1
|
Oliveira CDL, de Souza JN, Barreto NMPV, Araújo WAC, Sousa JR, Maraux VAP, Pinheiro CDS, Almeida MG, Teixeira MCA, Soares NM. Immunodominant Molecules for the Immunodiagnosis of Strongyloides stercoralis Infection. Diagn Microbiol Infect Dis 2025; 111:116649. [PMID: 39721108 DOI: 10.1016/j.diagmicrobio.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
This study aimed to identify immunodominant molecules with potential for S. stercoralis infection immunodiagnosis. Serum samples were tested by an IgG-ELISA using Strongyloides venezuelensis soluble (AgS) and membrane (AgM) antigens, and its protein fractions (<100 and >100 kDa). Proteins were tested by one- and two-dimensional (2D) gel immunoblotting. The ELISA results showed sensitivities, ranging from 82.3 to 85.3 %, while specificities ranged from 60.0 to 93.3 %. Cross-reactivities were observed with sera from individuals infected with other helminths. Immunoreactive protein bands were revealed by Western blotting using both antigens, and a band with molecular weight around 140 kDa of AgS showed 100 % sensitivity and specificity, without cross-reactivity. The 2D immunoblotting revealed 7 spots in the 140 kDa protein with the S. stercoralis pool of serums. The pre-selection of Strongyloides immunodominant proteins that are highly specific and free from cross-reactions is essential for the production of recombinant antigens for the immunodiagnosis of strongyloidiasis.
Collapse
Affiliation(s)
- Cíntia de Lima Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Brazil
| | - Joelma Nascimento de Souza
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Brazil
| | | | - Weslei Almeida Costa Araújo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Brazil
| | - Joana R Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy; and UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CIIEM), Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, 2829-511, Caparica, Portugal
| | | | | | - Maria Gabriela Almeida
- Associate Laboratory i4HB - Institute for Health and Bioeconomy; and UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CIIEM), Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, 2829-511, Caparica, Portugal
| | | | - Neci Matos Soares
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Brazil.
| |
Collapse
|
2
|
Al-Jawabreh R, Lastik D, McKenzie D, Reynolds K, Suleiman M, Mousley A, Atkinson L, Hunt V. Advancing Strongyloides omics data: bridging the gap with Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220437. [PMID: 38008117 PMCID: PMC10676819 DOI: 10.1098/rstb.2022.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 11/28/2023] Open
Abstract
Among nematodes, the free-living model organism Caenorhabditis elegans boasts the most advanced portfolio of high-quality omics data. The resources available for parasitic nematodes, including Strongyloides spp., however, are lagging behind. While C. elegans remains the most tractable nematode and has significantly advanced our understanding of many facets of nematode biology, C. elegans is not suitable as a surrogate system for the study of parasitism and it is important that we improve the omics resources available for parasitic nematode species. Here, we review the omics data available for Strongyloides spp. and compare the available resources to those for C. elegans and other parasitic nematodes. The advancements in C. elegans omics offer a blueprint for improving omics-led research in Strongyloides. We suggest areas of priority for future research that will pave the way for expansions in omics resources and technologies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Reem Al-Jawabreh
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Dominika Lastik
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - Kieran Reynolds
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Mona Suleiman
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Vicky Hunt
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
3
|
Tiberti N, Manfredi M, Piubelli C, Buonfrate D. Progresses and challenges in Strongyloides spp. proteomics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220447. [PMID: 38008115 PMCID: PMC10676815 DOI: 10.1098/rstb.2022.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 11/28/2023] Open
Abstract
The availability of high-quality data of helminth genomes provided over the past two decades has supported and accelerated large-scale 'omics studies and, consequently, the achievement of a more in-depth molecular characterization of a number of pathogens. This has also involved Strongyloides spp. and since their genome was made available transcriptomics has been rather frequently applied to investigate gene expression regulation across their life cycle. Strongyloides proteomics characterization has instead been somehow neglected, with only a few reports performing high-throughput or targeted analyses associated with protein identification by tandem mass spectrometry. Such investigations are however necessary in order to discern important aspects associated with human strongyloidiasis, including understanding parasite biology and the mechanisms of host-parasite interaction, but also to identify novel diagnostic and therapeutic targets. In this review article, we will give an overview of the published proteomics studies investigating strongyloidiasis at different levels, spanning from the characterization of the somatic proteome and excretory/secretory products of different parasite stages to the investigation of potentially immunogenic proteins. Moreover, in the effort to try to start filling the current gap in host-proteomics, we will also present the first serum proteomics analysis in patients suffering from human strongyloidiasis. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| | - Dora Buonfrate
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| |
Collapse
|
4
|
Marlais T, Bickford-Smith J, Talavera-López C, Le H, Chowdhury F, Miles MA. A comparative 'omics' approach for prediction of candidate Strongyloides stercoralis diagnostic coproantigens. PLoS Negl Trop Dis 2023; 17:e0010777. [PMID: 37068106 PMCID: PMC10138266 DOI: 10.1371/journal.pntd.0010777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/27/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
Human infection with the intestinal nematode Strongyloides stercoralis is persistent unless effectively treated, and potentially fatal in immunosuppressed individuals. Epidemiological data are lacking, partially due to inadequate diagnosis. A rapid antigen detection test is a priority for population surveillance, validating cure after treatment, and for screening prior to immunosuppression. We used a targeted analysis of open access 'omics' data sets and used online predictors to identify S. stercoralis proteins that are predicted to be present in infected stool, Strongyloides-specific, and antigenic. Transcriptomic data from gut and non-gut dwelling life cycle stages of S. stercoralis revealed 328 proteins that are differentially expressed. Strongyloides ratti proteomic data for excreted and secreted (E/S) proteins were matched to S. stercoralis, giving 1,057 orthologues. Five parasitism-associated protein families (SCP/TAPS, prolyl oligopeptidase, transthyretin-like, aspartic peptidase, acetylcholinesterase) were compared phylogenetically between S. stercoralis and outgroups, and proteins with least homology to the outgroups were selected. Proteins that overlapped between the transcriptomic and proteomic datasets were analysed by multiple sequence alignment, epitope prediction and 3D structure modelling to reveal S. stercoralis candidate peptide/protein coproantigens. We describe 22 candidates from seven genes, across all five protein families for further investigation as potential S. stercoralis diagnostic coproantigens, identified using open access data and freely-available protein analysis tools. This powerful approach can be applied to many parasitic infections with 'omic' data to accelerate development of specific diagnostic assays for laboratory or point-of-care field application.
Collapse
Affiliation(s)
- Tegwen Marlais
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jack Bickford-Smith
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Talavera-López
- Institute of Computational Biology, Computational Health Centre, Helmholtz Munich, Neuherberg, Germany
| | - Hai Le
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fatima Chowdhury
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
5
|
Costa IN, Bosqui LR, Corral MA, Costa-Cruz JM, Gryschek RCB, de Paula FM. Diagnosis of human strongyloidiasis: Application in clinical practice. Acta Trop 2021; 223:106081. [PMID: 34364894 DOI: 10.1016/j.actatropica.2021.106081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
This review considers the advantages and disadvantages of parasitological techniques, methods of detecting antibodies and antigens, as well as molecular biology techniques in the diagnosis of human strongyloidiasis. In addition, it elucidates the potential of different techniques for rapid and effective detection of clinical cases, thus enabling early treatment and preventing fatal consequences of this helminthiasis.
Collapse
|