1
|
Benedict NJ, Wong A, Cassidy E, Lohr BR, Pizon AF, Smithburger PL, Falcione BA, Kirisci L, Kane-Gill SL. Predictors of resistant alcohol withdrawal (RAW): A retrospective case-control study. Drug Alcohol Depend 2018; 192:303-308. [PMID: 30308384 DOI: 10.1016/j.drugalcdep.2018.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/03/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Benzodiazepine-resistant alcohol withdrawal (RAW), defined by a requirement of ≥ 40 mg of diazepam in 1 h, represents a severe form of withdrawal without predictive parameters. This study was designed to identify risk factors associated with RAW versus withdrawal without benzodiazepine resistance (nRAW). METHODS A retrospective cohort of adults with severe alcohol withdrawal were screened. Demographic and clinical variables, collected through chart review, underwent logistic regression to select the subset that predicst RAW. RESULTS 736 patients (515 nRAW, 221 RAW) were analyzed. RAW patients were younger (P < 0.001), male (P = 0.008) Caucasians (P = 0.037) with histories of psychiatric illness (P < 0.001), higher serum ethanol concentrations (P < 0.007), and abnormal liver enzymes (P = 0.01). RAW patients had significantly lower platelets (P < 0.001), chloride (P = 0.02), and potassium (P = 0.01) levels; severity of illness (SAPSII) (P < 0.001) and comorbidity scores (P < 0.001). Caucasian race and male gender were found to be 3.6 and 2.6 times more likely to be RAW. For every 1-unit increase in comorbidity and severity of illness scores, patients were 22% [OR(95% CI) 0.78 (0.66-0.90)] and 4% [0.96 (0.93-0.98)] less likely to be RAW. Patients with a psychiatric history or thrombocytopenia were 2 times more likely [2.02 (1.24-3.30); 2.13 (1.31-3.50), respectively] to be RAW. CONCLUSION These data demonstrate the predictive ability of a history of psychiatric illness, thrombocytopenia, gender, race, baseline severity of illness and comorbidity scores for developing RAW. Considering these characteristics in early withdrawal management may prevent progression to RAW outcomes.
Collapse
Affiliation(s)
- Neal J Benedict
- Department of Pharmacy, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA 15213, United States; Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 3501 Terrace St, Pittsburgh, PA 15213, United States.
| | - Adrian Wong
- Department of Pharmacy, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA 15213, United States; Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 3501 Terrace St, Pittsburgh, PA 15213, United States
| | - Elizabeth Cassidy
- Department of Pharmacy, UPMC St. Margaret, 815 Freeport Rd, Pittsburgh, PA 15215, United States
| | - Brian R Lohr
- Department of Pharmacy, UPMC Passavant, 9100 Babcock Boulevard, Pittsburgh, PA 15237, United States
| | - Anthony F Pizon
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15213, United States; Division of Medical Toxicology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, United States
| | - Pamela L Smithburger
- Department of Pharmacy, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA 15213, United States; Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 3501 Terrace St, Pittsburgh, PA 15213, United States
| | - Bonnie A Falcione
- Department of Pharmacy, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA 15213, United States; Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 3501 Terrace St, Pittsburgh, PA 15213, United States
| | - Levent Kirisci
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 3501 Terrace St, Salk Hall 807, Pittsburgh PA 15261, United States
| | - Sandra L Kane-Gill
- Department of Pharmacy, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA 15213, United States; Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 3501 Terrace St, Pittsburgh, PA 15213, United States
| |
Collapse
|
2
|
Lindemeyer AK, Shen Y, Yazdani F, Shao XM, Spigelman I, Davies DL, Olsen RW, Liang J. α2 Subunit-Containing GABA A Receptor Subtypes Are Upregulated and Contribute to Alcohol-Induced Functional Plasticity in the Rat Hippocampus. Mol Pharmacol 2017; 92:101-112. [PMID: 28536106 PMCID: PMC5508196 DOI: 10.1124/mol.116.107797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Alcohol (EtOH) intoxication causes changes in the rodent brain γ-aminobutyric acid receptor (GABAAR) subunit composition and function, playing a crucial role in EtOH withdrawal symptoms and dependence. Building evidence indicates that withdrawal from acute EtOH and chronic intermittent EtOH (CIE) results in decreased EtOH-enhanced GABAAR δ subunit-containing extrasynaptic and EtOH-insensitive α1βγ2 subtype synaptic GABAARs but increased synaptic α4βγ2 subtype, and increased EtOH sensitivity of GABAAR miniature postsynaptic currents (mIPSCs) correlated with EtOH dependence. Here we demonstrate that after acute EtOH intoxication and CIE, upregulation of hippocampal α4βγ2 subtypes, as well as increased cell-surface levels of GABAAR α2 and γ1 subunits, along with increased α2β1γ1 GABAAR pentamers in hippocampal slices using cell-surface cross-linking, followed by Western blot and coimmunoprecipitation. One-dose and two-dose acute EtOH treatments produced temporal plastic changes in EtOH-induced anxiolysis or withdrawal anxiety, and the presence or absence of EtOH-sensitive synaptic currents correlated with cell surface peptide levels of both α4 and γ1(new α2) subunits. CIE increased the abundance of novel mIPSC patterns differing in activation/deactivation kinetics, charge transfer, and sensitivity to EtOH. The different mIPSC patterns in CIE could be correlated with upregulated highly EtOH-sensitive α2βγ subtypes and EtOH-sensitive α4βγ2 subtypes. Naïve α4 subunit knockout mice express EtOH-sensitive mIPSCs in hippocampal slices, correlating with upregulated GABAAR α2 (and not α4) subunits. Consistent with α2, β1, and γ1 subunits genetically linked to alcoholism in humans, our findings indicate that these new α2-containing synaptic GABAARs could mediate the maintained anxiolytic response to EtOH in dependent individuals, rat or human, contributing to elevated EtOH consumption.
Collapse
Affiliation(s)
- A Kerstin Lindemeyer
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Yi Shen
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Ferin Yazdani
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Xuesi M Shao
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Igor Spigelman
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Daryl L Davies
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Richard W Olsen
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Jing Liang
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| |
Collapse
|
3
|
GABA withdrawal syndrome: GABAA receptor, synapse, neurobiological implications and analogies with other abstinences. Neuroscience 2015; 313:57-72. [PMID: 26592722 DOI: 10.1016/j.neuroscience.2015.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022]
Abstract
The sudden interruption of the increase of the concentration of the gamma-aminobutyric acid (GABA), determines an increase in neuronal activity. GABA withdrawal (GW) is a heuristic analogy, with withdrawal symptoms developed by other GABA receptor-agonists such as alcohol, benzodiazepines, and neurosteroids. GW comprises a model of neuronal excitability validated by electroencephalogram (EEG) in which high-frequency and high-amplitude spike-wave complexes appear. In brain slices, GW was identified by increased firing synchronization of pyramidal neurons and by changes in the active properties of the neuronal membrane. GW induces pre- and postsynaptic changes: a decrease in GABA synthesis/release, and the decrease in the expression and composition of GABAA receptors associated with increased calcium entry into the cell. GW is an excellent bioassay for studying partial epilepsy, epilepsy refractory to drug treatment, and a model to reverse or prevent the generation of abstinences from different drugs.
Collapse
|
4
|
Lindemeyer AK, Liang J, Marty VN, Meyer EM, Suryanarayanan A, Olsen RW, Spigelman I. Ethanol-induced plasticity of GABAA receptors in the basolateral amygdala. Neurochem Res 2014; 39:1162-70. [PMID: 24710789 PMCID: PMC4121120 DOI: 10.1007/s11064-014-1297-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 12/25/2022]
Abstract
Acute and chronic ethanol (EtOH) administration is known to affect function, surface expression, and subunit composition of γ-aminobutyric acid (A) receptors (GABAARs) in different parts of the brain, which is believed to play a major role in alcohol dependence and withdrawal symptoms. The basolateral amygdala (BLA) participates in anxiety-like behaviors including those induced by alcohol withdrawal. In the present study we assessed the changes in cell surface levels of select GABAAR subunits in the BLA of a rat model of alcohol dependence induced by chronic intermittent EtOH (CIE) treatment and long-term (>40 days) withdrawal and investigated the time-course of such changes after a single dose of EtOH (5 g/kg, gavage). We found an early decrease in surface expression of α4 and δ subunits at 1 h following single dose EtOH treatment. At 48 h post-EtOH and after CIE treatment there was an increase in α4 and γ2, while α1, α2, and δ surface expression were decreased. To relate functional changes in GABAARs to changes in their subunit composition we analyzed miniature inhibitory postsynaptic currents (mIPSCs) and the picrotoxin-sensitive tonic current (Itonic) 48 h after EtOH intoxication. The Itonic magnitude and most of the mIPSC kinetic parameters (except faster mIPSC decay) were unchanged at 48 h post-EtOH. At the same time, Itonic potentiation by acute EtOH was greatly reduced, whereas mIPSCs became significantly more sensitive to potentiation by acute EtOH. These results suggest that EtOH intoxication-induced GABAAR plasticity in the BLA might contribute to the diminished sedative/hypnotic and maintained anxiolytic effectiveness of EtOH.
Collapse
Affiliation(s)
- A. Kerstin Lindemeyer
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jing Liang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Oral Biology and Medicine, School of Dentistry, University of California, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA 90095-1668, USA
| | - Vincent N. Marty
- Division of Oral Biology and Medicine, School of Dentistry, University of California, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA 90095-1668, USA
| | - Edward M. Meyer
- Division of Oral Biology and Medicine, School of Dentistry, University of California, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA 90095-1668, USA
| | - Asha Suryanarayanan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Oral Biology and Medicine, School of Dentistry, University of California, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA 90095-1668, USA
| | - Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Igor Spigelman
- Division of Oral Biology and Medicine, School of Dentistry, University of California, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
5
|
Cheaha D, Sawangjaroen K, Kumarnsit E. Characterization of fluoxetine effects on ethanol withdrawal-induced cortical hyperexcitability by EEG spectral power in rats. Neuropharmacology 2014; 77:49-56. [DOI: 10.1016/j.neuropharm.2013.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/18/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022]
|
6
|
Uusi-Oukari M, Korpi ER. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 2010; 62:97-135. [PMID: 20123953 DOI: 10.1124/pr.109.002063] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gamma-aminobutyric acid (GABA) type A receptor system, the main fast-acting inhibitory neurotransmitter system in the brain, is the pharmacological target for many drugs used clinically to treat, for example, anxiety disorders and epilepsy, and to induce and maintain sedation, sleep, and anesthesia. These drugs facilitate the function of pentameric GABA(A) receptors that exhibit widespread expression in all brain regions and large structural and pharmacological heterogeneity as a result of composition from a repertoire of 19 subunit variants. One of the main problems in clinical use of GABA(A) receptor agonists is the development of tolerance. Most drugs, in long-term use and during withdrawal, have been associated with important modulations of the receptor subunit expression in brain-region-specific manner, participating in the mechanisms of tolerance and dependence. In most cases, the molecular mechanisms of regulation of subunit expression are poorly known, partly as a result of neurobiological adaptation to altered neuronal function. More knowledge has been obtained on the mechanisms of GABA(A) receptor trafficking and cell surface expression and the processes that may contribute to tolerance, although their possible pharmacological regulation is not known. Drug development for neuropsychiatric disorders, including epilepsy, alcoholism, schizophrenia, and anxiety, has been ongoing for several years. One key step to extend drug development related to GABA(A) receptors is likely to require deeper understanding of the adaptational mechanisms of neurons, receptors themselves with interacting proteins, and finally receptor subunits during drug action and in neuropsychiatric disease processes.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Itainen Pitkakatu 4, 20014 Turku, Finland.
| | | |
Collapse
|
7
|
Pignataro L, Varodayan FP, Tannenholz LE, Harrison NL. The regulation of neuronal gene expression by alcohol. Pharmacol Ther 2009; 124:324-35. [PMID: 19781570 DOI: 10.1016/j.pharmthera.2009.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
In recent years there has been an explosion of interest in how genes regulate alcohol drinking and contribute to alcoholism. This work has been stimulated by the completion of the human and mouse genome projects and the resulting availability of gene microarrays. Most of this work has been performed in drinking animals, and has utilized the extensive genetic variation among different mouse strains. At the same time, a much smaller amount of effort has gone into the in vitro study of the mechanisms underlying the regulation of individual genes by alcohol. These studies at the cellular and sub-cellular level are beginning to reveal the ways in which alcohol can interact with the transcriptional, translational and post-translational events inside the cell. Detailed studies of the promoter regions within several individual alcohol-responsive genes (ARGs) have been performed and this work has uncovered intricate signaling pathways that may be generalized to larger groups of ARGs. In the last few years several distinct ARGs have been identified from 35,000 mouse genes, by both the "top-down" approach (ex vivo gene arrays) and the "bottom-up" methods (in vitro promoter analysis). These divergent methodologies have converged on a surprisingly small number of genes encoding ion channels, receptors, transcription factors and proteins involved in synaptic function and remodeling. In this review we will describe some of the most interesting cellular and microarray work in the field, and will outline specific examples of genes for which the mechanisms of regulation by alcohol are now somewhat understood.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Department of Anesthesiology and Department of Pharmacology, The College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
8
|
Verleye M, Heulard I, Gillardin JM. The anxiolytic etifoxine protects against convulsant and anxiogenic aspects of the alcohol withdrawal syndrome in mice. Alcohol 2009; 43:197-206. [PMID: 19393860 DOI: 10.1016/j.alcohol.2009.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 10/20/2022]
Abstract
Change in the function of gamma-aminobutyric acid(A) (GABA(A)) receptors attributable to alterations in receptor subunit composition is one of main molecular mechanisms with those affecting the glutamatergic system which accompany prolonged alcohol (ethanol) intake. These changes explain in part the central nervous system hyperexcitability consequently to ethanol administration cessation. Hyperexcitability associated with ethanol withdrawal is expressed by physical signs, such as tremors, convulsions, and heightened anxiety in animal models as well as in humans. The present work investigated the effects of anxiolytic compound etifoxine on ethanol-withdrawal paradigms in a mouse model. The benzodiazepine diazepam was chosen as reference compound. Ethanol was given to NMRI mice by a liquid diet at 3% for 8 days, then at 4% for 7 days. Under these conditions, ethanol blood level ranged between 0.5 and 2 g/L for a daily ethanol intake varying from 24 to 30 g/kg. These parameters permitted the emergence of ethanol-withdrawal symptoms once ethanol administration was terminated. Etifoxine (12.5-25 mg/kg) and diazepam (1-4 mg/kg) injected intraperitoneally 3h 30 min after ethanol removal, decreased the severity in handling-induced tremors and convulsions in the period of 4-6h after withdrawal from chronic ethanol treatment. In addition when administered at 30 and 15 min, respectively, before the light and dark box test, etifoxine (50mg/kg) and diazepam (1mg/kg) inhibited enhanced aversive response 8h after ethanol withdrawal. Etifoxine at 25 and 50 mg/kg doses was without effects on spontaneous locomotor activity and did not exhibit ataxic effects on the rota rod in animals not treated with ethanol. These findings demonstrate that the GABAergic compound etifoxine selectively reduces the physical signs and anxiety-like behavior associated with ethanol withdrawal in a mouse model and may hold promise in the treatment of ethanol-withdrawal syndrome in humans.
Collapse
|
9
|
Resistant alcohol withdrawal: does an unexpectedly large sedative requirement identify these patients early? J Med Toxicol 2008; 2:55-60. [PMID: 18072114 DOI: 10.1007/bf03161171] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION While most patients with alcohol withdrawal (AW) respond to standard treatment that includes doses of benzodiazepines, nutrition and good supportive care (non resistant alcohol withdrawal-NRAW), a subgroup may resist therapy (resistant alcohol withdrawal-RAW). This study describes a distinct group of AW patients, their sedative requirements, and hospital courses. METHODS Over a period of 6 months, AW patients requiring 50 mg diazepam IV in the first hour were followed. We recorded admission indices and diazepam doses with vital signs at 1, 2, 3, 6, 12, and 24 hours. Patients were considered to have RAW if they required additional sedatives for control of symptoms and/or were having persistent abnormal vital signs despite the physicians' choices of therapy. RESULTS Nineteen patients were enrolled; all had similar admission indices. While the 4 NRAW had normal vital signs within 3 hours, all 15 RAW patients had abnormal vital signs; 15 RAW patients required escalating diazepam doses--14 required barbiturates, 7 were intubated, and 5 had hypotension. Comparing groups: interval and total diazepam doses were not different at 1,2, and 3 hours; interval doses at 6 and 12 hours, and total doses at 6, 12, and 24 hours were significantly different. CONCLUSIONS RAW patients require large doses of benzodiazepine administration, additional sedatives, and undergo complicated hospitalizations.
Collapse
|
10
|
Biggio G, Concas A, Follesa P, Sanna E, Serra M. Stress, ethanol, and neuroactive steroids. Pharmacol Ther 2007; 116:140-71. [PMID: 17555824 PMCID: PMC3000046 DOI: 10.1016/j.pharmthera.2007.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 04/06/2007] [Indexed: 12/27/2022]
Abstract
Neurosteroids play a crucial role in stress, alcohol dependence and withdrawal, and other physiological and pharmacological actions by potentiating or inhibiting neurotransmitter action. This review article focuses on data showing that the interaction among stress, ethanol, and neuroactive steroids may result in plastic molecular and functional changes of GABAergic inhibitory neurotransmission. The molecular mechanisms by which stress-ethanol-neuroactive steroids interactions can produce plastic changes in GABA(A) receptors have been studied using different experimental models in vivo and in vitro in order to provide useful evidence and new insights into the mechanisms through which acute and chronic ethanol and stress exposure modulate the activity of GABAergic synapses. We show detailed data on a) the effect of acute and chronic stress on peripheral and brain neurosteroid levels and GABA(A) receptor gene expression and function; b) ethanol-stimulated brain steroidogenesis; c) plasticity of GABA(A) receptor after acute and chronic ethanol exposure. The implications of these new mechanistic insights to our understanding of the effects of ethanol during stress are also discussed. The understanding of these neurochemical and molecular mechanisms may shed new light on the physiopathology of diseases, such as anxiety, in which GABAergic transmission plays a pivotal role. These data may also lead to the need for new anxiolytic, hypnotic and anticonvulsant selective drugs devoid of side effects.
Collapse
Affiliation(s)
- Giovanni Biggio
- Department of Experimental Biology, Center of Excellence for the Neurobiology of Dependence, University of Cagliari, Cagliari, Italy.
| | | | | | | | | |
Collapse
|
11
|
Ugale RR, Sharma AN, Kokare DM, Hirani K, Subhedar NK, Chopde CT. Neurosteroid allopregnanolone mediates anxiolytic effect of etifoxine in rats. Brain Res 2007; 1184:193-201. [PMID: 17950705 DOI: 10.1016/j.brainres.2007.09.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 09/15/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
Etifoxine (6-chloro-2-ethylamino-4-methyl-4-phenyl-4H-3,1-benzoxazine hydrochloride), a nonbenzodiazepine anxiolytic drug, potentiates GABA(A) receptor function perhaps through stimulation of neurosteroid biosynthesis. However, the exact mechanism of etifoxine action is not fully understood. In this study, we have assessed the possible role of GABAergic neurosteroid like allopregnanolone (ALLO) in the anxiolytic-like effect of etifoxine in rats using elevated plus maze test. Selective GABA(A) receptor agonist, muscimol, ALLO or neurosteroidogenic agents like progesterone, metyrapone or mitochondrial diazepam binding inhibitor receptor (MDR) agonist, FGIN 1-27 significantly heightened the etifoxine-induced anxiolysis. On the other hand, GABA(A) receptor antagonist, bicuculline or neurosteroid biosynthesis inhibitors like finasteride, indomethacin, trilostane or PBR antagonist, PK11195 significantly blocked the effect of etifoxine. Bilateral adrenalectomy did not influence anti-anxiety effect of etifoxine thereby ruling out contribution of adrenal steroids. Thus, our results provide behavioral evidence for the role of neurosteroids like ALLO in the anti-anxiety effect of etifoxine.
Collapse
Affiliation(s)
- Rajesh R Ugale
- Pharmacology Division, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee-441 002, Nagpur, Maharashtra, India
| | | | | | | | | | | |
Collapse
|
12
|
Sharma AN, Chopde CT, Hirani K, Kokare DM, Ugale RR. Chronic progesterone treatment augments while dehydroepiandrosterone sulphate prevents tolerance to ethanol anxiolysis and withdrawal anxiety in rats. Eur J Pharmacol 2007; 567:211-22. [PMID: 17511983 DOI: 10.1016/j.ejphar.2007.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
We have recently shown that the neurosteroid allopregnanolone modulates anxiolytic effect of ethanol. In the present report, we attempted to examine whether neurosteroids progesterone and dehydroepiandrosterone sulphate (DHEAS), which modulate gamma-aminobutyric acid (GABA(A)) receptor function, affects development of tolerance to ethanol anxiolysis and withdrawal anxiety. Rats on ethanol (6% v/v in nutritionally balanced liquid diet) for prolong period (10 days) were injected twice daily either with vehicle, progesterone (a precursor of allopregnanolone, positive GABA(A) receptor modulator), finasteride (5alpha-reductase inhibitor) or DHEAS (negative GABA(A) receptor modulator). During this period, rats were acutely challenged periodically with ethanol (2 g/kg, i.p., 8% w/v) and subjected to the elevated plus maze test. For withdrawal studies, similar treatment protocols (except ethanol challenge) were employed and on day 11, rats were subjected to the elevated plus maze test at different time intervals post-ethanol withdrawal. While progesterone significantly advanced the development of tolerance to ethanol anxiolysis and enhanced withdrawal anxiety, DHEAS and finasteride prevented such behavioral alterations. These data highlight the important role played by GABAergic neurosteroids progesterone and DHEAS in the development of tolerance to ethanol anxiolysis and withdrawal anxiety in rats. Moreover, it points to the potential usefulness of specific neurosteroids as targets in the treatment of alcoholism.
Collapse
Affiliation(s)
- Ajaykumar N Sharma
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440 033, Maharashtra, India
| | | | | | | | | |
Collapse
|
13
|
Cowmeadow RB, Krishnan HR, Ghezzi A, Al'Hasan YM, Wang YZ, Atkinson NS. Ethanol tolerance caused by slowpoke induction in Drosophila. Alcohol Clin Exp Res 2006; 30:745-53. [PMID: 16634842 DOI: 10.1111/j.1530-0277.2006.00087.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The large-conductance calcium-activated potassium channel encoded by the slowpoke gene has recently been implicated in the ethanol response. Caenorhabditis elegans carrying mutations in this gene have altered ethanol sensitivity and Drosophila mutant for this gene are unable to acquire rapid tolerance to ethanol or anesthetics. In Drosophila, induction of slowpoke expression has been linked to anesthetic resistance. METHODS We used Drosophila as a model system to examine the relationship between slowpoke expression and ethanol tolerance. Real-time PCR and a reporter transgene were used to measure slowpoke induction after ethanol sedation. An inducible slowpoke transgene was used to manipulate slowpoke levels in the absence of ethanol sedation. RESULTS Ethanol sedation increased transcription from the slowpoke neural promoters but not from the slowpoke muscle/tracheal cell promoters. This neural-specific change was concomitant with the appearance of ethanol tolerance, leading us to suspect linkage between the two. Moreover, induction of slowpoke expression from a transgene produced a phenotype that mimics ethanol tolerance. CONCLUSIONS In Drosophila, ethanol sedation induces slowpoke expression in the nervous system and results in ethanol tolerance. The induction of slowpoke expression alone is sufficient to produce a phenotype that is indistinguishable from true ethanol tolerance. Therefore, the regulation of the slowpoke BK-type channel gene must play an integral role in the Drosophila ethanol response.
Collapse
Affiliation(s)
- Roshani B Cowmeadow
- Section of Neurobiology and The Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 78712-0248, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bhattacharya I, Raybon JJ, Boje KMK. Alterations in neuronal transport but not blood-brain barrier transport are observed during gamma-hydroxybutyrate (GHB) sedative/hypnotic tolerance. Pharm Res 2006; 23:2067-77. [PMID: 16952000 DOI: 10.1007/s11095-006-9066-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 05/16/2006] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate if gamma-Hydroxybutyrate (GHB) tolerance is mediated by alterations in GHB systemic pharmacokinetics, transport (blood brain barrier (BBB) and neuronal) or membrane fluidity. MATERIALS AND METHODS GHB tolerance in rats was attained by repeated GHB administration (5.31 mmol/kg, s.c., QD for 5 days). GHB sedative/hypnotic effects were measured daily. GHB pharmacokinetics were determined on day 5. In separate groups, on day 6, in situ brain perfusion was performed to assess BBB transport alterations; or in vitro studies were performed (fluorescence polarization measurements of neuronal membrane fluidity or [3H]GABA neuronal accumulation). RESULTS GHB sedative/hypnotic tolerance was observed by day 5. No significant GHB pharmacokinetic or BBB transport differences were observed between treated and control rats. Neuronal membrane preparations from GHB tolerant rats showed a significant decrease in fluorescence polarization (treated-0.320 +/- 0.009, n = 5; control-0.299 +/- 0.009, n = 5; p < 0.05). [3H]GABA neuronal transport Vmax was significantly increased in tolerant rats (2,110.66 +/- 91.06 pmol/mg protein/min vs control (1,612.68 +/- 176.03 pmol/mg protein/min; n = 7 p < 0.05). CONCLUSIONS Short term GHB administration at moderate doses results in the development of tolerance which is not due to altered systemic pharmacokinetics or altered BBB transport, but might be due to enhanced membrane rigidity and increased GABA reuptake.
Collapse
Affiliation(s)
- Indranil Bhattacharya
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, H517 Cooke-Hochstetter, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
15
|
Korostynski M, Kaminska-Chowaniec D, Piechota M, Przewlocki R. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes. BMC Genomics 2006; 7:146. [PMID: 16772024 PMCID: PMC1553451 DOI: 10.1186/1471-2164-7-146] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 06/13/2006] [Indexed: 01/24/2023] Open
Abstract
Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q < 0.01) revealed inter-strain variation in the expression of ~3% of the analyzed transcripts. A combination of three methods of array pre-processing was used to compile a list of ranked transcripts covered by 1528 probe-sets significantly different between the mouse strains under comparison. Using Gene Ontology analysis, over-represented patterns of genes associated with cytoskeleton and involved in synaptic transmission were identified. Differential expression of several genes with relevant neurobiological function (e.g. GABA-A receptor alpha subunits) was validated by quantitative RT-PCR. Analysis of correlations between gene expression and behavioural data revealed connection between the level of mRNA for K homology domain containing, RNA binding, signal transduction associated 1 (Khdrbs1) and ATPase Na+/K+ alpha2 subunit (Atp1a2) with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt) gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.
Collapse
Affiliation(s)
- Michal Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Cracow, Poland
| | | | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Cracow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Cracow, Poland
| |
Collapse
|
16
|
Follesa P, Biggio F, Talani G, Murru L, Serra M, Sanna E, Biggio G. Neurosteroids, GABAA receptors, and ethanol dependence. Psychopharmacology (Berl) 2006; 186:267-80. [PMID: 16163526 DOI: 10.1007/s00213-005-0126-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/21/2005] [Indexed: 11/26/2022]
Abstract
RATIONALE Changes in the expression of type A receptors for gamma-aminobutyric acid (GABA) represent one of the mechanisms implicated in the development of tolerance to and dependence on ethanol. The impact of such changes on the function and pharmacological sensitivity of GABAA receptors (GABAARs) has remained unclear, however. Certain behavioral and electrophysiological actions of ethanol are mediated by an increase in the concentration of neuroactive steroids in the brain that results from stimulation of the hypothalamic-pituitary-adrenal (HPA) axis. Such steroids include potent modulators of GABAAR function. OBJECTIVES We have investigated the effect of ethanol exposure and withdrawal on subunit expression and receptor function evaluated by subunit selective compounds, as well as the effects of short-term exposure to ethanol on both neurosteroid synthesis and GABAAR function, in isolated neurons and brain tissue. RESULTS Chronic treatment with and subsequent withdrawal from ethanol alter the expression of genes for specific GABAAR subunits in cultured rat neurons, and these changes are associated with alterations in receptor function and pharmacological sensitivity to neurosteroids, zaleplon, and flumazenil. Acute ethanol exposure increases the amount of 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) in hippocampal slices by a local action independent of the activity of the HPA axis. This effect of ethanol was associated with an increased amplitude of GABAAR-mediated miniature inhibitory postsynaptic currents recorded from CA1 pyramidal neurons in such slices. CONCLUSIONS Chronic ethanol exposure elicits changes in the subunit composition of GABAARs, which, in turn, likely contribute to changes in receptor function associated with the altered pharmacological and behavioral sensitivity characteristic of ethanol tolerance and dependence. Ethanol may also modulate GABAAR function by increasing the de novo synthesis of neurosteroids in the brain in a manner independent of the HPA axis. This latter mechanism may play an important role in the central effects of ethanol.
Collapse
Affiliation(s)
- Paolo Follesa
- Department of Experimental Biology Bernardo Loddo, University of Cagliari, Cagliari, 09123, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Fehr C, Sander T, Tadic A, Lenzen KP, Anghelescu I, Klawe C, Dahmen N, Schmidt LG, Szegedi A. Confirmation of association of the GABRA2 gene with alcohol dependence by subtype-specific analysis. Psychiatr Genet 2006; 16:9-17. [PMID: 16395124 DOI: 10.1097/01.ypg.0000185027.89816.d9] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Three recent studies revealed a haplotypic association of alcohol dependence with the gene encoding the alpha2 subunit of the gamma-aminobutyric acid type A (GABAA) receptor (GABRA2). The present study examined whether variation of the GABRA2 gene confers susceptibility to different subtypes of alcohol dependence in the German population. METHODS A total of 257 German alcohol-dependent patients and 88 healthy population controls were genotyped for six single-nucleotide polymorphisms covering the middle part and the 3' end of GABRA2. Allelic, genotypic and haplotypic comparisons were done for subgroups of alcohol-dependent patients with a presumed high genetic load. RESULTS The overall alcohol-dependent patients vs. control group comparison confirmed positive allelic association for five of six single-nucleotide polymorphisms mapping from intron 3 to the 3' end of GABRA2 (P=0.01-0.02). Haplotype analysis revealed two common haplotypes accounting for approximately 90% of the chromosomes within the patients and controls. The less frequent haplotype was significantly more prevalent among the alcohol-dependent patients (45%) than among the controls [29%; odds ratio (OR)=1.97, 95% confidence interval (CI): 1.30-2.96]. The strength of association increased, if the subsets of alcohol-dependent patients with a positive family history (OR=2.60, 95% CI: 1.63-4.13), withdrawal seizures (OR=2.22, 95% CI: 1.30-3.79) or an early onset (OR=2.19, 95% CI: 1.24-3.88) were analyzed. CONCLUSIONS Although our study was limited by the number of cases being larger than the number of controls, the results confirm GABRA2 as a susceptibility gene for alcohol dependence in the German population. We found a consistent increase of the susceptibility effect in alcohol-dependent patients with a presumed strong genetic predisposition.
Collapse
Affiliation(s)
- Christoph Fehr
- Department of Psychiatry, University of Mainz, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Follesa P, Mostallino MC, Biggio F, Gorini G, Caria S, Busonero F, Murru L, Mura ML, Sanna E, Biggio G. Distinct patterns of expression and regulation of GABA receptors containing the delta subunit in cerebellar granule and hippocampal neurons. J Neurochem 2005; 94:659-71. [PMID: 16000147 DOI: 10.1111/j.1471-4159.2005.03303.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal plasticity is achieved by regulation of the expression of genes for neurotransmitter receptors such as the type A receptor (GABA(A)R) for gamma-aminobutyric acid. We now show that two different rat neuronal populations in culture manifest distinct patterns of GABA(A)R plasticity in response to identical stimuli. Whereas prolonged exposure to ethanol had no effect on expression of the delta subunit of GABA(A)Rs at the mRNA or protein level in cerebellar granule neurons, it increased the abundance of delta subunit mRNA and protein in hippocampal neurons. Subsequent ethanol withdrawal transiently down-regulated delta subunit expression in cerebellar granule neurons and gradually normalized that in hippocampal neurons. These effects of ethanol exposure and withdrawal were accompanied by corresponding functional changes in GABA(A)Rs. GABA(A)Rs containing the delta subunit were also distributed differentially in the cerebellar and hippocampal neurons. These findings reveal complex and distinct mechanisms of regulation of the expression of GABA(A)Rs that contain the delta subunit in different neuronal types.
Collapse
Affiliation(s)
- Paolo Follesa
- Department of Experimental Biology, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
AIMS To describe recent research focusing on the analysis of gene and protein expression relevant to understanding ethanol consumption, dependence and effects, in order to identify common themes. METHODS A selective literature search was used to collate the relevant data. RESULTS Over 160 genes have been individually assessed before or after ethanol administration, as well as in genetically selected lines. Techniques for studying gene expression include northern blots, differential display, real time reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization. More recently, high throughput functional genomic technology, such as DNA microarrays, has been used to examine gene expression. Recent gene expression analyses have dramatically increased the number of candidate genes (nine array papers have illuminated 600 novel gene transcripts that may contribute to alcohol abuse and alcoholism). CONCLUSIONS Although functional genomic experiments (transcriptome analysis) have failed to identify a single alcoholism gene, they have illuminated important pathways and gene products that may contribute to the risk of alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- Travis J Worst
- Center for the Neurobehavioral Study of Alcohol, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
20
|
Follesa P, Biggio F, Caria S, Gorini G, Biggio G. Modulation of GABAA receptor gene expression by allopregnanolone and ethanol. Eur J Pharmacol 2004; 500:413-25. [PMID: 15464049 DOI: 10.1016/j.ejphar.2004.07.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/28/2022]
Abstract
Expression of specific gamma-aminobutyric acid type A (GABA(A)) receptor subunit genes in neurons is affected by endogenous modulators of receptor function such as neuroactive steroids. This effect of steroids appears to be mediated through modulation of GABA(A) receptor signalling mechanisms that control the expression of specific receptor subunit genes. Furthermore, the specific outcomes of such signalling appear to differ among neurons in different regions of the brain. Neuroactive steroids such as the progesterone metabolite allopregnanolone might thus exert differential effects on GABA(A) receptor plasticity in distinct neuronal cell populations, likely accounting for some of the physiological actions of these compounds. Here we summarise experimental data obtained both in vivo and in vitro that show how fluctuations in the concentration of allopregnanolone regulate both the expression and function of GABA(A) receptors and consequently affect behaviour. Such regulation is operative both during physiological conditions such as pregnancy and lactation as well as in pharmacologically induced states such as pseudopregnancy and long-term treatment with steroid derivatives or anxiolytic-hypnotic drugs. Accordingly, long-lasting exposure of GABA(A) receptors to ethanol, as well as its withdrawal, induces marked effects on receptor structure and function. These results suggest the possible synergic action between endogenous steroids and ethanol in modulating the functional activity of specific neuronal populations.
Collapse
Affiliation(s)
- Paolo Follesa
- Department of Experimental Biology, Section of Neuroscience, and Center of Excellence for the Neurobiology of Dependence, University of Cagliari, 09123 Cagliari, Italy
| | | | | | | | | |
Collapse
|