1
|
Kornaliková M, Hampl V, Treitli SC. Investigation of the Genome Sizes and Ploidy Within the Genus
Monocercomonoides. J Eukaryot Microbiol 2022; 69:e12925. [DOI: 10.1111/jeu.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martina Kornaliková
- Department of Parasitology, Faculty of Science Charles University, BIOCEV Vestec Czech Republic
| | - Vladimir Hampl
- Department of Parasitology, Faculty of Science Charles University, BIOCEV Vestec Czech Republic
| | | |
Collapse
|
2
|
Ding H, Zhang N, Cao L, Gong P, Wang X, Li X, Cheng S, Li J, Zhang X. First identification of telomeric DNA sequences in Trichomonas vaginalis. Acta Trop 2022; 225:106196. [PMID: 34687640 DOI: 10.1016/j.actatropica.2021.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022]
Abstract
Trichomoniasis is the most common nonviral sexually transmitted disease; it is caused by Trichomonas vaginalis and seriously threatens human reproductive health. Telomeres are specialised DNA-protein complexes at the ends of chromosomes that have a protective function. The aim of the present study was to identify and characterise the telomeric DNA of T. vaginalis-which has not been previously reported-by multiple molecular methods including sequencing, the Bal nuclease (BAL) 31 nuclease assay, fluorescence in situ hybridisation (FISH), and Southern blotting. We found numerous repeated units of TTTTAGGG in T. vaginalis genomic DNA digested with S1 nuclease in combination with XbaI restriction enzyme. The (TTTTAGGG)n tandem repeats were also highly sensitive to BAL 31 exonuclease digestion. We confirmed that the (TTTTAGGG)n repeats were located at the end of T. vaginalis chromosomes by FISH. Restriction enzyme digestion combined with Southern blotting using a digoxigenin-labelled (TTTTAGGG)5 probe showed that the T. vaginalis telomeric DNA length varied from 1.0 to 1.5 kb. This is the first report on the telomeric DNA sequence of T. vaginalis which includes the length and distribution on chromosomes; our findings lay a foundation for further study on telomere maintenance mechanisms in T. vaginalis.
Collapse
Affiliation(s)
- He Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lili Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuqin Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Motyčková A, Klápšťová V, Vinopalová M, Marková L, Voleman L, Klimeš V, Petrů M, Vaitová Z, Čepička I, Hryzáková K, Harant K, Gray MW, Chami M, Guilvout I, Francetic O, Franz Lang B, Vlček Č, Tsaousis AD, Eliáš M, Doležal P. Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun 2021; 12:2947. [PMID: 34011950 PMCID: PMC8134430 DOI: 10.1038/s41467-021-23046-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
The type 2 secretion system (T2SS) is present in some Gram-negative eubacteria and used to secrete proteins across the outer membrane. Here we report that certain representative heteroloboseans, jakobids, malawimonads and hemimastigotes unexpectedly possess homologues of core T2SS components. We show that at least some of them are present in mitochondria, and their behaviour in biochemical assays is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). We additionally identified 23 protein families co-occurring with miT2SS in eukaryotes. Seven of these proteins could be directly linked to the core miT2SS by functional data and/or sequence features, whereas others may represent different parts of a broader functional pathway, possibly also involving the peroxisome. Its distribution in eukaryotes and phylogenetic evidence together indicate that the miT2SS-centred pathway is an ancestral eukaryotic trait. Our findings thus have direct implications for the functional properties of the early mitochondrion. Bacteria use the type 2 secretion system to secrete enzymes and toxins across the outer membrane to the environment. Here the authors analyse the T2SS pathway in three protist lineages and suggest that the early mitochondrion may have been capable of secreting proteins into the cytosol.
Collapse
Affiliation(s)
- Lenka Horváthová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vojtěch Žárský
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tomáš Pánek
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic.,Faculty of Science, Department of Zoology, Charles University, Prague 2, Czech Republic
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Jan Pyrih
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, UK.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alžběta Motyčková
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Veronika Klápšťová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Martina Vinopalová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lenka Marková
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Luboš Voleman
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Klimeš
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Markéta Petrů
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zuzana Vaitová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Čepička
- Faculty of Science, Department of Zoology, Charles University, Prague 2, Czech Republic
| | - Klára Hryzáková
- Faculty of Science, Department of Genetics and Microbiology, Charles University, Prague 2, Czech Republic
| | - Karel Harant
- Faculty of Science, Proteomic core facility, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Mohamed Chami
- Center for Cellular Imaging and NanoAnalytics, University of Basel, Basel, Switzerland
| | - Ingrid Guilvout
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - B Franz Lang
- Robert Cedergren Centre for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montreal, QC, Canada
| | - Čestmír Vlček
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague 4, Czech Republic
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, UK
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic.
| | - Pavel Doležal
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
4
|
Doyle C, Swain WA, Swain Ewald HA, Ewald PW. Inflammation, infection and depression: an evolutionary perspective. EVOLUTIONARY HUMAN SCIENCES 2019; 1:e14. [PMID: 37588396 PMCID: PMC10427271 DOI: 10.1017/ehs.2019.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The evolutionary basis for clinical depression is not well understood. A growing body of literature that is not based on evolutionary logic links inflammation to depression. Integration of these findings with an evolutionary framework for depression, however, needs to address the reasons why the body's inflammatory response would be regulated so poorly that it would result in incapacitating depression. Pathogen induction of inflammation offers an explanation, but the extent to which the association between inflammation and depression can be attributed to general inflammation as opposed to particular effects of pro-inflammatory pathogens remains unclear. This paper reports a study of sexually transmitted pathogens, which addresses this issue. Although several sexually transmitted pathogens were associated with depression according to bivariate tests, only Chlamydia trachomatis and Trichomonas vaginalis were significantly associated with depression by a multivariate analysis that accounted for correlations among the pathogens. This finding is consistent with the hypothesis that infection may contribute to depression through induction of tryptophan restriction, and a consequent depletion of serotonin. It reinforces the idea that some depression may be caused by specific pathogens in specific evolutionary arms races with their human host.
Collapse
Affiliation(s)
- Caroline Doyle
- Department of Biology, Bellarmine University, Louisville, KY40205, USA
| | - Walker A. Swain
- Department of Lifelong Education, Administration, and Policy, University of Georgia, Athens, GA30602, USA
| | - Holly A. Swain Ewald
- Department of Biological Sciences, University of Louisville, Louisville, KY40292, USA
| | - Paul W. Ewald
- Department of Biological Sciences, University of Louisville, Louisville, KY40292, USA
| |
Collapse
|
5
|
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, Barlow LD, Herman EK, Pipaliya SV, Pánek T, Žihala D, Petrželková R, Butenko A, Eme L, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Hampl V. The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion. Mol Biol Evol 2019; 36:2292-2312. [PMID: 31387118 PMCID: PMC6759080 DOI: 10.1093/molbev/msz147] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sebastian C Treitli
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Ondřej Brzoň
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Lukáš Novák
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Vojtěch Vacek
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Petr Soukal
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Lael D Barlow
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Emily K Herman
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Shweta V Pipaliya
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anzhelika Butenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vladimír Hampl
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| |
Collapse
|
6
|
Jayasena Kaluarachchi TD, Weerasekera MM, McBain AJ, Ranasinghe S, Wickremasinghe R, Yasawardene S, Jayanetti N, Wickremasinghe R. Diagnosing Cutaneous leishmaniasis using Fluorescence in Situ Hybridization: the Sri Lankan Perspective. Pathog Glob Health 2019; 113:180-190. [PMID: 31429388 DOI: 10.1080/20477724.2019.1650228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cutaneous leishmaniasis (CL) caused by Leishmania donovani MON-37 is becoming a major public health problem in Sri Lanka, with 100 new cases per month being reported in endemic regions. Diagnosis of CL is challenging for several reasons. Due to relative specificity and rapidity we propose Fluorescence in Situ Hybridization as a diagnostic tool for CL. The objective was to evaluate the potential of Fluorescence in Situ Hybridization as a diagnostic method for Cutaneous leishmaniasis in Sri Lanka. Literature on current laboratory tests used to diagnose Cutaneous leishmaniasis in Sri Lanka and globally was reviewed. Sri Lankan data were reviewed systematically following the PRISMA guidelines. A narrative of the results is presented. There is currently no gold standard diagnostic method for Cutaneous leishmaniasis. Fluorescence in Situ Hybridization has been previously applied to detect dermal pathologies including those involving infectious agents, and its use to detect the Leishmania parasite in human cutaneous lesions reported in small number of studies, generally with limited numbers of subjects. Advantages of FISH has been specificity, cost and ease-of-use compared to the alternatives. Based on the available literature and our current work, FISH has potential for diagnosing CL and should now be evaluated in larger cohorts in endemic regions. FISH for CL diagnosis could find application in countries such as Sri Lanka, where laboratory facilities may be limited in rural areas where the disease burden is highest.
Collapse
Affiliation(s)
| | - Manjula Manoji Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura , Nugegoda , Sri Lanka
| | - Andrew J McBain
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura , Nugegoda , Sri Lanka.,Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester , Manchester
| | - Shalindra Ranasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura , Colombo , Sri Lanka
| | - Renu Wickremasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura , Colombo , Sri Lanka
| | - Surangi Yasawardene
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayewardenepura , Colombo , Sri Lanka
| | - Nisal Jayanetti
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura , Colombo , Sri Lanka
| | - Rajitha Wickremasinghe
- Department of Public Health, Faculty of Medicine, University of Kelaniya , Kelaniya , Sri Lanka
| |
Collapse
|
7
|
Liu P, Li C, Zhang R, Tang Q, Wei J, Lu Y, Shen P. An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy. Biosens Bioelectron 2019; 126:543-550. [DOI: 10.1016/j.bios.2018.10.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/25/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022]
|
8
|
Uzlíková M, Fulnečková J, Weisz F, Sýkorová E, Nohýnková E, Tůmová P. Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis. Mol Biochem Parasitol 2017; 211:31-38. [DOI: 10.1016/j.molbiopara.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
9
|
Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V. A Eukaryote without a Mitochondrial Organelle. Curr Biol 2016; 26:1274-84. [PMID: 27185558 DOI: 10.1016/j.cub.2016.03.053] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/05/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022]
Abstract
The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic; Department of Molecular Phylogenetics and Evolution, University of Warsaw, Warsaw 00478, Poland.
| | - Vojtěch Vacek
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Zuzana Zubáčová
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lukáš Novák
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Lael D Barlow
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Petr Soukal
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Miluše Hroudová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic.
| |
Collapse
|
11
|
Putman TE, Burgstaller-Muehlbacher S, Waagmeester A, Wu C, Su AI, Good BM. Centralizing content and distributing labor: a community model for curating the very long tail of microbial genomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw028. [PMID: 27022157 PMCID: PMC4822648 DOI: 10.1093/database/baw028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023]
Abstract
The last 20 years of advancement in sequencing technologies have led to sequencing thousands of microbial genomes, creating mountains of genetic data. While efficiency in generating the data improves almost daily, applying meaningful relationships between taxonomic and genetic entities on this scale requires a structured and integrative approach. Currently, knowledge is distributed across a fragmented landscape of resources from government-funded institutions such as National Center for Biotechnology Information (NCBI) and UniProt to topic-focused databases like the ODB3 database of prokaryotic operons, to the supplemental table of a primary publication. A major drawback to large scale, expert-curated databases is the expense of maintaining and extending them over time. No entity apart from a major institution with stable long-term funding can consider this, and their scope is limited considering the magnitude of microbial data being generated daily. Wikidata is an openly editable, semantic web compatible framework for knowledge representation. It is a project of the Wikimedia Foundation and offers knowledge integration capabilities ideally suited to the challenge of representing the exploding body of information about microbial genomics. We are developing a microbial specific data model, based on Wikidata's semantic web compatibility, which represents bacterial species, strains and the gene and gene products that define them. Currently, we have loaded 43,694 gene and 37,966 protein items for 21 species of bacteria, including the human pathogenic bacteriaChlamydia trachomatis.Using this pathogen as an example, we explore complex interactions between the pathogen, its host, associated genes, other microbes, disease and drugs using the Wikidata SPARQL endpoint. In our next phase of development, we will add another 99 bacterial genomes and their gene and gene products, totaling ∼900,000 additional entities. This aggregation of knowledge will be a platform for community-driven collaboration, allowing the networking of microbial genetic data through the sharing of knowledge by both the data and domain expert.
Collapse
Affiliation(s)
- Tim E Putman
- Department of Molecular and Experimental Medicine, the Scripps Research Institute, La Jolla, USA
| | | | | | - Chunlei Wu
- Department of Molecular and Experimental Medicine, the Scripps Research Institute, La Jolla, USA
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, the Scripps Research Institute, La Jolla, USA
| | - Benjamin M Good
- Department of Molecular and Experimental Medicine, the Scripps Research Institute, La Jolla, USA
| |
Collapse
|
12
|
Structural organization of very small chromosomes: study on a single-celled evolutionary distant eukaryote Giardia intestinalis. Chromosoma 2014; 124:81-94. [DOI: 10.1007/s00412-014-0486-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022]
|
13
|
Aiyar A, Quayle AJ, Buckner LR, Sherchand SP, Chang TL, Zea AH, Martin DH, Belland RJ. Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections. Front Cell Infect Microbiol 2014; 4:72. [PMID: 24918090 PMCID: PMC4042155 DOI: 10.3389/fcimb.2014.00072] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 11/13/2022] Open
Abstract
The natural history of genital Chlamydia trachomatis infections can vary widely; infections can spontaneously resolve but can also last from months to years, potentially progressing to cause significant pathology. The host and bacterial factors underlying this wide variation are not completely understood, but emphasize the bacterium's capacity to evade/adapt to the genital immune response, and/or exploit local environmental conditions to survive this immune response. IFNγ is considered to be a primary host protective cytokine against endocervical C.trachomatis infections. IFNγ acts by inducing the host enzyme indoleamine 2,3-dioxgenase, which catabolizes tryptophan, thereby depriving the bacterium of this essential amino acid. In vitro studies have revealed that tryptophan deprivation causes Chlamydia to enter a viable but non-infectious growth pattern that is termed a persistent growth form, characterized by a unique morphology and gene expression pattern. Provision of tryptophan can reactivate the bacterium to the normal developmental cycle. There is a significant difference in the capacity of ocular and genital C. trachomatis serovars to counter tryptophan deprivation. The latter uniquely encode a functional tryptophan synthase to synthesize tryptophan via indole salvage, should indole be available in the infection microenvironment. In vitro studies have confirmed the capacity of indole to mitigate the effects of IFNγ; it has been suggested that a perturbed vaginal microbiome may provide a source of indole in vivo. Consistent with this hypothesis, the microbiome associated with bacterial vaginosis includes species that encode a tryptophanase to produce indole. In this review, we discuss the natural history of genital chlamydial infections, morphological and molecular changes imposed by IFNγ on Chlamydia, and finally, the microenvironmental conditions associated with vaginal co-infections that can ameliorate the effects of IFNγ on C. trachomatis.
Collapse
Affiliation(s)
- Ashok Aiyar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Alison J Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Lyndsey R Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Shardulendra P Sherchand
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Theresa L Chang
- Department of Microbiology and Molecular Genetics, Public Health Research Institute Center, New Jersey Medical School-Rutgers, The State University of New Jersey Newark, NJ, USA
| | - Arnold H Zea
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - David H Martin
- Section of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Robert J Belland
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Sciences Center Memphis, TN, USA
| |
Collapse
|
14
|
Yuan L, Xu L, Liu S. Integrated tyramide and polymerization-assisted signal amplification for a highly-sensitive immunoassay. Anal Chem 2012. [PMID: 23181414 DOI: 10.1021/ac302439v] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel strategy for ultrasensitive detection of model protein based on the integration of tyramide signal amplification (TSA) and polymerization-assisted signal amplification was proposed. The surface-initiated atom transfer radical polymerization (SI-ATRP) of glycidyl methacrylate (GMA) was triggered by the initiator-coupled protein immobilized on the electrode surface through sandwiched immunoreactions. Growth of long chain polymeric materials provided numerous epoxy groups for subsequent coupling of horseradish peroxidase (HRP), which in turn significantly increased the loading of quantum dots (QDs) labeled tyramide in the presence of hydrogen peroxide. As a result, electrochemiluminescence (ECL) and square-wave voltammetric (SWV) measurements showed 9.4- and 10.5-fold increase in detection signal in comparison with the unamplified method, respectively. To demonstrate the feasibility of this approach, human immunoglobulin G antigen (IgG) as a model target protein was employed and the detection limits were 0.73 and 0.09 pg mL(-1) for ECL and SWV, respectively. The results showed that sensitivity of the presented immunoassay significantly increased by one-order of magnitude and offered great application promises in providing a sensitive, specific, and potent method for biological detection.
Collapse
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, 211189, P.R. China
| | | | | |
Collapse
|
15
|
Abstract
The parabasalid protist Trichomonas vaginalis is a widespread parasite that affects humans, frequently causing vaginitis in infected women. Trichomonad mitosis is marked by the persistence of the nuclear membrane and the presence of an asymmetric extranuclear spindle with no obvious direct connection to the chromosomes. No centromeric markers have been described in T. vaginalis, which has prevented a detailed analysis of mitotic events in this organism. In other eukaryotes, nucleosomes of centromeric chromatin contain the histone H3 variant CenH3. The principal aim of this work was to identify a CenH3 homolog in T. vaginalis. We performed a screen of the T. vaginalis genome to retrieve sequences of canonical and variant H3 histones. Three variant histone H3 proteins were identified, and the subcellular localization of their epitope-tagged variants was determined. The localization of the variant TVAG_185390 could not be distinguished from that of the canonical H3 histone. The sequence of the variant TVAG_087830 closely resembled that of histone H3. The tagged protein colocalized with sites of active transcription, indicating that the variant TVAG_087830 represented H3.3 in T. vaginalis. The third H3 variant (TVAG_224460) was localized to 6 or 12 distinct spots at the periphery of the nucleus, corresponding to the number of chromosomes in G(1) phase and G(2) phase, respectively. We propose that this variant represents the centromeric marker CenH3 and thus can be employed as a tool to study mitosis in T. vaginalis. Furthermore, we suggest that the peripheral distribution of CenH3 within the nucleus results from the association of centromeres with the nuclear envelope throughout the cell cycle.
Collapse
|
16
|
Malik SB, Brochu CD, Bilic I, Yuan J, Hess M, Logsdon JM, Carlton JM. Phylogeny of parasitic parabasalia and free-living relatives inferred from conventional markers vs. Rpb1, a single-copy gene. PLoS One 2011; 6:e20774. [PMID: 21695260 PMCID: PMC3111441 DOI: 10.1371/journal.pone.0020774] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/09/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Parabasalia are single-celled eukaryotes (protists) that are mainly comprised of endosymbionts of termites and wood roaches, intestinal commensals, human or veterinary parasites, and free-living species. Phylogenetic comparisons of parabasalids are typically based upon morphological characters and 18S ribosomal RNA gene sequence data (rDNA), while biochemical or molecular studies of parabasalids are limited to a few axenically cultivable parasites. These previous analyses and other studies based on PCR amplification of duplicated protein-coding genes are unable to fully resolve the evolutionary relationships of parabasalids. As a result, genetic studies of Parabasalia lag behind other organisms. PRINCIPAL FINDINGS Comparing parabasalid EF1α, α-tubulin, enolase and MDH protein-coding genes with information from the Trichomonas vaginalis genome reveals difficulty in resolving the history of species or isolates apart from duplicated genes. A conserved single-copy gene encodes the largest subunit of RNA polymerase II (Rpb1) in T. vaginalis and other eukaryotes. Here we directly sequenced Rpb1 degenerate PCR products from 10 parabasalid genera, including several T. vaginalis isolates and avian isolates, and compared these data by phylogenetic analyses. Rpb1 genes from parabasalids, diplomonads, Parabodo, Diplonema and Percolomonas were all intronless, unlike intron-rich homologs in Naegleria, Jakoba and Malawimonas. CONCLUSIONS/SIGNIFICANCE The phylogeny of Rpb1 from parasitic and free-living parabasalids, and conserved Rpb1 insertions, support Trichomonadea, Tritrichomonadea, and Hypotrichomonadea as monophyletic groups. These results are consistent with prior analyses of rDNA and GAPDH sequences and ultrastructural data. The Rpb1 phylogenetic tree also resolves species- and isolate-level relationships. These findings, together with the relative ease of Rpb1 isolation, make it an attractive tool for evaluating more extensive relationships within Parabasalia.
Collapse
Affiliation(s)
- Shehre-Banoo Malik
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
- Department of Biology, Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - Cynthia D. Brochu
- Department of Biology, Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ivana Bilic
- Department for Farm Animals and Veterinary Public Health, Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Jing Yuan
- Department of Biology, Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - John M. Logsdon
- Department of Biology, Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - Jane M. Carlton
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|