1
|
Etemadi S, Mehravaran A, Delcheh EY, Khezri A, Nateghpour M, Haghi AM, Gholami A. Green synthesis of PEGylated iron oxide nanoparticles of Eriobotrya japonica leaves extract in combination with B3, against Plasmodium falciparum 3D7 strain. Trop Med Health 2025; 53:63. [PMID: 40296150 PMCID: PMC12036197 DOI: 10.1186/s41182-025-00733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Plasmodium falciparum represents the most prevalent and lethal protozoan responsible for malaria in humans. This investigation aims to synthesize iron nanoparticles utilizing the polyethylene glycol (PEG) synthesis approach with an Eriobotrya japonica leaves extract and investigating its anti- P. falciparum activity in the in vitro environment in combination with nicotinamide and comparing its effect with chloroquine. METHODS Iron oxide nanoparticles were synthesized using Eriobotrya japonica leaf extract through a green synthesis method. The physicochemical properties of the nanoparticles were analyzed using DLS, FESEM, FTIR, XRD, and MTT assays. During the initial phase, varying concentrations of Japanese parsnip leaf extract, nicotinamide, iron nanoparticles synthesized through the PEGylated green synthesis technique, and chloroquine (as a control pharmacological agent) were individually administered to the culture medium of P. falciparum 3D7. Subsequently, the synergistic IC50 effects of these compounds were evaluated in relation to one another using the FIX RATIO methodology applied to the culture medium. RESULTS The DLS evaluation of iron oxide nanoparticles showed an average hydrodynamic size of 155 nm. The XRD examination exhibited the crystallinity of the particles. SEM images recognized the spherical nature of synthesized Fe3O4 nanoparticles. The relative combination of plant extract-nicotinamide had a synergistic effect and the best dose was observed in 70% plant extract-30% nicotinamide, resulting in a 70% reduction in parasitic load. The most pronounced growth-inhibitory effect was observed in the formulation comprising 50% PEGylated green synthesized Fe3O4 nanoparticles and 50% nicotinamide, yielding a 73% inhibition rate. CONCLUSIONS The presence of a synergistic effect was evident across all combinations of plant extract-nicotinamide and iron oxide nanoparticles synthesized through the PEGylated green synthesis approach. Furthermore, the methodologies of green synthesis and PEGylation of iron oxide nanoparticles are deemed effective strategies for enhancing stability, minimizing toxicity, reducing particle size, and facilitating improved precision and efficacy in the application of these entities within biomedical research contexts.
Collapse
Grants
- Department of Medical Parasitology and Mycology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical nanotechnology, faculty of pharmacy, Tehran University of Medicine sciences, Tehran, Iran
Collapse
Affiliation(s)
- Soudabeh Etemadi
- Department of Medical Parasitology and Mycology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Medical Laboratory Science, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Ahmad Mehravaran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Edris Yousefi Delcheh
- Department of Medical Parasitology and Mycology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Aram Khezri
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Nateghpour
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Motevalli Haghi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Gholami
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medicine Sciences, Tehran, Iran
| |
Collapse
|
2
|
Marković BA, Marinković A, Stanković JA, Mijatović S, Cvijetić I, Simić M, Arandjelović I. Synthesis and Antimicrobial Activity of Newly Synthesized Nicotinamides. Pharmaceutics 2024; 16:1084. [PMID: 39204429 PMCID: PMC11359232 DOI: 10.3390/pharmaceutics16081084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Antioxidants are promising compounds with antimicrobial activity against drug-resistant pathogens, especially when combined with conventional antimicrobials. Our study aimed to characterize the structure of nicotinamides synthesized from nicotinic acid and thiocarbohydrazones and to evaluate their antibacterial and antifungal activity. Seven nicotinic acid hydrazides (NC 1-7) were synthesized using mono-thiocarbohydrazones with hydroxyl group substituents, along with quinolone, phenolic, and pyridine rings known for their antimicrobial activity. The in vitro antimicrobial activity of NC 1-7, at concentrations ranging from 0.001 to 1 mM, was tested against Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 29212), Pseudomonas aeruginosa (ATCC 27853), Klebsiella pneumoniae (NCIMB 9111), and Candida albicans (ATCC 24433) using the broth microdilution method per EUCAST 2024 guidelines. Microorganism survival percentages were calculated based on optical density, and target fishing using the PharmMapper database identified potential molecular targets. The results showed that P. aeruginosa was most susceptible to the compounds, while C. albicans was the least susceptible. NC 3 significantly inhibited P. aeruginosa and K. pneumoniae growth at 0.016 mM, while higher concentrations were required for S. aureus, E. faecalis, and C. albicans. NC 5 was most effective against gram-positive bacteria at 0.03 mM. Only NC 4 completely inhibited C. albicans below 1 mM. NC 3, with the lowest concentration for 50% growth inhibition (0.016-0.064 mM), showed promising antibacterial potential against specific AMR-related proteins (bleomycin resistance protein, HTH-type transcriptional regulator QacR, and streptogramin A acetyltransferase), suggesting that this class of compounds could enhance or restore the activity of established antibiotics.
Collapse
Affiliation(s)
- Bojana Anić Marković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.A.M.); (A.M.)
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.A.M.); (A.M.)
| | | | - Stefan Mijatović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000 Belgrade, Serbia;
| | - Ilija Cvijetić
- Faculty of Chemistry, University of Belgrade, Students Square 10-13, 11000 Belgrade, Serbia;
| | - Milena Simić
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia;
| | - Irena Arandjelović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Zhou Q, Zheng Z, Yin S, Duan D, Liao X, Xiao Y, He J, Zhong J, Zeng Z, Su L, Luo L, Dong C, Chen J, Li J. Nicotinamide mitigates visceral leishmaniasis by regulating inflammatory response and enhancing lipid metabolism. Parasit Vectors 2024; 17:288. [PMID: 38971783 PMCID: PMC11227177 DOI: 10.1186/s13071-024-06370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Currently, treatment regimens for visceral leishmaniasis (VL) are limited because of the presence of numerous adverse effects. Nicotinamide, a readily available and cost-effective vitamin, has been widely acknowledged for its safety profile. Several studies have demonstrated the anti-leishmanial effects of nicotinamide in vitro. However, the potential role of nicotinamide in Leishmania infection in vivo remains elusive. METHODS In this study, we assessed the efficacy of nicotinamide as a therapeutic intervention for VL caused by Leishmania infantum in an experimental mouse model and investigated its underlying molecular mechanisms. The potential molecular mechanism was explored through cytokine analysis, examination of spleen lymphocyte subsets, liver RNA-seq analysis, and pathway validation. RESULTS Compared to the infection group, the group treated with nicotinamide demonstrated significant amelioration of hepatosplenomegaly and recovery from liver pathological damage. The NAM group exhibited parasite reduction rates of 79.7% in the liver and 86.7% in the spleen, respectively. Nicotinamide treatment significantly reduced the activation of excessive immune response in infected mice, thereby mitigating hepatosplenomegaly and injury. Furthermore, nicotinamide treatment enhanced fatty acid β-oxidation by upregulating key enzymes to maintain lipid homeostasis. CONCLUSIONS Our findings provide initial evidence supporting the safety and therapeutic efficacy of nicotinamide in the treatment of Leishmania infection in BALB/c mice, suggesting its potential as a viable drug for VL.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Shuangshuang Yin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Dengbinpei Duan
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Junchao Zhong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Liang Su
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Lu Luo
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Chunxia Dong
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| |
Collapse
|
4
|
Chen X, Lei W, Meng H, Jiang Y, Zhang S, Chen H, Du M, Xue X. Succinylation modification provides new insights for the treatment of immunocompromised individuals with drug-resistant Aspergillus fumigatus infection. Front Immunol 2023; 14:1161642. [PMID: 37138872 PMCID: PMC10150703 DOI: 10.3389/fimmu.2023.1161642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Invasive Aspergillus fumigatus infection poses a serious threat to global human health, especially to immunocompromised individuals. Currently, triazole drugs are the most commonly used antifungals for aspergillosis. However, owing to the emergence of drug-resistant strains, the effect of triazole drugs is greatly restricted, resulting in a mortality rate as high as 80%. Succinylation, a novel post-translational modification, is attracting increasing interest, although its biological function in triazole resistance remains unclear. In this study, we initiated the screening of lysine succinylation in A. fumigatus. We discovered that some of the succinylation sites differed significantly among strains with unequal itraconazole (ITR) resistance. Bioinformatics analysis showed that the succinylated proteins are involved in a broad range of cellular functions with diverse subcellular localizations, the most notable of which is cell metabolism. Further antifungal sensitivity tests confirmed the synergistic fungicidal effects of dessuccinylase inhibitor nicotinamide (NAM) on ITR-resistant A. fumigatus. In vivo experiments revealed that treatment with NAM alone or in combination with ITR significantly increased the survival of neutropenic mice infected with A. fumigatus. In vitro experiments showed that NAM enhanced the killing effect of THP-1 macrophages on A. fumigatus conidia. Our results suggest that lysine succinylation plays an indispensable role in ITR resistance of A. fumigatus. Dessuccinylase inhibitor NAM alone or in combination with ITR exerted good effects against A. fumigatus infection in terms of synergistic fungicidal effect and enhancing macrophage killing effect. These results provide mechanistic insights that will aid in the treatment of ITR-resistant fungal infections.
Collapse
Affiliation(s)
- Xianzhen Chen
- Institute of Dermatology, Naval Medical University, Shanghai, China
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenzhi Lei
- Institute of Dermatology, Naval Medical University, Shanghai, China
| | - Hui Meng
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
| | - Yi Jiang
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
| | - Sanli Zhang
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Huyan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| | - Mingwei Du
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| | - Xiaochun Xue
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| |
Collapse
|
5
|
Structural characterization, molecular docking assessment, drug-likeness study and DFT investigation of 2-(2-{1,2-dibromo-2-[3-(4-chloro-phenyl)-[1,2,4]oxadiazol-5-yl]-2-fluoro-ethyl1}-phenyl)-methyl 3-methoxy-acrylic ester. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Rahman F, Libre C, Oleinikov A, Tcherniuk S. Chloroquine and pyrimethamine inhibit the replication of human respiratory syncytial virus A. J Gen Virol 2021; 102. [PMID: 34342560 DOI: 10.1099/jgv.0.001627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is a major cause of respiratory illness in young children and can cause severe infections in the elderly or in immunocompromised adults. To date, there is no vaccine to prevent hRSV infections, and disease management is limited to preventive care by palivizumab in infants and supportive care for adults. Intervention with small-molecule antivirals specific for hRSV represents a good alternative, but no such compounds are currently approved. The investigation of existing drugs for new therapeutic purposes (drug repositioning) can be a faster approach to address this issue. In this study, we show that chloroquine and pyrimethamine inhibit the replication of human respiratory syncytial virus A (long strain) and synergistically increase the anti-replicative effect of ribavirin in cellulo. Moreover, chloroquine, but not pyrimethamine, inhibits hRSV replication in the mouse model. Our results show that chloroquine can potentially be an interesting compound for treatment of hRSV infection in monotherapy or in combination with other antivirals.
Collapse
Affiliation(s)
- Fryad Rahman
- Department of Biology, College of Science, University of Sulaimani, Kurdistan Region, Iraq.,Department of Molecular Biology, High Quality Laboratory, Anwar Sheikha Medical City, Sulaymaniyah, Iraq
| | - Camille Libre
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Equipe labellisée Ligue Contre le Cancer, Université de Lyon, 69008 Lyon, France
| | - Andrew Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Sergey Tcherniuk
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris SaclayJouy-en-Josas, France.,Department of Biological Sciences, Youth Academy of Sciences, Kiev, Ukraine
| |
Collapse
|
7
|
Chesnokov O, Visitdesotrakul P, Kalani K, Nefzi A, Oleinikov AV. Small Molecule Compounds Identified from Mixture-Based Library Inhibit Binding between Plasmodium falciparum Infected Erythrocytes and Endothelial Receptor ICAM-1. Int J Mol Sci 2021; 22:ijms22115659. [PMID: 34073419 PMCID: PMC8198633 DOI: 10.3390/ijms22115659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
Specific adhesion of P. falciparum parasite-infected erythrocytes (IE) in deep vascular beds can result in severe complications, such as cerebral malaria, placental malaria, respiratory distress, and severe anemia. Cerebral malaria and severe malaria syndromes were associated previously with sequestration of IE to a microvasculature receptor ICAM-1. The screening of Torrey Pines Scaffold Ranking library, which consists of more than 30 million compounds designed around 75 molecular scaffolds, identified small molecules that inhibit cytoadhesion of ICAM-1-binding IE to surface-immobilized receptor at IC50 range down to ~350 nM. With their low cytotoxicity toward erythrocytes and human endothelial cells, these molecules might be suitable for development into potentially effective adjunct anti-adhesion drugs to treat cerebral and/or severe malaria syndromes. Our two-step high-throughput screening approach is specifically designed to work with compound mixtures to make screening and deconvolution to single active compounds fast and efficient.
Collapse
Affiliation(s)
- Olga Chesnokov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA
| | | | - Komal Kalani
- Center for Translational Science, Florida International University (FIU), Port Saint Lucie, FL 34987, USA
| | - Adel Nefzi
- Center for Translational Science, Florida International University (FIU), Port Saint Lucie, FL 34987, USA
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA
| |
Collapse
|
8
|
Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020; 11:574736. [PMID: 33133044 PMCID: PMC7579399 DOI: 10.3389/fmicb.2020.574736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Nicotinamide induces G2 cell cycle arrest in Giardia duodenalis trophozoites and promotes changes in sirtuins transcriptional expression. Exp Parasitol 2020; 209:107822. [DOI: 10.1016/j.exppara.2019.107822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 11/15/2022]
|
10
|
Purushothaman G, Angira D, Thiruvenkatam V. Investigation of nicotinamide and isonicotinamide derivatives: A quantitative and qualitative structural analysis. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Williams AC, Hill LJ. Nicotinamide and Demographic and Disease transitions: Moderation is Best. Int J Tryptophan Res 2019; 12:1178646919855940. [PMID: 31320805 PMCID: PMC6610439 DOI: 10.1177/1178646919855940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Good health and rapid progress depend on an optimal dose of nicotinamide. Too little meat triggers the neurodegenerative condition pellagra and tolerance of symbionts such as tuberculosis (TB), risking dysbioses and impaired resistance to acute infections. Nicotinamide deficiency is an overlooked diagnosis in poor cereal-dependant economies masquerading as 'environmental enteropathy' or physical and cognitive stunting. Too much meat (and supplements) may precipitate immune intolerance and autoimmune and allergic disease, with relative infertility and longevity, via the tryptophan-nicotinamide pathway. This switch favours a dearth of regulatory T (Treg) and an excess of T helper cells. High nicotinamide intake is implicated in cancer and Parkinson's disease. Pro-fertility genes, evolved to counteract high-nicotinamide-induced infertility, may now be risk factors for degenerative disease. Moderation of the dose of nicotinamide could prevent some common diseases and personalised doses at times of stress or, depending on genetic background or age, may treat some other conditions.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Pan Y, Zheng W, Yang S. Chemical and activity investigation on metabolites produced by an endophytic fungi Psathyrella candolleana from the seed of Ginkgo biloba. Nat Prod Res 2019; 34:3130-3133. [DOI: 10.1080/14786419.2019.1607335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yun Pan
- Coll Pharm aceut Sci, Zhejiang Univ Technol, Hangzhou, Zhejiang, People R China
| | - Weihong Zheng
- School of Life Science, Huzhou University, Huzhou, Zhejiang, People R China
| | - Shengli Yang
- Coll Pharm aceut Sci, Zhejiang Univ Technol, Hangzhou, Zhejiang, People R China
| |
Collapse
|
13
|
Xing X, Liao Z, Tan F, Zhu Z, Jiang Y, Cao Y. Effect of Nicotinamide Against Candida albicans. Front Microbiol 2019; 10:595. [PMID: 30972047 PMCID: PMC6443637 DOI: 10.3389/fmicb.2019.00595] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/08/2019] [Indexed: 11/30/2022] Open
Abstract
Nicotinamide (NAM) has a long history in clinical applications and can be safely used for treating various diseases. In recent years, NAM was found to exhibit antimicrobial activities, inhibiting the growth of Plasmodium falciparum, Mycobacterium tuberculosis, and human immunodeficiency virus (HIV). Here we investigated the activity of NAM against Candida albicans, one of the most prevalent human fungal pathogens. Our results showed that NAM exhibited significant antifungal activity against C. albicans, including fluconazole-resistant isolates. NAM could also effectively suppress biofilm formation. In addition, NAM exhibited antifungal activity against non-Candida albicans species and Cryptococcus neoformans. Combination of NAM and fluconazole showed an even strong antifungal activity. The antifungal activity of NAM was further confirmed in a mouse model of disseminated candidiasis. Confocal laser scanning microscopy revealed that NAM increased cell wall β-glucans exposure and chitin content while decreased mannan level. Furthermore, by screening the C. albicans homozygous deletion mutant library, the C. albicans mutant lacking GIN4, which encodes a septin regulatory protein kinase and is essential for the maintenance of cell wall integrity, was identified to be high sensitive to NAM. These findings suggested that NAM might exhibit antifungal activities through affecting cell wall organization.
Collapse
Affiliation(s)
- XinRui Xing
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - ZeBin Liao
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Fei Tan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - YingYing Cao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|