1
|
Wang D, Wu F, Xu X, Peng D, Duan Y, Peng H, Wu H. The function of HgLac in Heterodera glycines and its potential as a control target. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106225. [PMID: 40015834 DOI: 10.1016/j.pestbp.2024.106225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 03/01/2025]
Abstract
The soybean cyst nematode (SCN; Heterodera glycines) is one of the most devastating pathogens for soybean production. The second stage juvenile (J2) invades the host root, develops and form white females which then become brown cysts enter the soil. The brown cyst wall plays a key role in protecting inside eggs from adverse environmental conditions. However, the function of cyst wall tanning (sclerotization and pigmentation) in nematodes is not clear. A browning-related gene discovered from the whole-genome sequencing was cloned and characterized in this study, the gene was confirmed to be the laccase gene and was named HgLac. HgLac mRNA and HgLac protein was detected in the epidermis of juveniles using in situ hybridization and immunolocalization techniques. The HgLac expression level was greater in fourth-stage juveniles (J4s) than in the other stages. Knockdown of HgLac by in vitro RNA interference (RNAi) significantly decreased the infectivity, development and reproduction of J2s but had no effect on cyst wall tanning. Further research revealed that HgLac expression in nematodes was significantly suppressed by 35.41-59.17 % through in planta RNAi, 52.96-58.19 % females could not tan successfully, and the female wall was very soft and fragile, with a low egg hatching rate (1.33 %), which was significantly lower than that of normal females (68.85 %). These results indicate that HgLac plays a key role in cyst wall tanning and suppressing the development and reproduction of the SCN, which provides new ideas for the use of this gene as a target to control SCN.
Collapse
Affiliation(s)
- Dongya Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fangcao Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiongbiao Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Haiyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Zhang W, Wang R, Li Y, Li D, Wang X, Wen X, Feng Y, Liu Z, Ma S, Zhang X. Engineered Pine Endophytic Fungus Expressing Double-Stranded RNA Targeting Lethal Genes to Control the Plant-Parasitic Nematode Bursaphelenchus xylophilus. PHYTOPATHOLOGY 2025; 115:224-233. [PMID: 39718567 DOI: 10.1094/phyto-07-24-0203-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most serious invasive forest pests, responsible for pine wilt disease. Currently, there are no effective, environmentally friendly control methods available. RNA interference technology has been extensively utilized to screen functional genes in eukaryotes and to explore sustainable pest management approaches through genetic engineering. In this study, we identified 353 predicted lethal genes in PWN by comparing its genome with those of lethal genes from Caenorhabditis elegans. We selected five predicted lethal genes (Bxy1177, Bxy1239, Bxy1104, Bxy667, and BxyAK1) with identification values exceeding 60% to evaluate their nematicidal effects on PWN. We tested the double-stranded RNA (dsRNA) of these genes using two methods: first, soaking in a synthesized dsRNA solution in vitro, and second, feeding on a dsRNA-engineered endophytic fungus, Fusarium babinda. Following dsRNA ingestion, either through soaking or fungal feeding, the expression of genes Bxy1177, Bxy667, Bxy1104, and BxyAK1 was significantly suppressed. Notably, nematode populations that consumed fungi expressing dsL1177 and dsAK1 showed substantial declines over time. These findings provide novel insights and a practical foundation for employing endophytic fungi-expressed dsRNA in sustainable pest management strategies.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ruijiong Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Kunyushan Forest Ecosystem National Observation and Research Station, Yantai 264100, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Kunyushan Forest Ecosystem National Observation and Research Station, Yantai 264100, China
| | - Shuai Ma
- Chinese Academy of Forestry, Beijing l00091, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Opdensteinen P, Charudattan R, Hong JC, Rosskopf EN, Steinmetz NF. Biochemical and nanotechnological approaches to combat phytoparasitic nematodes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2444-2460. [PMID: 38831638 PMCID: PMC11332226 DOI: 10.1111/pbi.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
The foundation of most food production systems underpinning global food security is the careful management of soil resources. Embedded in the concept of soil health is the impact of diverse soil-borne pests and pathogens, and phytoparasitic nematodes represent a particular challenge. Root-knot nematodes and cyst nematodes are severe threats to agriculture, accounting for annual yield losses of US$157 billion. The control of soil-borne phytoparasitic nematodes conventionally relies on the use of chemical nematicides, which can have adverse effects on the environment and human health due to their persistence in soil, plants, and water. Nematode-resistant plants offer a promising alternative, but genetic resistance is species-dependent, limited to a few crops, and breeding and deploying resistant cultivars often takes years. Novel approaches for the control of phytoparasitic nematodes are therefore required, those that specifically target these parasites in the ground whilst minimizing the impact on the environment, agricultural ecosystems, and human health. In addition to the development of next-generation, environmentally safer nematicides, promising biochemical strategies include the combination of RNA interference (RNAi) with nanomaterials that ensure the targeted delivery and controlled release of double-stranded RNA. Genome sequencing has identified more than 75 genes in root knot and cyst nematodes that have been targeted with RNAi so far. But despite encouraging results, the delivery of dsRNA to nematodes in the soil remains inefficient. In this review article, we describe the state-of-the-art RNAi approaches targeting phytoparasitic nematodes and consider the potential benefits of nanotechnology to improve dsRNA delivery.
Collapse
Affiliation(s)
- Patrick Opdensteinen
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | | | - Jason C. Hong
- USDA‐ARS‐U.S. Horticultural Research LaboratoryFort PierceFloridaUSA
| | - Erin N. Rosskopf
- USDA‐ARS‐U.S. Horticultural Research LaboratoryFort PierceFloridaUSA
| | - Nicole F. Steinmetz
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of RadiologyUniversity of California, San DiegoLa JollaCaliforniaUSA
- Institute for Materials Discovery and Design, University of California, San DiegoLa JollaCaliforniaUSA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Engineering in Cancer, Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
4
|
Mwaka HS, Bauters L, Namaganda J, Marcou S, Bwesigye PN, Kubiriba J, Smagghe G, Tushemereirwe WK, Gheysen G. Transgenic East African Highland Banana Plants Are Protected against Radopholus similis through Host-Delivered RNAi. Int J Mol Sci 2023; 24:12126. [PMID: 37569502 PMCID: PMC10418933 DOI: 10.3390/ijms241512126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The burrowing nematode Radopholus similis is considered a major problem of intensive banana cultivation. It can cause extensive root damage resulting in the toppling disease of banana, which means that plants fall to the ground. Soaking R. similis in double-stranded (ds) RNA of the nematode genes Rps13, chitin synthase (Chs-2), Unc-87, Pat-10 or beta-1,4-endoglucanase (Eng1a) suppressed reproduction on carrot discs, from 2.8-fold (Chs-2) to 7-fold (Rps13). The East African Highland Banana cultivar Nakitembe was then transformed with constructs for expression of dsRNA against the same genes, and for each construct, 30 independent transformants were tested with nematode infection. Four months after transfer from in vitro culture to the greenhouse, the banana plants were transferred to a screenhouse and inoculated with 2000 nematodes per plant, and thirteen weeks later, they were analyzed for several parameters including plant growth, root necrosis and final nematode population. Plants with dsRNA constructs against the nematode genes were on average showing lower nematode multiplication and root damage than the nontransformed controls or the banana plants expressing dsRNA against the nonendogenous gene. In conclusion, RNAi seems to efficiently protect banana against damage caused by R. similis, opening perspectives to control this pest.
Collapse
Affiliation(s)
- Henry Shaykins Mwaka
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Lander Bauters
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
| | - Josephine Namaganda
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Shirley Marcou
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
| | - Priver Namanya Bwesigye
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Jerome Kubiriba
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
| | | | - Godelieve Gheysen
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
| |
Collapse
|
5
|
Vieira P, Vicente CSL, Branco J, Buchan G, Mota M, Nemchinov LG. The Root Lesion Nematode Effector Ppen10370 Is Essential for Parasitism of Pratylenchus penetrans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:645-657. [PMID: 33400561 DOI: 10.1094/mpmi-09-20-0267-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The root lesion nematode Pratylenchus penetrans is a migratory species that attacks a broad range of crops. Like other plant pathogens, P. penetrans deploys a battery of secreted protein effectors to manipulate plant hosts and induce disease. Although several candidate effectors of P. penetrans have been identified, detailed mechanisms of their functions and particularly their host targets remain largely unexplored. In this study, a repertoire of candidate genes encoding pioneer effectors of P. penetrans was amplified from mixed life stages of the nematode, and candidate effectors were cloned and subjected to transient expression in a heterologous host, Nicotiana benthamiana, using potato virus X-based gene vector. Among seven analyzed genes, the candidate effector designated as Ppen10370 triggered pleiotropic phenotypes substantially different from those produced by wild type infection. Transcriptome analysis of plants expressing Ppen10370 demonstrated that observed phenotypic changes were likely related to disruption of core biological processes in the plant due to effector-originated activities. Cross-species comparative analysis of Ppen10370 identified homolog gene sequences in five other Pratylenchus species, and their transcripts were found to be localized specifically in the nematode esophageal glands by in situ hybridization. RNA silencing of the Ppen10370 resulted in a significant reduction of nematode reproduction and development, demonstrating an important role of the esophageal gland effector for parasitism.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Paulo Vieira
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Molecular Plant Pathology Laboratory, Beltsville, MD 20705-2350, U.S.A
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Cláudia S L Vicente
- NemaLab, MED-Mediterranean Institute for Agriculture, Environment and Development, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- INIAV, I.P.-Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Jordana Branco
- NemaLab, MED-Mediterranean Institute for Agriculture, Environment and Development, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Gary Buchan
- Electron & Confocal Microscopy Unit, USDA-ARS, Beltsville, MD 20705, U.S.A
| | - Manuel Mota
- NemaLab, MED-Mediterranean Institute for Agriculture, Environment and Development, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Lev G Nemchinov
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Molecular Plant Pathology Laboratory, Beltsville, MD 20705-2350, U.S.A
| |
Collapse
|
6
|
Molecular Characterization of Three B-1,4-Endoglucanase Genes in Pratylenchus loosi and Functional Analysis of Pl-eng-2 Gene. PLANTS 2021; 10:plants10030568. [PMID: 33802850 PMCID: PMC8002642 DOI: 10.3390/plants10030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 11/16/2022]
Abstract
Pratylenchus loosi is an important root-lesion nematode that causes damage to tea plantations in Iran and all over the world. The present study reports on the characterization and evolution of three ß-1,4-endoglucanase genes: Pl-eng-2, Pl-eng-3 and Pl-eng-4. The gene structure of Pl-eng-2 was fully determined with the predicted signal peptide and devoid of the linker domain and carbohydrate-binding domain, while Pl-eng-3 and Pl-eng-4 were only partially sequenced. The transcription of Pl-eng-2 was localized in the secretory esophageal glands of all life stages, but it was upregulated in male and female stages. The exon/intron structures of Pl-eng-2, Pl-eng-3 and Pl-eng-4 confirmed that they resulted from gene duplication followed by sequence and gene structure diversification with loss of the linker domain and carbohydrate-binding domain during evolution. A phylogenetic analysis further confirmed that nematode endoglucanases resulted from the horizontal gene transfer of a bacterial gene, as Pl-eng-3 showed sister relationships with the CelB cellulase of Bacillus subtilis. Silencing Pl-eng-2 by in vitro RNA interference produced a 60% decrease of the transcript level. The reproductive ability of silenced P. loosi showed a 35% reduction of eggs and larval stages compared to untreated nematodes, suggesting that this gene is involved in the early steps of invasion.
Collapse
|
7
|
Perrine-Walker F, Le K. Propidium iodide enabled live imaging of Pasteuria sp.-Pratylenchus zeae infection studies under fluorescence microscopy. PROTOPLASMA 2021; 258:279-287. [PMID: 33070241 DOI: 10.1007/s00709-020-01567-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 05/28/2023]
Abstract
Live imaging allows observations of cell structures and processes in real time, to monitor dynamic changes within living organisms compared to fixed organisms. Fluorescence microscopy was used to monitor the dynamic infection process of the nematode parasitic bacterium Pasteuria sp. and the sugarcane root-lesion nematode, Pratylenchus zeae. Under fluorescence microscopy, green-autofluorescent globules were observed in live control and Pasteuria sp.-infected nematodes. Only nematodes killed by Pasteuria sp. or heat treated displayed a diffuse pattern of autofluorescence. Propidium iodide (PI), used as a cell membrane integrity indicator, confirmed that the nematode's cuticle acts as an impermeable barrier. PI stained cells/DNA of heat-treated control and Pasteuria sp.-infected P. zeae. PI as a counterstain facilitated the location of Pasteuria endospores on the cuticle surface of P. zeae. No PI staining was observed in sporangia and in endospores within the nematode body. However, PI specifically stained endospores on the cuticle surface and within the cuticle carcass showing, in mature propagules, a ring-like pattern. Live imaging, combined with fluorescence microscopy and fluorescent dyes such as PI, appears useful in live studies on plant nematode interactions with nematophagous bacteria.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- School of Life and Environmental Sciences, Life Earth and Environmental Sciences Building (F22), The University of Sydney, Sydney, NSW, 2006, Australia.
- Institute of Agriculture, Biomedical Building (C81), The University of Sydney, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 2015, Australia.
| | - Khoa Le
- School of Life and Environmental Sciences, Life Earth and Environmental Sciences Building (F22), The University of Sydney, Sydney, NSW, 2006, Australia
- Institute of Agriculture, Biomedical Building (C81), The University of Sydney, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 2015, Australia
| |
Collapse
|
8
|
Waheed S, Anwar M, Saleem MA, Wu J, Tayyab M, Hu Z. The Critical Role of Small RNAs in Regulating Plant Innate Immunity. Biomolecules 2021; 11:biom11020184. [PMID: 33572741 PMCID: PMC7912340 DOI: 10.3390/biom11020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Plants, due to their sessile nature, have an innate immune system that helps them to defend against different pathogen infections. The defense response of plants is composed of a highly regulated and complex molecular network, involving the extensive reprogramming of gene expression during the presence of pathogenic molecular signatures. Plants attain proper defense against pathogens through the transcriptional regulation of genes encoding defense regulatory proteins and hormone signaling pathways. Small RNAs are emerging as versatile regulators of plant development and act in different tiers of plant immunity, including pathogen-triggered immunity (PTI) and effector-triggered immunity (ETI). The versatile regulatory functions of small RNAs in plant growth and development and response to biotic and abiotic stresses have been widely studied in recent years. However, available information regarding the contribution of small RNAs in plant immunity against pathogens is more limited. This review article will focus on the role of small RNAs in innate immunity in plants.
Collapse
Affiliation(s)
- Saquib Waheed
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.A.); (Z.H.)
| | - Muhammad Asif Saleem
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Jinsong Wu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
- Correspondence: (M.A.); (Z.H.)
| |
Collapse
|
9
|
Ono S, Ono K. Two Caenorhabditis elegans calponin-related proteins have overlapping functions that maintain cytoskeletal integrity and are essential for reproduction. J Biol Chem 2020; 295:12014-12027. [PMID: 32554465 PMCID: PMC7443509 DOI: 10.1074/jbc.ra120.014133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Multicellular organisms have multiple genes encoding calponins and calponin-related proteins, some of which are known to regulate actin cytoskeletal dynamics and contractility. However, the functional similarities and differences among these proteins are largely unknown. In the nematode Caenorhabditis elegans, UNC-87 is a calponin-related protein with seven calponin-like (CLIK) motifs and is required for maintenance of contractile apparatuses in muscle cells. Here, we report that CLIK-1, another calponin-related protein that also contains seven CLIK motifs, functionally overlaps with UNC-87 in maintaining actin cytoskeletal integrity in vivo and has both common and different actin-regulatory activities in vitro We found that CLIK-1 is predominantly expressed in the body wall muscle and somatic gonad in which UNC-87 is also expressed. unc-87 mutation caused cytoskeletal defects in the body wall muscle and somatic gonad, whereas clik-1 depletion alone caused no detectable phenotypes. However, simultaneous clik-1 and unc-87 depletion caused sterility because of ovulation failure by severely affecting the contractile actin networks in the myoepithelial sheath of the somatic gonad. In vitro, UNC-87 bundled actin filaments, whereas CLIK-1 bound to actin filaments without bundling them and antagonized UNC-87-mediated filament bundling. We noticed that UNC-87 and CLIK-1 share common functions that inhibit cofilin binding and allow tropomyosin binding to actin filaments, suggesting that both proteins stabilize actin filaments. In conclusion, partially redundant functions of UNC-87 and CLIK-1 in ovulation are likely mediated by their common actin-regulatory activities, but their distinct actin-bundling activities suggest that they also have different biological functions.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Kanako Ono
- Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Iqbal S, Fosu-Nyarko J, Jones MGK. Attempt to Silence Genes of the RNAi Pathways of the Root-Knot Nematode, Meloidogyne incognita Results in Diverse Responses Including Increase and No Change in Expression of Some Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:328. [PMID: 32265973 PMCID: PMC7105803 DOI: 10.3389/fpls.2020.00328] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/05/2020] [Indexed: 05/07/2023]
Abstract
Control of plant-parasitic nematodes (PPNs) via host-induced gene silencing (HIGS) involves rational selection of genes and detailed assessment of effects of a possible knockdown on the nematode. Some genes by nature may be very important for the survival of the nematode that knockdown may be resisted. Possible silencing and effects of 20 such genes involved in the RNA interference (RNAi) pathways of Meloidogyne incognita were investigated in this study using long double-stranded RNAs (dsRNAs) as triggers. Two of the genes, ego-1 and mes-2, could not be knocked down. Expression of six genes (xpo-1, pash-1, xpo-2, rha-1, ekl-4, and csr-1) were significantly upregulated after RNAi treatment whereas for 12 of the genes, significant knockdown was achieved and with the exception of mes-2 and mes-6, RNAi was accompanied by defective phenotypes in treated nematodes including various degrees of paralysis and abnormal behaviors and movement such as curling, extreme wavy movements, and twitching. These abnormalities resulted in up to 75% reduction in infectivity of a tomato host, the most affected being the J2s previously treated with dsRNA of the gfl-1 gene. For 10 of the genes, effects of silencing in the J2s persisted as the adult females isolated from galls were under-developed, elongated, and transparent compared to the normal saccate, white adult females. Following RNAi of ego-1, smg-2, smg-6, and eri-1, reduced expression and/or the immediate visible effects on the J2s were not permanent as the nematodes infected and developed normally in tomato hosts. Equally intriguing was the results of RNAi of the mes-2 gene where the insignificant change in gene expression and behavior of treated J2s did not mean the nematodes were not affected as they were less effective in infecting host plants. Attempt to silence drsh-1, mut-7, drh-3, rha-1, pash-1, and vig-1 through HIGS led to reduction in nematode infestation by up to 89%. Our results show that genes may respond to RNAi knockdown differently so an exhaustive assessment of target genes as targets for nematode control via RNAi is imperative.
Collapse
Affiliation(s)
| | - John Fosu-Nyarko
- Plant Biotechnology Research Group, College of Science, Health, Engineering and Education, WA State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | | |
Collapse
|
11
|
Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J. Host-Induced Gene Silencing: A Powerful Strategy to Control Diseases of Wheat and Barley. Int J Mol Sci 2019; 20:E206. [PMID: 30626050 PMCID: PMC6337638 DOI: 10.3390/ijms20010206] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Wheat and barley are the most highly produced and consumed grains in the world. Various pathogens-viruses, bacteria, fungi, insect pests, and nematode parasites-are major threats to yield and economic losses. Strategies for the management of disease control mainly depend on resistance or tolerance breeding, chemical control, and biological control. The discoveries of RNA silencing mechanisms provide a transgenic approach for disease management. Host-induced gene silencing (HIGS) employing RNA silencing mechanisms and, specifically, silencing the targets of invading pathogens, has been successfully applied in crop disease prevention. Here, we cover recent studies that indicate that HIGS is a valuable tool to protect wheat and barley from diseases in an environmentally friendly way.
Collapse
Affiliation(s)
- Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huan Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
Roderick H, Urwin PE, Atkinson HJ. Rational design of biosafe crop resistance to a range of nematodes using RNA interference. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:520-529. [PMID: 28703405 PMCID: PMC5787825 DOI: 10.1111/pbi.12792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 05/31/2023]
Abstract
Double-stranded RNA (dsRNA) molecules targeting two genes have been identified that suppress economically important parasitic nematode species of banana. Proteasomal alpha subunit 4 (pas-4) and Actin-4 (act-4) were identified from a survey of sequence databases and cloned sequences for genes conserved across four pests of banana, Radopholus similis, Pratylenchus coffeae, Meloidogyne incognita and Helicotylenchus multicinctus. These four species were targeted with dsRNAs containing exact 21 nucleotide matches to the conserved regions. Potential off-target effects were limited by comparison with Caenorhabditis, Drosophila, rat, rice and Arabidopsis genomes. In vitro act-4 dsRNA treatment of R. similis suppressed target gene expression by 2.3-fold, nematode locomotion by 66 ± 4% and nematode multiplication on carrot discs by 49 ± 5%. The best transgenic carrot hairy root lines expressing act-4 or pas-4 dsRNA reduced transcript message abundance of target genes in R. similis by 7.9-fold and fourfold and nematode multiplication by 94 ± 2% and 69 ± 3%, respectively. The same act-4 and pas-4 lines reduced P. coffeae target transcripts by 1.7- and twofold and multiplication by 50 ± 6% and 73 ± 8%. Multiplication of M. incognita on the pas-4 lines was reduced by 97 ± 1% and 99 ± 1% while target transcript abundance was suppressed 4.9- and 5.6-fold. There was no detectable RNAi effect on nontarget nematodes exposed to dsRNAs targeting parasitic nematodes. This work defines a framework for development of a range of nonprotein defences to provide broad resistance to pests and pathogens of crops.
Collapse
|
13
|
Banerjee S, Banerjee A, Gill SS, Gupta OP, Dahuja A, Jain PK, Sirohi A. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes. FRONTIERS IN PLANT SCIENCE 2017; 8:834. [PMID: 28580003 PMCID: PMC5437379 DOI: 10.3389/fpls.2017.00834] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/04/2017] [Indexed: 05/20/2023]
Abstract
Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.
Collapse
Affiliation(s)
- Sagar Banerjee
- Division of Nematology, Indian Agricultural Research Institute (ICAR)New Delhi, India
- Centre for Biotechnology, Maharshi Dayanand UniversityRohtak, India
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | - Anamika Banerjee
- Division of Nematology, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | | | - Om P. Gupta
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | - Anil Dahuja
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | - Pradeep K. Jain
- National Research Centre on Plant Biotechnology (ICAR)New Delhi, India
| | - Anil Sirohi
- Division of Nematology, Indian Agricultural Research Institute (ICAR)New Delhi, India
| |
Collapse
|
14
|
Tripathi L, Atkinson H, Roderick H, Kubiriba J, Tripathi JN. Genetically engineered bananas resistant to Xanthomonas wilt disease and nematodes. Food Energy Secur 2017; 6:37-47. [PMID: 28713567 PMCID: PMC5488630 DOI: 10.1002/fes3.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/12/2017] [Accepted: 02/16/2017] [Indexed: 11/08/2022] Open
Abstract
Banana is an important staple food crop feeding more than 100 million Africans, but is subject to severe productivity constraints due to a range of pests and diseases. Banana Xanthomonas wilt caused by Xanthomonas campestris pv. musacearum is capable of entirely destroying a plantation while nematodes can cause losses up to 50% and increase susceptibility to other pests and diseases. Development of improved varieties of banana is fundamental in order to tackle these challenges. However, the sterile nature of the crop and the lack of resistance in Musa germplasm make improvement by traditional breeding techniques either impossible or extremely slow. Recent developments using genetic engineering have begun to address these problems. Transgenic banana expressing sweet pepper Hrap and Pflp genes have demonstrated complete resistance against X. campestris pv. musacearum in the field. Transgenic plantains expressing a cysteine proteinase inhibitors and/or synthetic peptide showed enhanced resistance to a mixed species population of nematodes in the field. Here, we review the genetic engineering technologies which have potential to improve agriculture and food security in Africa.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| | | | | | - Jerome Kubiriba
- National Agricultural Research LaboratoriesPO Box 7084KampalaUganda
| | | |
Collapse
|
15
|
Fosu-Nyarko J, Jones MGK. Advances in Understanding the Molecular Mechanisms of Root Lesion Nematode Host Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:253-78. [PMID: 27296144 DOI: 10.1146/annurev-phyto-080615-100257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Root lesion nematodes (RLNs) are one of the most economically important groups of plant nematodes. As migratory endoparasites, their presence in roots is less obvious than infestations of sedentary endoparasites; nevertheless, in many instances, they are the major crop pests. With increasing molecular information on nematode parasitism, available data now reflect the differences and, in particular, similarities in lifestyle between migratory and sedentary endoparasites. Far from being unsophisticated compared with sedentary endoparasites, migratory endoparasites are exquisitely suited to their parasitic lifestyle. What they lack in effectors required for induction of permanent feeding sites, they make up for with their versatile host range and their ability to move and feed from new host roots and survive adverse conditions. In this review, we summarize the current molecular data available for RLNs and highlight differences and similarities in effectors and molecular mechanisms between migratory and sedentary endoparasitic nematodes.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia; ,
| | - Michael G K Jones
- Plant Biotechnology Research Group, School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia; ,
| |
Collapse
|
16
|
Fosu-Nyarko J, Tan JACH, Gill R, Agrez VG, Rao U, Jones MGK. De novo analysis of the transcriptome of Pratylenchus zeae to identify transcripts for proteins required for structural integrity, sensation, locomotion and parasitism. MOLECULAR PLANT PATHOLOGY 2016; 17:532-52. [PMID: 26292651 PMCID: PMC6638428 DOI: 10.1111/mpp.12301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The root lesion nematode Pratylenchus zeae, a migratory endoparasite, is an economically important pest of major crop plants (e.g. cereals, sugarcane). It enters host roots, migrates through root tissues and feeds from cortical cells, and defends itself against biotic and abiotic stresses in the soil and in host tissues. We report de novo sequencing of the P. zeae transcriptome using 454 FLX, and the identification of putative transcripts encoding proteins required for movement, response to stimuli, feeding and parasitism. Sequencing generated 347,443 good quality reads which were assembled into 10,163 contigs and 139,104 singletons: 65% of contigs and 28% of singletons matched sequences of free-living and parasitic nematodes. Three-quarters of the annotated transcripts were common to reference nematodes, mainly representing genes encoding proteins for structural integrity and fundamental biochemical processes. Over 15,000 transcripts were similar to Caenorhabditis elegans genes encoding proteins with roles in mechanical and neural control of movement, responses to chemicals, mechanical and thermal stresses. Notably, 766 transcripts matched parasitism genes employed by both migratory and sedentary endoparasites in host interactions, three of which hybridized to the gland cell region, suggesting that they might be secreted. Conversely, transcripts for effectors reported to be involved in feeding site formation by sedentary endoparasites were conspicuously absent. Transcripts similar to those encoding some secretory-excretory products at the host interface of Brugia malayi, the secretome of Meloidogyne incognita and products of gland cells of Heterodera glycines were also identified. This P. zeae transcriptome provides new information for genome annotation and functional analysis of possible targets for control of pratylenchid nematodes.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
- Nemgenix Pty Ltd, WA State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, 6150, Australia
| | - Jo-Anne C H Tan
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Reetinder Gill
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Vaughan G Agrez
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Uma Rao
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Michael G K Jones
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
17
|
Vieira P, Eves-van den Akker S, Verma R, Wantoch S, Eisenback JD, Kamo K. The Pratylenchus penetrans Transcriptome as a Source for the Development of Alternative Control Strategies: Mining for Putative Genes Involved in Parasitism and Evaluation of in planta RNAi. PLoS One 2015; 10:e0144674. [PMID: 26658731 PMCID: PMC4684371 DOI: 10.1371/journal.pone.0144674] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/20/2015] [Indexed: 11/25/2022] Open
Abstract
The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic nematode, we used Illumina mRNA sequencing analysis of a mixed population, as well as nematode reads detected in infected soybean roots 3 and 7 days after nematode infection. Over 140 million paired end reads were obtained for this species, and de novo assembly resulted in a total of 23,715 transcripts. Homology searches showed significant hit matches to 58% of the total number of transcripts using different protein and EST databases. In general, the transcriptome of P. penetrans follows common features reported for other root lesion nematode species. We also explored the efficacy of RNAi, delivered from the host, as a strategy to control P. penetrans, by targeted knock-down of selected nematode genes. Different comparisons were performed to identify putative nematode genes with a role in parasitism, resulting in the identification of transcripts with similarities to other nematode parasitism genes. Focusing on the predicted nematode secreted proteins found in this transcriptome, we observed specific members to be up-regulated at the early time points of infection. In the present study, we observed an enrichment of predicted secreted proteins along the early time points of parasitism by this species, with a significant number being pioneer candidate genes. A representative set of genes examined using RT-PCR confirms their expression during the host infection. The expression patterns of the different candidate genes raise the possibility that they might be involved in critical steps of P. penetrans parasitism. This analysis sheds light on the transcriptional changes that accompany plant infection by P. penetrans, and will aid in identifying potential gene targets for selection and use to design effective control strategies against root lesion nematodes.
Collapse
Affiliation(s)
- Paulo Vieira
- Dept. of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, United States of America
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture, Beltsville, MD, 20705–2350, United States of America
| | | | - Ruchi Verma
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture, Beltsville, MD, 20705–2350, United States of America
| | - Sarah Wantoch
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture, Beltsville, MD, 20705–2350, United States of America
| | - Jonathan D. Eisenback
- Dept. of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, United States of America
| | - Kathryn Kamo
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture, Beltsville, MD, 20705–2350, United States of America
| |
Collapse
|
18
|
Dutta TK, Papolu PK, Banakar P, Choudhary D, Sirohi A, Rao U. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbiol 2015; 6:260. [PMID: 25883594 PMCID: PMC4381642 DOI: 10.3389/fmicb.2015.00260] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
Root-knot nematodes (Meloidogyne incognita) cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco, and soybean) that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1), was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.
Collapse
Affiliation(s)
- Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | | | | | | | | | | |
Collapse
|
19
|
Burke M, Scholl EH, Bird DM, Schaff JE, Colman SD, Crowell R, Diener S, Gordon O, Graham S, Wang X, Windham E, Wright GM, Opperman CH. The plant parasite Pratylenchus coffeae carries a minimal nematode genome. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002901] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Here we report the genome sequence of the lesion nematode, Pratylenchus coffeae, a significant pest of banana and other staple crops in tropical and sub-tropical regions worldwide. Initial analysis of the 19.67 Mb genome reveals 6712 protein encoding genes, the smallest number found in a metazoan, although sufficient to make a nematode. Significantly, no developmental or physiological pathways are obviously missing when compared to the model free-living nematode Caenorhabditis elegans, which possesses approximately 21 000 genes. The highly streamlined P. coffeae genome may reveal a remarkable functional plasticity in nematode genomes and may also indicate evolutionary routes to increased specialisation in other nematode genera. In addition, the P. coffeae genome may begin to reveal the core set of genes necessary to make a multicellular animal. Nematodes exhibit striking diversity in the niches they occupy, and the sequence of P. coffeae is a tool to begin to unravel the mechanisms that enable the extraordinary success of this phylum as both free-living and parasitic forms. Unlike the sedentary endoparasitic root-knot nematodes (Meloidogyne spp.), P. coffeae is a root-lesion nematode that does not establish a feeding site within the root. Because the P. coffeae nematode genome encodes fewer than half the number of genes found in the genomes of root-knot nematodes, comparative analysis to determine genes P. coffeae does not carry may help to define development of more sophisticated forms of nematode-plant interactions. The P. coffeae genome sequence may help to define timelines related to evolution of parasitism amongst nematodes. The genome of P. coffeae is a significant new tool to understand not only nematode evolution but animal biology in general.
Collapse
Affiliation(s)
- Mark Burke
- Bioinformatics Research Center, NC State University, Box 7614, Raleigh, NC 27695-7614, USA
- David H. Murdock Research Institute, General Administration, 150 Research Campus Drive, Kannapolis, NC 28081, USA
- David H. Murdock Research Institute, Information Resources & Bioinformatics, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Elizabeth H. Scholl
- Plant Nematode Genetics Group, Department of Plant Pathology, NC State University, Box 7253, Raleigh, NC 27695-7253, USA
| | - David McK. Bird
- Bioinformatics Research Center, NC State University, Box 7614, Raleigh, NC 27695-7614, USA
- Plant Nematode Genetics Group, Department of Plant Pathology, NC State University, Box 7253, Raleigh, NC 27695-7253, USA
| | - Jennifer E. Schaff
- Genomic Sciences Laboratory, NC State University, Box 7614, Raleigh, NC 27695-7614, USA
| | - Steven D. Colman
- David H. Murdock Research Institute, General Administration, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Randy Crowell
- David H. Murdock Research Institute, Genomics Sequencing Laboratory, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Stephen Diener
- David H. Murdock Research Institute, Information Resources & Bioinformatics, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Oksana Gordon
- David H. Murdock Research Institute, Genomics Sequencing Laboratory, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Steven Graham
- David H. Murdock Research Institute, Information Resources & Bioinformatics, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Xinguo Wang
- David H. Murdock Research Institute, Genomics Sequencing Laboratory, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Eric Windham
- David H. Murdock Research Institute, Information Resources & Bioinformatics, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Garron M. Wright
- David H. Murdock Research Institute, Information Resources & Bioinformatics, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Charles H. Opperman
- Plant Nematode Genetics Group, Department of Plant Pathology, NC State University, Box 7253, Raleigh, NC 27695-7253, USA
| |
Collapse
|
20
|
Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WML, Perry RN. Top 10 plant-parasitic nematodes in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2013; 14:946-61. [PMID: 23809086 PMCID: PMC6638764 DOI: 10.1111/mpp.12057] [Citation(s) in RCA: 877] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly.
Collapse
Affiliation(s)
- John T Jones
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|