, Dundee DD1 5EH, U.K
| | | | | | | | | | | |
Collapse
|
24
|
The gatekeeper residue and beyond: homologous calcium-dependent protein kinases as drug development targets for veterinarian Apicomplexa parasites. Parasitology 2014; 141:1499-1509. [PMID: 24927073 DOI: 10.1017/s0031182014000857] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Specific roles of individual CDPKs vary, but in general they mediate essential biological functions necessary for parasite survival. A comparative analysis of the structure-activity relationships (SAR) of Neospora caninum, Eimeria tenella and Babesia bovis calcium-dependent protein kinases (CDPKs) together with those of Plasmodium falciparum, Cryptosporidium parvum and Toxoplasma gondii was performed by screening against 333 bumped kinase inhibitors (BKIs). Structural modelling and experimental data revealed that residues other than the gatekeeper influence compound-protein interactions resulting in distinct sensitivity profiles. We subsequently defined potential amino-acid structural influences within the ATP-binding cavity for each orthologue necessary for consideration in the development of broad-spectrum apicomplexan CDPK inhibitors. Although the BKI library was developed for specific inhibition of glycine gatekeeper CDPKs combined with low inhibition of threonine gatekeeper human SRC kinase, some library compounds exhibit activity against serine- or threonine-containing CDPKs. Divergent BKI sensitivity of CDPK homologues could be explained on the basis of differences in the size and orientation of the hydrophobic pocket and specific variation at other amino-acid positions within the ATP-binding cavity. In particular, BbCDPK4 and PfCDPK1 are sensitive to a larger fraction of compounds than EtCDPK1 despite the presence of a threonine gatekeeper in all three CDPKs.
Collapse
|
25
|
Dacher M, Morales MA, Pescher P, Leclercq O, Rachidi N, Prina E, Cayla M, Descoteaux A, Späth GF. Probing druggability and biological function of essential proteins inLeishmaniacombining facilitated null mutant and plasmid shuffle analyses. Mol Microbiol 2014; 93:146-66. [DOI: 10.1111/mmi.12648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Mariko Dacher
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Miguel A. Morales
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Pascale Pescher
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Olivier Leclercq
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Najma Rachidi
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Eric Prina
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Mathieu Cayla
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier and Center for Host-Parasite Interactions; Laval Québec Canada
| | - Gerald F. Späth
- Institut Pasteur, CNRS URA 2581; Unité de Parasitologie moléculaire et Signalisation; Paris France
| |
Collapse
|
26
|
Ojo KK, Reid MC, Kallur Siddaramaiah L, Müller J, Winzer P, Zhang Z, Keyloun KR, Vidadala RSR, Merritt EA, Hol WGJ, Maly DJ, Fan E, Van Voorhis WC, Hemphill A. Neospora caninum calcium-dependent protein kinase 1 is an effective drug target for neosporosis therapy. PLoS One 2014; 9:e92929. [PMID: 24681759 PMCID: PMC3969379 DOI: 10.1371/journal.pone.0092929] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
Despite the enormous economic importance of Neospora caninum related veterinary diseases, the number of effective therapeutic agents is relatively small. Development of new therapeutic strategies to combat the economic impact of neosporosis remains an important scientific endeavor. This study demonstrates molecular, structural and phenotypic evidence that N. caninum calcium-dependent protein kinase 1 (NcCDPK1) is a promising molecular target for neosporosis drug development. Recombinant NcCDPK1 was expressed, purified and screened against a select group of bumped kinase inhibitors (BKIs) previously shown to have low IC50s against Toxoplasma gondii CDPK1 and T. gondii tachyzoites. NcCDPK1 was inhibited by low concentrations of BKIs. The three-dimensional structure of NcCDPK1 in complex with BKIs was studied crystallographically. The BKI-NcCDPK1 structures demonstrated the structural basis for potency and selectivity. Calcium-dependent conformational changes in solution as characterized by small-angle X-ray scattering are consistent with previous structures in low Calcium-state but different in the Calcium-bound active state than predicted by X-ray crystallography. BKIs effectively inhibited N. caninum tachyzoite proliferation in vitro. Electron microscopic analysis of N. caninum cells revealed ultra-structural changes in the presence of BKI compound 1294. BKI compound 1294 interfered with an early step in Neospora tachyzoite host cell invasion and egress. Prolonged incubation in the presence of 1294 interfered produced observable interference with viability and replication. Oral dosing of BKI compound 1294 at 50 mg/kg for 5 days in established murine neosporosis resulted in a 10-fold reduced cerebral parasite burden compared to untreated control. Further experiments are needed to determine the PK, optimal dosage, and duration for effective treatment in cattle and dogs, but these data demonstrate proof-of-concept for BKIs, and 1294 specifically, for therapy of bovine and canine neosporosis.
Collapse
Affiliation(s)
- Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (KKO); (WCVV); (AH)
| | - Molly C. Reid
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Pablo Winzer
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Katelyn R. Keyloun
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rama Subba Rao Vidadala
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Ethan A. Merritt
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Dustin J. Maly
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (KKO); (WCVV); (AH)
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
- * E-mail: (KKO); (WCVV); (AH)
| |
Collapse
|
27
|
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014; 74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.
Collapse
|
28
|
A colorful history: the evolution of indigoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2014; 99:69-145. [PMID: 25296438 DOI: 10.1007/978-3-319-04900-7_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Woodland A, Grimaldi R, Luksch T, Cleghorn LAT, Ojo KK, Van Voorhis WC, Brenk R, Frearson JA, Gilbert IH, Wyatt PG. From on-target to off-target activity: identification and optimisation of Trypanosoma brucei GSK3 inhibitors and their characterisation as anti-Trypanosoma brucei drug discovery lead molecules. ChemMedChem 2013; 8:1127-37. [PMID: 23776181 PMCID: PMC3728731 DOI: 10.1002/cmdc.201300072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/15/2013] [Indexed: 01/09/2023]
Abstract
Human African trypanosomiasis (HAT) is a life-threatening disease with approximately 30 000–40 000 new cases each year. Trypanosoma brucei protein kinase GSK3 short (TbGSK3) is required for parasite growth and survival. Herein we report a screen of a focused kinase library against T. brucei GSK3. From this we identified a series of several highly ligand-efficient TbGSK3 inhibitors. Following the hit validation process, we optimised a series of diaminothiazoles, identifying low-nanomolar inhibitors of TbGSK3 that are potent in vitro inhibitors of T. brucei proliferation. We show that the TbGSK3 pharmacophore overlaps with that of one or more additional molecular targets.
Collapse
Affiliation(s)
- Andrew Woodland
- Drug Discovery Unit (DDU), Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fugel W, Oberholzer AE, Gschloessl B, Dzikowski R, Pressburger N, Preu L, Pearl LH, Baratte B, Ratin M, Okun I, Doerig C, Kruggel S, Lemcke T, Meijer L, Kunick C. 3,6-Diamino-4-(2-halophenyl)-2-benzoylthieno[2,3-b]pyridine-5-carbonitriles are selective inhibitors of Plasmodium falciparum glycogen synthase kinase-3. J Med Chem 2013; 56:264-75. [PMID: 23214499 DOI: 10.1021/jm301575n] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plasmodium falciparum is the infective agent responsible for malaria tropica. The glycogen synthase kinase-3 of the parasite (PfGSK-3) was suggested as a potential biological target for novel antimalarial drugs. Starting from hit structures identified in a high-throughput screening campaign, 3,6-diamino-4-(2-halophenyl)-2-benzoylthieno[2,3-b]pyridine-5-carbonitriles were discovered as a new class of PfGSK-3 inhibitors. Being less active on GSK-3 homologues of other species, the title compounds showed selectivity in favor of PfGSK-3. Taking into account the X-ray structure of a related molecule in complex with human GSK-3 (HsGSK-3), a model was computed for the comparison of inhibitor complexes with the plasmodial and human enzymes. It was found that subtle differences in the ATP-binding pockets are responsible for the observed PfGSK-3 vs HsGSK-3 selectivity. Representatives of the title compound class exhibited micromolar IC₅₀ values against P. falciparum erythrocyte stage parasites. These results suggest that inhibitors of PfGSK-3 could be developed as potential antimalarial drugs.
Collapse
Affiliation(s)
- Wiebke Fugel
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The Crystal Structure of the MAP Kinase LmaMPK10 from Leishmania Major Reveals Parasite-Specific Features and Regulatory Mechanisms. Structure 2012; 20:1649-60. [DOI: 10.1016/j.str.2012.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/23/2012] [Accepted: 07/09/2012] [Indexed: 12/23/2022]
|