1
|
He Z, Ma H, Zhang Y, Chen L, Pang Y, Ding X, Wang Y, Liu Y, Li L, Li J. Identification of Npas4 as a biomarker for CICI by transcriptomics combined with bioinformatics and machine learning approaches. Exp Neurol 2025; 391:115290. [PMID: 40340014 DOI: 10.1016/j.expneurol.2025.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Chemotherapy is one of the most successful strategies for treating cancer. Unfortunately, up to 70 % of cancer survivors develop cognitive impairment during or after chemotherapy, which severely affects their quality of life. We first established a mouse model of CICI and combined bioinformatics, machine learning, and transcriptome sequencing to screen diagnostic genes associated with CICI. Relevant DEGs were screened by differential analysis, and potential biological functions of DEGs were explored by GO and KEGG analysis. WGCNA analysis was then used to find the most relevant modules for CICI. The diagnostic gene Npas4 was screened by combining the three machine learning methods; its diagnostic value was proved by ROC analysis, GSEA analyzed its potential biological function, and then we preliminarily explored the chemicals associated with Npas4. Our study found that Npas4 can be used as an early diagnostic gene for CICI, which provides a theoretical basis for further research.
Collapse
Affiliation(s)
- Zhenyu He
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huanhuan Ma
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yu Zhang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liping Chen
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yueling Pang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaoshan Ding
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanan Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Ling Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Jiawei Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China; Gansu University of Chinese Medicine Scientific Research and Experimental Center, China.
| |
Collapse
|
2
|
Gao M, Wang K, Zhao H. GABAergic neurons maturation is regulated by a delicate network. Int J Dev Neurosci 2023; 83:3-15. [PMID: 36401305 DOI: 10.1002/jdn.10242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022] Open
Abstract
Gamma-aminobutyric acid-expressing (GABAergic) neurons are implicated in a variety of neuropsychiatric disorders, such as epilepsy, anxiety, autism, and other pathological processes, including cerebral ischemia injury and drug addiction. Therefore, GABAergic neuronal processes warrant further research. The development of GABAergic neurons is a tightly controlled process involving the activity of multiple transcription and growth factors. Here, we focus on the gene expression pathways and the molecular modulatory networks that are engaged during the development of GABAergic neurons with the goal of exploring regulatory mechanisms that influence GABAergic neuron fate (i.e., maturation). Overall, we hope to provide a basis for clarifying the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mingxing Gao
- Department of Histology and Embryology, School of Basic Medical Science, Jilin University, Changchun, Jilin, China
| | - Kaizhong Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Yildirim F, Foddis M, Blumenau S, Müller S, Kajetan B, Holtgrewe M, Kola V, Beule D, Sassi C. Shared and oppositely regulated transcriptomic signatures in Huntington's disease and brain ischemia confirm known and unveil novel potential neuroprotective genes. Neurobiol Aging 2021; 104:122.e1-122.e17. [PMID: 33875290 DOI: 10.1016/j.neurobiolaging.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
Huntington's disease and subcortical vascular dementia display similar dementing features, shaped by different degrees of striatal atrophy, deep white matter degeneration and tau pathology. To investigate the hypothesis that Huntington's disease transcriptomic hallmarks may provide a window into potential protective genes upregulated during brain acute and subacute ischemia, we compared RNA sequencing signatures in the most affected brain areas of 2 widely used experimental mouse models: Huntington's disease, (R6/2, striatum and cortex and Q175, hippocampus) and brain ischemia-subcortical vascular dementia (BCCAS, striatum, cortex and hippocampus). We identified a cluster of 55 shared genes significantly differentially regulated in both models and we screened these in 2 different mouse models of Alzheimer's disease, and 96 early-onset familial and apparently sporadic small vessel ischemic disease patients. Our data support the prevalent role of transcriptional regulation upon genetic coding variability of known neuroprotective genes (Egr2, Fos, Ptgs2, Itga5, Cdkn1a, Gsn, Npas4, Btg2, Cebpb) and provide a list of potential additional ones likely implicated in different dementing disorders and worth further investigation.
Collapse
Affiliation(s)
- Ferah Yildirim
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Foddis
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sonja Blumenau
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Müller
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bentele Kajetan
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Manuel Holtgrewe
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Vasilis Kola
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Celeste Sassi
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
4
|
Maternal Separation Early in Life Alters the Expression of Genes Npas4 and Nr1d1 in Adult Female Mice: Correlation with Social Behavior. Behav Neurol 2020; 2020:7830469. [PMID: 32190129 PMCID: PMC7072106 DOI: 10.1155/2020/7830469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Early-life stress affects neuronal plasticity of the brain regions participating in the implementation of social behavior. Our previous studies have shown that brief and prolonged separation of pups from their mothers leads to enhanced social behavior in adult female mice. The goal of the present study was to characterize the expression of genes (which are engaged in synaptic plasticity) Egr1, Npas4, Arc, and Homer1 in the prefrontal cortex and dorsal hippocampus of adult female mice with a history of early-life stress. In addition, we evaluated the expression of stress-related genes: glucocorticoid and mineralocorticoid receptors (Nr3c1 and Nr3c2) and Nr1d1, which encodes a transcription factor (also known as REVERBα) modulating sociability and anxiety-related behavior. C57Bl/6 mice were exposed to either maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal days 2 through 14. In adulthood, the behavior of female mice was analyzed by some behavioral tests, and on the day after the testing of social behavior, we measured the gene expression. We found increased Npas4 expression only in the prefrontal cortex and higher Nr1d1 expression in both the prefrontal cortex and dorsal hippocampus of adult female mice with a history of MS. The expression of the studied genes did not change in HD female mice. The expression of stress-related genes Nr3c1 and Nr3c2 was unaltered in both groups. We propose that the upregulation of Npas4 and Nr1d1 in females with a history of early-life stress and the corresponding enhancement of social behavior may be regarded as an adaptation mechanism reversing possible aberrations caused by early-life stress.
Collapse
|
5
|
Louis Sam Titus ASC, Sharma D, Kim MS, D'Mello SR. The Bdnf and Npas4 genes are targets of HDAC3-mediated transcriptional repression. BMC Neurosci 2019; 20:65. [PMID: 31883511 PMCID: PMC6935488 DOI: 10.1186/s12868-019-0546-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background Histone deacetylase-3 (HDAC3) promotes neurodegeneration in various cell culture and in vivo models of neurodegeneration but the mechanism by which HDAC3 exerts neurotoxicity is not known. HDAC3 is known to be a transcriptional co-repressor. The goal of this study was to identify transcriptional targets of HDAC3 in an attempt to understand how it promotes neurodegeneration. Results We used chromatin immunoprecipitation analysis coupled with deep sequencing (ChIP-Seq) to identify potential targets of HDAC3 in cerebellar granule neurons. One of the genes identified was the activity-dependent and neuroprotective transcription factor, Neuronal PAS Domain Protein 4 (Npas4). We confirmed using ChIP that in healthy neurons HDAC3 associates weakly with the Npas4 promoter, however, this association is robustly increased in neurons primed to die. We find that HDAC3 also associates differentially with the brain-derived neurotrophic factor (Bdnf) gene promoter, with higher association in dying neurons. In contrast, association of HDAC3 with the promoters of other neuroprotective genes, including those encoding c-Fos, FoxP1 and Stat3, was barely detectable in both healthy and dying neurons. Overexpression of HDAC3 leads to a suppression of Npas4 and Bdnf expression in cortical neurons and treatment with RGFP966, a chemical inhibitor of HDAC3, resulted in upregulation of their expression. Expression of HDAC3 also repressed Npas4 and Bdnf promoter activity. Conclusion Our results suggest that Bdnf and Npas4 are transcriptional targets of Hdac3-mediated repression. HDAC3 inhibitors have been shown to protect against behavioral deficits and neuronal loss in mouse models of neurodegeneration and it is possible that these inhibitors work by upregulating neuroprotective genes like Bdnf and Npas4.
Collapse
Affiliation(s)
- Anto Sam Crosslee Louis Sam Titus
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.,Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Dharmendra Sharma
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.,Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Min Soo Kim
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA. .,, Dallas, TX, 75243, USA.
| |
Collapse
|
6
|
Subcellular Localization Signals of bHLH-PAS Proteins: Their Significance, Current State of Knowledge and Future Perspectives. Int J Mol Sci 2019; 20:ijms20194746. [PMID: 31554340 PMCID: PMC6801399 DOI: 10.3390/ijms20194746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
The bHLH-PAS (basic helix-loop-helix/ Period-ARNT-Single minded) proteins are a family of transcriptional regulators commonly occurring in living organisms. bHLH-PAS members act as intracellular and extracellular "signals" sensors, initiating response to endo- and exogenous signals, including toxins, redox potential, and light. The activity of these proteins as transcription factors depends on nucleocytoplasmic shuttling: the signal received in the cytoplasm has to be transduced, via translocation, to the nucleus. It leads to the activation of transcription of particular genes and determines the cell response to different stimuli. In this review, we aim to present the current state of knowledge concerning signals that affect shuttling of bHLH-PAS transcription factors. We summarize experimentally verified and published nuclear localization signals/nuclear export signals (NLSs/NESs) in the context of performed in silico predictions. We have used most of the available NLS/NES predictors. Importantly, all our results confirm the existence of a complex system responsible for protein localization regulation that involves many localization signals, which activity has to be precisely controlled. We conclude that the current stage of knowledge in this area is still not complete and for most of bHLH-PAS proteins an experimental verification of the activity of further NLS/NES is needed.
Collapse
|
7
|
Fahim A, Rehman Z, Bhatti MF, Ali A, Virk N, Rashid A, Paracha RZ. Structural insights and characterization of human Npas4 protein. PeerJ 2018; 6:e4978. [PMID: 29915698 PMCID: PMC6004298 DOI: 10.7717/peerj.4978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022] Open
Abstract
Npas4 is an activity dependent transcription factor which is responsible for gearing the expression of target genes involved in neuro-transmission. Despite the importance of Npas4 in many neuronal diseases, the tertiary structure of Npas4 protein along with its physico-chemical properties is limited. In the current study, first we perfomed the phylogenetic analysis of Npas4 and determined the content of hydrophobic, flexible and order-disorder promoting amino acids. The protein binding regions, post-translational modifications and crystallization propensity of Npas4 were predicted through different in-silico methods. The three dimensional model of Npas4 was predicted through LOMET, SPARSKS-X, I-Tasser, RaptorX, MUSTER and Pyhre and the best model was selected on the basis of Ramachandran plot, PROSA, and Qmean scores. The best model was then subjected to further refinement though MODREFINER. Finally the interacting partners of Npas4 were identified through STRING database. The phylogenetic analysis showed the human Npas4 gene to be closely related to other primates such as chimpanzees, monkey, gibbon. The physiochemical properties of Npas4 showed that it is an intrinsically disordered protein with N-terminal ordered region. The post-translational modification analyses indicated absence of acetylation and mannosylation sites. Three potential phosphorylation sites (S108, T130 and T136) were found in PAS A domain whilst a single phosphorylation site (S273) was present in PAS B domain. The predicted tertiary structure of Npas4 showed that bHLH domain and PAS domain possess tertiary structures while the rest of the protein exhibited disorder property. Protein-protein interaction analysis revealed NPas4 interaction with various proteins which are mainly involved in nuclear trafficking of proteins to cytoplasm, activity regulated gene transcription and neurodevelopmental disorders. Moreover the analysis also highlighted the direct relation to proteins involved in promoting neuronal survival, plasticity and cAMP responsive element binding protein proteins. The current study helps in understanding the physicochemical properties and reveals the neuro-modulatory role of Npas4 in crucial pathways involved in neuronal survival and neural signalling hemostasis.
Collapse
Affiliation(s)
- Ammad Fahim
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Zaira Rehman
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amir Rashid
- Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling and Simulation (RCMS), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
8
|
Greb-Markiewicz B, Zarębski M, Ożyhar A. Multiple sequences orchestrate subcellular trafficking of neuronal PAS domain-containing protein 4 (NPAS4). J Biol Chem 2018; 293:11255-11270. [PMID: 29899116 PMCID: PMC6065191 DOI: 10.1074/jbc.ra118.001812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/05/2018] [Indexed: 01/25/2023] Open
Abstract
Neuronal Per-Arnt-Sim (PAS) domain-containing protein 4 (NPAS4) is a basic helix-loop-helix (bHLH)-PAS transcription factor first discovered in neurons in the neuronal layer of the mammalian hippocampus and later discovered in pancreatic β-cells. NPAS4 has been proposed as a therapeutic target not only for depression and neurodegenerative diseases associated with synaptic dysfunction but also for type 2 diabetes and pancreas transplantation. The ability of bHLH-PAS proteins to fulfil their function depends on their intracellular trafficking, which is regulated by specific sequences, i.e. the nuclear localization signal (NLS) and the nuclear export signal (NES). However, until now, no study examining the subcellular localization signals of NPAS4 has been published. We show here that Rattus norvegicus NPAS4 was not uniformly localized in the nuclei of COS-7 and N2a cells 24 h after transfection. Additionally, cytoplasmic localization of NPAS4 was leptomycin B-sensitive. We demonstrate that NPAS4 possesses a unique arrangement of localization signals. Its bHLH domain contains an overlapping NLS and NES. We observed that its PAS-2 domain contains an NLS, an NES, and a second, proximally located, putative NLS. Moreover, the C terminus of NPAS4 contains two active NESs that overlap with a putative NLS. Our data indicate that glucose concentration could be one of the factors influencing NPAS4 localization. The presence of multiple localization signals and the differentiated localization of NPAS4 suggest a precise, multifactor-dependent regulation of NPAS4 trafficking, potentially crucial for its ability to act as a cellular stress sensor and transcription factor.
Collapse
Affiliation(s)
- Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
9
|
de Bartolomeis A, Buonaguro EF, Latte G, Rossi R, Marmo F, Iasevoli F, Tomasetti C. Immediate-Early Genes Modulation by Antipsychotics: Translational Implications for a Putative Gateway to Drug-Induced Long-Term Brain Changes. Front Behav Neurosci 2017; 11:240. [PMID: 29321734 PMCID: PMC5732183 DOI: 10.3389/fnbeh.2017.00240] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing amount of research aims at recognizing the molecular mechanisms involved in long-lasting brain architectural changes induced by antipsychotic treatments. Although both structural and functional modifications have been identified following acute antipsychotic administration in humans, currently there is scarce knowledge on the enduring consequences of these acute changes. New insights in immediate-early genes (IEGs) modulation following acute or chronic antipsychotic administration may help to fill the gap between primary molecular response and putative long-term changes. Moreover, a critical appraisal of the spatial and temporal patterns of IEGs expression may shed light on the functional "signature" of antipsychotics, such as the propensity to induce motor side effects, the potential neurobiological mechanisms underlying the differences between antipsychotics beyond D2 dopamine receptor affinity, as well as the relevant effects of brain region-specificity in their mechanisms of action. The interest for brain IEGs modulation after antipsychotic treatments has been revitalized by breakthrough findings such as the role of early genes in schizophrenia pathophysiology, the involvement of IEGs in epigenetic mechanisms relevant for cognition, and in neuronal mapping by means of IEGs expression profiling. Here we critically review the evidence on the differential modulation of IEGs by antipsychotics, highlighting the association between IEGs expression and neuroplasticity changes in brain regions impacted by antipsychotics, trying to elucidate the molecular mechanisms underpinning the effects of this class of drugs on psychotic, cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
10
|
Stress-induced hippocampus Npas4 mRNA expression relates to specific psychophysiological patterns of stress response. Brain Res 2017; 1679:75-83. [PMID: 29196218 DOI: 10.1016/j.brainres.2017.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 10/17/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022]
Abstract
Neuronal Per-Arnt-Sim (PAS) domain protein 4 (Npas4) is a key protein that intervenes in GABA synapse scaling and neurotrophicity enhancing. Since GABA and neurotrophicity are implicated in stress response and Npas4-deficient rodents exhibit behavioral alterations, an investigation was designed in rats to verify whether stress-induced spontaneous hippocampus Npas4 mRNA expression would be associated with specific patterns of stress response. The rats were exposed to one of three stressor levels: no stress (CTL, n = 15), exposure to a footshock apparatus (Sham, S, n = 40) and footshock (F, n = 80). After stress exposure the S and F rats were tested in an activity cage, and subsequently in an elevated plus maze (EPM), just prior to the sacrifice. Using cluster analysis, the animals already assigned to a stress level were also distributed into 2 subgroups depending on their Npas4 mRNA levels. The low (L) and high (H) Npas4 expression subgroups were identified in the S and F groups, the CTL group being independent of the Npas4 levels. The Npas4 effect was studied through the interaction between stress (S and F) and Npas4 level (L and H). The biological stress response was similar in H and L rats, except blood corticosterone that was slightly lower in the H rats. The H rats were more active in the actimetry cage and presented higher levels of exploration in the EPM. They also exhibited higher hippocampus activation, as assessed by the c-fos, Egr1 and Arc mRNA levels. Therefore high Npas4 expression favors stress management.
Collapse
|
11
|
Esser JS, Charlet A, Schmidt M, Heck S, Allen A, Lother A, Epting D, Patterson C, Bode C, Moser M. The neuronal transcription factor NPAS4 is a strong inducer of sprouting angiogenesis and tip cell formation. Cardiovasc Res 2017; 113:222-223. [PMID: 28082451 DOI: 10.1093/cvr/cvw248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/01/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Regarding branching morphogenesis, neurogenesis and angiogenesis share common principle mechanisms and make use of the same molecules. Therefore, the investigation of neuronal molecules involved in vascular morphogenesis provides new possibilities for pro-angiogenic approaches in cardiovascular diseases. OBJECTIVE In this study, we investigated the role of the neuronal transcription factor NPAS4 in angiogenesis. METHODS AND RESULTS Here, we demonstrate that the neuronal transcription factor NPAS4 is expressed in endothelial cells of different origin using reverse transcription PCR and western blot analysis. To investigate how NPAS4 affects endothelial cell function, NPAS4 was overexpressed by plasmid transfection or depleted from human umbilical vein endothelial cells (HUVECs) by specific siRNAs. In vitro HUVEC sprouting assays showed that sprouting and branching of endothelial cells was enhanced by NPAS4 overexpression. Consistently, silencing of NPAS4 resulted in reduced HUVEC sprouting and branching. Mechanistically, we identified as target gene vascular endothelial adhesion molecule VE-cadherin to be involved in the pro-angiogenic function of NPAS4. In endothelial cell mosaic spheroid sprouting assays, NPAS4 was involved in tip cell formation. In vivo experiments in mouse and zebrafish confirmed our in vitro findings. NPAS4-deficient mice displayed reduced ingrowth of endothelial cells in the Matrigel plug assay. Consistent with a regulatory role of NPAS4 in endothelial cell function silencing of NPAS4 in zebrafish by specific morpholinos resulted in perturbed intersegmental vessels growth. CONCLUSIONS NPAS4 is expressed in endothelial cells, regulates VE-cadherin expression and regulates sprouting angiogenesis.
Collapse
Affiliation(s)
- Jennifer Susanne Esser
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany
| | - Anne Charlet
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Mei Schmidt
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany
| | - Sophia Heck
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany
| | - Anita Allen
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Achim Lother
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Daniel Epting
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Cam Patterson
- New York Presbyterian Hospital, Weill Cornell Medical Center, 525 East 68th Street, Payson 118, New York, NY, USA
| | - Christoph Bode
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany
| | - Martin Moser
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany;
| |
Collapse
|
12
|
Choy FC, Klarić TS, Koblar SA, Lewis MD. miR-744 and miR-224 Downregulate Npas4 and Affect Lineage Differentiation Potential and Neurite Development During Neural Differentiation of Mouse Embryonic Stem Cells. Mol Neurobiol 2016; 54:3528-3541. [PMID: 27189618 DOI: 10.1007/s12035-016-9912-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/03/2016] [Indexed: 12/11/2022]
Abstract
Neuronal PAS domain protein 4 (Npas4) is a brain-specific transcription factor whose expression is enriched in neurogenic regions of the brain. In addition, it was demonstrated that Npas4 expression is dynamic and highly regulated during neural differentiation of embryonic stem cells (ESCs). While these findings implicate a role for Npas4 in neurogenesis, the underlying mechanisms of regulation remain unknown. Given that growing evidence suggests that microRNAs (miRNAs) play important roles in both embryonic and adult neurogenesis, we reasoned that miRNAs are good candidates for regulating Npas4 expression during neural differentiation of ESCs. In this study, we utilized the small RNA sequencing method to profile miRNA expression during neural differentiation of mouse ESCs. Two differentially expressed miRNAs were identified to be able to significantly reduce reporter gene activity by targeting the Npas4 3'UTR, namely miR-744 and miR-224. More importantly, ectopic expression of these miRNAs during neural differentiation resulted in downregulation of endogenous Npas4 expression. Subsequent functional analysis revealed that overexpression of either miR-744 or miR-224 delayed early neural differentiation, reduced GABAergic neuron production and inhibited neurite outgrowth. Collectively, our findings indicate that Npas4 not only functions at the early stages of neural differentiation but may also, in part, contribute to neuronal subtype specification and neurite development.
Collapse
Affiliation(s)
- Fong Chan Choy
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Thomas S Klarić
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Simon A Koblar
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Martin D Lewis
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia. .,South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| |
Collapse
|
13
|
Sun X, Lin Y. Npas4: Linking Neuronal Activity to Memory. Trends Neurosci 2016; 39:264-275. [PMID: 26987258 DOI: 10.1016/j.tins.2016.02.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 01/16/2023]
Abstract
Immediate-early genes (IEGs) are rapidly activated after sensory and behavioral experience and are believed to be crucial for converting experience into long-term memory. Neuronal PAS domain protein 4 (Npas4), a recently discovered IEG, has several characteristics that make it likely to be a particularly important molecular link between neuronal activity and memory: it is among the most rapidly induced IEGs, is expressed only in neurons, and is selectively induced by neuronal activity. By orchestrating distinct activity-dependent gene programs in different neuronal populations, Npas4 affects synaptic connections in excitatory and inhibitory neurons, neural circuit plasticity, and memory formation. It may also be involved in circuit homeostasis through negative feedback and psychiatric disorders. We summarize these findings and discuss their implications.
Collapse
Affiliation(s)
- Xiaochen Sun
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Molecular and Cellular Neuroscience Graduate Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yingxi Lin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Speckmann T, Sabatini PV, Nian C, Smith RG, Lynn FC. Npas4 Transcription Factor Expression Is Regulated by Calcium Signaling Pathways and Prevents Tacrolimus-induced Cytotoxicity in Pancreatic Beta Cells. J Biol Chem 2015; 291:2682-95. [PMID: 26663079 DOI: 10.1074/jbc.m115.704098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
Cytosolic calcium influx activates signaling pathways known to support pancreatic beta cell function and survival by modulating gene expression. Impaired calcium signaling leads to decreased beta cell mass and diabetes. To appreciate the causes of these cytotoxic perturbations, a more detailed understanding of the relevant signaling pathways and their respective gene targets is required. In this study, we examined the calcium-induced expression of the cytoprotective beta cell transcription factor Npas4. Pharmacological inhibition implicated the calcineurin, Akt/protein kinase B, and Ca(2+)/calmodulin-dependent protein kinase signaling pathways in the regulation of Npas4 transcription and translation. Both Npas4 mRNA and protein had high turnover rates, and, at the protein level, degradation was mediated via the ubiquitin-proteasome pathway. Finally, beta cell cytotoxicity of the calcineurin inhibitor and immunosuppressant tacrolimus (FK-506) was prevented by Npas4 overexpression. These results delineate the pathways regulating Npas4 expression and stability and demonstrate its importance in clinical settings such as islet transplantation.
Collapse
Affiliation(s)
- Thilo Speckmann
- From the Diabetes Research Program, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada and the Department of Surgery and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul V Sabatini
- From the Diabetes Research Program, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada and the Department of Surgery and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Cuilan Nian
- From the Diabetes Research Program, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada and the Department of Surgery and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Riley G Smith
- From the Diabetes Research Program, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada and
| | - Francis C Lynn
- From the Diabetes Research Program, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada and the Department of Surgery and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
15
|
The Role of the Neuroprotective Factor Npas4 in Cerebral Ischemia. Int J Mol Sci 2015; 16:29011-28. [PMID: 26690124 PMCID: PMC4691091 DOI: 10.3390/ijms161226144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 01/05/2023] Open
Abstract
Stroke is one of the leading causes of death and adult disability in the world. Although many molecules have been documented to have a neuroprotective effect, the majority of these molecules failed to improve the neurological outcomes for patients with brain ischemia. It has been proposed that neuroprotection alone may, in fact, not be adequate for improving the prognosis of ischemic stroke. Neuroprotectants that can regulate other processes which occur in the brain during ischemia could potentially be targets for the development of effective therapeutic interventions in stroke. Neuronal Per-Arnt-Sim domain protein 4 (Npas4) is an activity-dependent transcription factor whose expression is induced in various brain insults, including cerebral ischemia. It has been shown that Npas4 plays an important role in protecting neurons against many types of neurodegenerative insult. Recently, it was demonstrated that Npas4 indeed has a neuroprotective role in ischemic stroke and that Npas4 might be involved in modulating the cell death pathway and inflammatory response. In this review, we summarize the current knowledge of the roles that Npas4 may play in neuroinflammation and ischemia. Understanding how ischemic lesion size in stroke may be reduced through modulation of Npas4-dependent apoptotic and inflammatory pathways could lead to the development of new stroke therapies.
Collapse
|
16
|
Damborsky JC, Slaton GS, Winzer-Serhan UH. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain. Front Neuroanat 2015; 9:145. [PMID: 26633966 PMCID: PMC4649027 DOI: 10.3389/fnana.2015.00145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/30/2015] [Indexed: 12/29/2022] Open
Abstract
The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission.
Collapse
Affiliation(s)
- Joanne C Damborsky
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System Health Science Center Bryan, TX, USA
| | - G Simona Slaton
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System Health Science Center Bryan, TX, USA
| | - Ursula H Winzer-Serhan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System Health Science Center Bryan, TX, USA
| |
Collapse
|
17
|
Bersten DC, Sullivan AE, Li D, Bhakti V, Bent SJ, Whitelaw ML. Inducible and reversible lentiviral and Recombination Mediated Cassette Exchange (RMCE) systems for controlling gene expression. PLoS One 2015; 10:e0116373. [PMID: 25768837 PMCID: PMC4358958 DOI: 10.1371/journal.pone.0116373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/08/2014] [Indexed: 11/19/2022] Open
Abstract
Manipulation of gene expression to invoke loss of function (LoF) or gain of function (GoF) phenotypes is important for interrogating complex biological questions both in vitro and in vivo. Doxycycline (Dox)-inducible gene expression systems are commonly used although success is often limited by high background and insufficient sensitivity to Dox. Here we develop broadly applicable platforms for reliable, tightly controlled and reversible Dox-inducible systems for lentiviral mediated generation of cell lines or FLP Recombination-Mediated Cassette Exchange (RMCE) into the Collagen 1a1 (Col1a1) locus (FLP-In Col1a1) in mouse embryonic stem cells. We significantly improve the flexibility, usefulness and robustness of the Dox-inducible system by using Tetracycline (Tet) activator (Tet-On) variants which are more sensitive to Dox, have no background activity and are expressed from single Gateway-compatible constructs. We demonstrate the usefulness of these platforms in ectopic gene expression or gene knockdown in multiple cell lines, primary neurons and in FLP-In Col1a1 mouse embryonic stem cells. We also improve the flexibility of RMCE Dox-inducible systems by generating constructs that allow for tissue or cell type-specific Dox-inducible expression and generate a shRNA selection algorithm that can effectively predict potent shRNA sequences able to knockdown gene expression from single integrant constructs. These platforms provide flexible, reliable and broadly applicable inducible expression systems for studying gene function.
Collapse
Affiliation(s)
- David C. Bersten
- School of Molecular and Biomedical Science (Biochemistry), The University of Adelaide, Adelaide, South Australia, Australia
- Institute of Molecular Pathology, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail: (MLW); (DCB)
| | - Adrienne E. Sullivan
- School of Molecular and Biomedical Science (Biochemistry), The University of Adelaide, Adelaide, South Australia, Australia
- Institute of Molecular Pathology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Dian Li
- School of Molecular and Biomedical Science (Biochemistry), The University of Adelaide, Adelaide, South Australia, Australia
- Institute of Molecular Pathology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Veronica Bhakti
- School of Molecular and Biomedical Science (Biochemistry), The University of Adelaide, Adelaide, South Australia, Australia
- Institute of Molecular Pathology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen J. Bent
- School of Molecular and Biomedical Science (Genetics), The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Murray L. Whitelaw
- School of Molecular and Biomedical Science (Biochemistry), The University of Adelaide, Adelaide, South Australia, Australia
- Institute of Molecular Pathology, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail: (MLW); (DCB)
| |
Collapse
|
18
|
Npas4 expression in two experimental models of the barrel cortex plasticity. Neural Plast 2015; 2015:175701. [PMID: 25785202 PMCID: PMC4345254 DOI: 10.1155/2015/175701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/29/2015] [Indexed: 12/11/2022] Open
Abstract
Npas4 has recently been identified as an important factor in brain plasticity, particularly in mechanisms of inhibitory control. Little is known about Npas4 expression in terms of cortical plasticity. In the present study expressions of Npas4 and the archetypal immediate early gene (IEG) c-Fos were investigated in the barrel cortex of mice after sensory deprivation (sparing one row of whiskers for 7 days) or sensory conditioning (pairing stimulation of one row of whiskers with aversive stimulus). Laser microdissection of individual barrel rows allowed for analysis of IEGs expression precisely in deprived and nondeprived barrels (in deprivation study) or stimulated and nonstimulated barrels (in conditioning study). Cortex activation by sensory conditioning was found to upregulate the expression of both Npas4 and c-Fos. Reorganization of cortical circuits triggered by removal of selected rows of whiskers strongly affected c-Fos but not Npas4 expression. We hypothesize that increased inhibitory synaptogenesis observed previously after conditioning may be mediated by Npas4 expression.
Collapse
|
19
|
Klarić T, Lardelli M, Key B, Koblar S, Lewis M. Activity-dependent expression of neuronal PAS domain-containing protein 4 (npas4a) in the developing zebrafish brain. Front Neuroanat 2014; 8:148. [PMID: 25538572 PMCID: PMC4255624 DOI: 10.3389/fnana.2014.00148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/18/2014] [Indexed: 11/26/2022] Open
Abstract
In rodents, the Npas4 gene has recently been identified as being an important regulator of synaptic plasticity and memory. Homologs of Npas4 have been found in invertebrate species though their functions appear to be too divergent for them to be studied as a proxy for the mammalian proteins. The aim of this study, therefore, was to ascertain the suitability of the zebrafish as a model organism for investigating the function of Npas4 genes. We show here that the expression and regulation of the zebrafish Npas4 homolog, npas4a, is remarkably similar to that of the rodent Npas4 genes. As in mammals, expression of the zebrafish npas4a gene is restricted to the brain where it is up-regulated in response to neuronal activity. Furthermore, we also show that knockdown of npas4a during embryonic development results in a number of forebrain-specific defects including increased apoptosis and misexpression of the forebrain marker genes dlx1a and shha. Our work demonstrates that the zebrafish is a suitable model organism for investigating the role of the npas4a gene and one that is likely to provide valuable insights into the function of the mammalian homologs. Furthermore, our findings highlight a potential role for npas4a in forebrain development.
Collapse
Affiliation(s)
- Thomas Klarić
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Michael Lardelli
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Brian Key
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Simon Koblar
- School of Medicine, The University of Adelaide Adelaide, SA, Australia
| | - Martin Lewis
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
20
|
Klaric TS, Thomas PQ, Dottori M, Leong WK, Koblar SA, Lewis MD. A reduction in Npas4 expression results in delayed neural differentiation of mouse embryonic stem cells. Stem Cell Res Ther 2014; 5:64. [PMID: 24887558 PMCID: PMC4076635 DOI: 10.1186/scrt453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/11/2014] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Npas4 is a calcium-dependent transcription factor expressed within neurons of the brain where it regulates the expression of several genes that are important for neuronal survival and synaptic plasticity. It is known that in the adult brain Npas4 plays an important role in several key aspects of neurobiology including inhibitory synapse formation, neuroprotection and memory, yet very little is known about the role of Npas4 during neurodevelopment. The aim of this study was to examine the expression and function of Npas4 during nervous system development by using a combination of in vivo experiments in the developing mouse embryo and neural differentiation of embryonic stem cells (ESCs) as an in vitro model of the early stages of embryogenesis. METHODS Two different neural differentiation paradigms were used to investigate Npas4 expression during neurodevelopment in vitro; adherent monolayer differentiation of mouse ESCs in N2B27 medium and Noggin-induced differentiation of human ESCs. This work was complemented by direct analysis of Npas4 expression in the mouse embryo. The function of Npas4 in the context of neurodevelopment was investigated using loss-of-function experiments in vitro. We created several mouse ESC lines in which Npas4 expression was reduced during neural differentiation through RNA interference and we then analyzed the ability of these Npas4 knockdown mouse ESCs lines to undergo neural differentiation. RESULTS We found that while Npas4 is not expressed in undifferentiated ESCs, it becomes transiently up-regulated during neural differentiation of both mouse and human ESCs at a stage of differentiation that is characterized by proliferation of neural progenitor cells. This was corroborated by analysis of Npas4 expression in the mouse embryo where the Npas4 transcript was detected specifically in the developing forebrain beginning at embryonic day 9.5. Finally, knockdown of Npas4 expression in mouse ESCs undergoing neural differentiation affected their ability to differentiate appropriately, resulting in delayed neural differentiation. CONCLUSIONS Here we provide the first evidence that Npas4 is expressed during embryonic development and that it may have a developmental role that is unrelated to its function in the adult brain.
Collapse
|
21
|
Bersten DC, Wright JA, McCarthy PJ, Whitelaw ML. Regulation of the neuronal transcription factor NPAS4 by REST and microRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:13-24. [PMID: 24291638 DOI: 10.1016/j.bbagrm.2013.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 12/31/2022]
Abstract
NPAS4 is a brain restricted, activity-induced transcription factor which regulates the expression of inhibitory synapse genes to control homeostatic excitatory/inhibitory balance in neurons. NPAS4 is required for normal social interaction and contextual memory formation in mice. Protein and mRNA expression of NPAS4 is tightly coupled to neuronal depolarization and most prevalent in the cortical and hippocampal regions in the brain, however the precise mechanisms by which the NPAS4 gene is controlled remain unexplored. Here we show that expression of NPAS4 mRNA is actively repressed by RE-1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) in embryonic stem cells and non-neuronal cells by binding multiple sites within the promoter and Intron I of NPAS4. Repression by REST also appears to correlate with the binding of the zinc finger DNA binding protein CTCF within Intron I of NPAS4. In addition, we show that the 3' untranslated region (3'UTR) of NPAS4 can be targeted by two microRNAs, miR-203 and miR-224 to further regulate its expression. miR-224 is a midbrain/hypothalamus enriched microRNA which is expressed from an intron within the GABAA receptor epsilon (GABRE) gene and may further regionalize NPAS4 expression. Our results reveal REST and microRNA dependent mechanisms that restrict NPAS4 expression to the brain.
Collapse
Affiliation(s)
- David C Bersten
- School of Molecular and Biomedical Science (Biochemistry) and Australian Research, Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Josephine A Wright
- School of Molecular and Biomedical Science (Biochemistry) and Australian Research, Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J McCarthy
- School of Molecular and Biomedical Science (Biochemistry) and Australian Research, Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Murray L Whitelaw
- School of Molecular and Biomedical Science (Biochemistry) and Australian Research, Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
West A, Dupré SM, Yu L, Paton IR, Miedzinska K, McNeilly AS, Davis JRE, Burt DW, Loudon ASI. Npas4 is activated by melatonin, and drives the clock gene Cry1 in the ovine pars tuberalis. Mol Endocrinol 2013; 27:979-89. [PMID: 23598442 PMCID: PMC3689899 DOI: 10.1210/me.2012-1366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Seasonal mammals integrate changes in the duration of nocturnal melatonin secretion to drive annual physiologic cycles. Melatonin receptors within the proximal pituitary region, the pars tuberalis (PT), are essential in regulating seasonal neuroendocrine responses. In the ovine PT, melatonin is known to influence acute changes in transcriptional dynamics coupled to the onset (dusk) and offset (dawn) of melatonin secretion, leading to a potential interval-timing mechanism capable of decoding changes in day length (photoperiod). Melatonin offset at dawn is linked to cAMP accumulation, which directly induces transcription of the clock gene Per1. The rise of melatonin at dusk induces a separate and distinct cohort, including the clock-regulated genes Cry1 and Nampt, but little is known of the up-stream mechanisms involved. Here, we used next-generation sequencing of the ovine PT transcriptome at melatonin onset and identified Npas4 as a rapidly induced basic helix-loop-helix Per-Arnt-Sim domain transcription factor. In vivo we show nuclear localization of NPAS4 protein in presumptive melatonin target cells of the PT (α-glycoprotein hormone-expressing cells), whereas in situ hybridization studies identified acute and transient expression in the PT of Npas4 in response to melatonin. In vitro, NPAS4 forms functional dimers with basic helix loop helix-PAS domain cofactors aryl hydrocarbon receptor nuclear translocator (ARNT), ARNT2, and ARNTL, transactivating both Cry1 and Nampt ovine promoter reporters. Using a combination of 5′-deletions and site-directed mutagenesis, we show NPAS4-ARNT transactivation to be codependent upon two conserved central midline elements within the Cry1 promoter. Our data thus reveal NPAS4 as a candidate immediate early-response gene in the ovine PT, driving molecular responses to melatonin.
Collapse
Affiliation(s)
- A West
- University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Parveen N, Masood A, Iftikhar N, Minhas BF, Minhas R, Nawaz U, Abbasi AA. Comparative genomics using teleost fish helps to systematically identify target gene bodies of functionally defined human enhancers. BMC Genomics 2013; 14:122. [PMID: 23432897 PMCID: PMC3599049 DOI: 10.1186/1471-2164-14-122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/19/2013] [Indexed: 12/03/2022] Open
Abstract
Background Human genome is enriched with thousands of conserved non-coding elements (CNEs). Recently, a medium throughput strategy was employed to analyze the ability of human CNEs to drive tissue specific expression during mouse embryogenesis. These data led to the establishment of publicly available genome wide catalog of functionally defined human enhancers. Scattering of enhancers over larger regions in vertebrate genomes seriously impede attempts to pinpoint their precise target genes. Such associations are prerequisite to explore the significance of this in vivo characterized catalog of human enhancers in development, disease and evolution. Results This study is an attempt to systematically identify the target gene-bodies for functionally defined human CNE-enhancers. For the purpose we adopted the orthology/paralogy mapping approach and compared the CNE induced reporter expression with reported endogenous expression pattern of neighboring genes. This procedure pinpointed specific target gene-bodies for the total of 192 human CNE-enhancers. This enables us to gauge the maximum genomic search space for enhancer hunting: 4 Mb of genomic sequence around the gene of interest (2 Mb on either side). Furthermore, we used human-rodent comparison for a set of 159 orthologous enhancer pairs to infer that the central nervous system (CNS) specific gene expression is closely associated with the cooperative interaction among at least eight distinct transcription factors: SOX5, HFH, SOX17, HNF3β, c-FOS, Tal1beta-E47S, MEF and FREAC. Conclusions In conclusion, the systematic wiring of cis-acting sites and their target gene bodies is an important step to unravel the role of in vivo characterized catalog of human enhancers in development, physiology and medicine.
Collapse
Affiliation(s)
- Nazia Parveen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | | | | | | | | | | |
Collapse
|
24
|
Leong WK, Klaric TS, Lin Y, Lewis MD, Koblar SA. Upregulation of the neuronal Per-Arnt-Sim domain protein 4 (Npas4) in the rat corticolimbic system following focal cerebral ischemia. Eur J Neurosci 2013; 37:1875-84. [PMID: 23431968 DOI: 10.1111/ejn.12163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 01/01/2023]
Abstract
The neuronal Per-Arnt-Sim domain protein 4 (Npas4) is an important transcriptional regulator of synaptic plasticity and cognition. The present study characterises the in vivo neuroanatomical expression pattern of the Npas4 protein in a rat model of focal cerebral ischemia. Animals were subjected to unilateral middle cerebral artery occlusion for 2 h, after which the spatiotemporal and neuronal profiles of Npas4 protein expression were analysed by immunohistochemistry at different time points post-reperfusion. Focal cerebral ischemia induced an early, transient and robust upregulation of Npas4 in a brain region-dependent manner involving predominantly principal neurons. Interestingly, we observed a unique differential induction of Npas4 protein expression in corticolimbic regions of the rat brain that are critically linked to cognition and emotion. These findings suggest that stroke-induced Npas4 upregulation may be involved in a transcriptional regulatory program within the corticolimbic circuitry following an ischemic insult.
Collapse
Affiliation(s)
- Wai Khay Leong
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
25
|
Yun J, Nagai T, Furukawa-Hibi Y, Kuroda K, Kaibuchi K, Greenberg ME, Yamada K. Neuronal Per Arnt Sim (PAS) domain protein 4 (NPAS4) regulates neurite outgrowth and phosphorylation of synapsin I. J Biol Chem 2012; 288:2655-64. [PMID: 23172225 DOI: 10.1074/jbc.m112.413310] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuronal Per Arnt Sim domain protein 4 (NPAS4), a brain-specific basic helix-loop-helix transcription factor, has recently been shown to regulate the development of the GABAergic inhibitory synapses and transcription program for contextual memory formation in the hippocampus. We previously reported that chronic social isolation or restriction stress in mice resulted in an impairment in memory and emotional behavior, which was associated with a decrease in Npas4 mRNA levels. In this study, we investigated the role of NPAS4 in neuronal function in vitro and in vivo. Differentiation medium-induced neurite outgrowth was inhibited in Npas4 knockdown Neuro2a cells, whereas overexpression of NPAS4 accelerated the neurite outgrowth in Neuro2a cells. Furthermore, depolarization-induced neurite outgrowth was abolished in Npas4 KO hippocampal neurons. NPAS4 overexpression increased cyclin-dependent kinase 5 (CDK5)-dependent synapsin I phosphorylation in Neuro2a cells and primary cultured hippocampal neurons. A CDK5 inhibitor, roscovitine, inhibited the neurite outgrowth and the increase in phosphorylated synapsin I (p-SYN I) levels in Npas4-overexpressed Neuro2a cells. Interaction of NPAS4 with promoters of Cdk5 and NeuN genes was demonstrated by a chromatin immunoprecipitation assay. In an in vivo study, pentylenetetrazole-induced convulsions in mice resulted in an increase in NPAS4 and p-SYN I levels in the prefrontal cortex of wild-type mice, although no changes in p-SYN I levels were observed in Npas4 knock-out mice. These results suggest that NPAS4 plays an important role in the structural and functional plasticity of neurons.
Collapse
Affiliation(s)
- Jaesuk Yun
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 466-8560, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Npas4: a neuronal transcription factor with a key role in social and cognitive functions relevant to developmental disorders. PLoS One 2012; 7:e46604. [PMID: 23029555 PMCID: PMC3460929 DOI: 10.1371/journal.pone.0046604] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/01/2012] [Indexed: 11/19/2022] Open
Abstract
Npas4 is a transcription factor, which is highly expressed in the brain and regulates the formation and maintenance of inhibitory synapses in response to excitatory synaptic activity. A deregulation of the inhibitory-excitatory balance has been associated with a variety of human developmental disorders such as schizophrenia and autism. However, not much is known about the role played by inhibitory synapses and inhibitory pathways in the development of nervous system disorders. We hypothesized that alterations in the inhibitory pathways induced by the absence of Npas4 play a major role in the expression of the symptoms observed in psychiatric disorders. To test this hypothesis we tested mice lacking the transcription factor (Npas4 knock-out mice (Npas4-KO)) in a battery of behavioral assays focusing on general activity, social behaviors, and cognitive functions. Npas4-KO mice are hyperactive in a novel environment, spend less time exploring an unfamiliar ovariectomized female, spend more time avoiding an unfamiliar male during a first encounter, show higher social dominance than their WT littermates, and display pre-pulse inhibition, working memory, long-term memory, and cognitive flexibility deficits. These behavioral deficits may replicate schizophrenia-related symptomatology such as social anxiety, hyperactivity, and cognitive and sensorimotor gating deficits. Immunohistochemistry analyses revealed that Npas4 expression is induced in the hippocampus after a social encounter and that Npas4 regulates the expression of c-Fos in the CA1 and CA3 regions of the hippocampus after a cognitive task. Our results suggest that Npas4 may play a major role in the regulation of cognitive and social functions in the brain with possible implications for developmental disorders such as schizophrenia and autism.
Collapse
|
27
|
Ploski JE, Monsey MS, Nguyen T, DiLeone RJ, Schafe GE. The neuronal PAS domain protein 4 (Npas4) is required for new and reactivated fear memories. PLoS One 2011; 6:e23760. [PMID: 21887312 PMCID: PMC3161786 DOI: 10.1371/journal.pone.0023760] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 07/24/2011] [Indexed: 11/18/2022] Open
Abstract
The Neuronal PAS domain protein 4 (Npas4) is a neuronal activity-dependent immediate early gene that has recently been identified as a transcription factor which regulates the transcription of genes that control inhibitory synapse development and synaptic plasticity. The role Npas4 in learning and memory, however, is currently unknown. Here, we systematically examine the role of Npas4 in auditory Pavlovian fear conditioning, an amygdala-dependent form of emotional learning. In our first series of experiments, we show that Npas4 mRNA and protein are regulated in the rat lateral nucleus of the amygdala (LA) in a learning-dependent manner. Further, knockdown of Npas4 protein in the LA via adeno-associated viral (AAV) mediated gene delivery of RNAi was observed to impair fear memory formation, while innate fear and the expression of fear memory were not affected. In our second series of experiments, we show that Npas4 protein is regulated in the LA by retrieval of an auditory fear memory and that knockdown of Npas4 in the LA impairs retention of a reactivated, but not a non-reactivated, fear memory. Collectively, our findings provide the first comprehensive look at the functional role of Npas4 in learning and memory.
Collapse
Affiliation(s)
- Jonathan E. Ploski
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Melissa S. Monsey
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
| | - Tam Nguyen
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
| | - Ralph J. DiLeone
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Glenn E. Schafe
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
28
|
Chronic restraint stress impairs neurogenesis and hippocampus-dependent fear memory in mice: possible involvement of a brain-specific transcription factor Npas4. J Neurochem 2010; 114:1840-51. [DOI: 10.1111/j.1471-4159.2010.06893.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Unfried C, Burbach G, Korf HW, von Gall C. Melatonin receptor 1-dependent gene expression in the mouse pars tuberalis as revealed by cDNA microarray analysis and in situ hybridization. J Pineal Res 2010; 48:148-56. [PMID: 20070488 DOI: 10.1111/j.1600-079x.2009.00738.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melatonin is an important rhythmic endocrine signal within the circadian system of mammals. The hypophyseal pars tuberalis (PT) is a major target for melatonin and shows a high density of melatonin type 1 receptors (MT1). Melatonin affects expression of clock genes in PT cells which encode for transcriptional regulators of rhythmic gene expression. In this study, microarray analysis was performed to screen for genes coding for transcriptional regulators under the control of MT1 receptors in the mouse PT. Gene expression levels were compared between melatonin-proficient mice deficient for MT1 (MT1-/-) and the corresponding wild-type (WT) during mid-subjective day (CT06, low endogenous melatonin levels) and mid-subjective night (CT18, high endogenous melatonin levels). In situ hybridization was used to validate the data obtained by microarray analysis to analyze the acute effect of daytime melatonin application on gene expression in the wild-type PT. In the wild-type PT, expression of Tim was higher during day as compared to night. These day/night differences in gene expression were not observed in the PT of MT1-/- mice, demonstrating the impact of MT1-mediated signal transduction pathway. Day-time application of melatonin acutely affected Tim and Cry1 expression but not Neurod1 and Npas4 expression. We conclude that melatonin regulates expression of genes coding for transcriptional regulators in the PT through MT1 receptors by either acute or long-term mechanisms.
Collapse
Affiliation(s)
- Claudia Unfried
- Dr Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität, Frankfurt/M, Germany
| | | | | | | |
Collapse
|
30
|
Li J, Liu ZJ, Pan YC, Liu Q, Fu X, Cooper NGF, Li Y, Qiu M, Shi T. Regulatory module network of basic/helix-loop-helix transcription factors in mouse brain. Genome Biol 2008; 8:R244. [PMID: 18021424 PMCID: PMC2258200 DOI: 10.1186/gb-2007-8-11-r244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/14/2007] [Accepted: 11/19/2007] [Indexed: 01/22/2023] Open
Abstract
A comprehensive regulatory module network of 15 bHLH transcription factors over 150 target genes in mouse brain has been constructed. Background The basic/helix-loop-helix (bHLH) proteins are important components of the transcriptional regulatory network, controlling a variety of biological processes, especially the development of the central nervous system. Until now, reports describing the regulatory network of the bHLH transcription factor (TF) family have been scarce. In order to understand the regulatory mechanisms of bHLH TFs in mouse brain, we inferred their regulatory network from genome-wide gene expression profiles with the module networks method. Results A regulatory network comprising 15 important bHLH TFs and 153 target genes was constructed. The network was divided into 28 modules based on expression profiles. A regulatory-motif search shows the complexity and diversity of the network. In addition, 26 cooperative bHLH TF pairs were also detected in the network. This cooperation suggests possible physical interactions or genetic regulation between TFs. Interestingly, some TFs in the network regulate more than one module. A novel cross-repression between Neurod6 and Hey2 was identified, which may control various functions in different brain regions. The presence of TF binding sites (TFBSs) in the promoter regions of their target genes validates more than 70% of TF-target gene pairs of the network. Literature mining provides additional support for five modules. More importantly, the regulatory relationships among selected key components are all validated in mutant mice. Conclusion Our network is reliable and very informative for understanding the role of bHLH TFs in mouse brain development and function. It provides a framework for future experimental analyses.
Collapse
Affiliation(s)
- Jing Li
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ibi D, Takuma K, Koike H, Mizoguchi H, Tsuritani K, Kuwahara Y, Kamei H, Nagai T, Yoneda Y, Nabeshima T, Yamada K. Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J Neurochem 2007; 105:921-32. [PMID: 18182044 DOI: 10.1111/j.1471-4159.2007.05207.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Experiences during brain development may influence the pathogenesis of developmental disorders. Thus, social isolation (SI) rearing after weaning is a useful animal model for studying the pathological mechanisms of such psychiatric diseases. In this study, we examined the effect of SI on neurogenesis in the hippocampal dentate gyrus (DG) relating to memory and emotion-related behaviors. When newly divided cells were labeled with 5-bromo-2'-deoxyuridine (BrdU) before SI, the number of BrdU-positive cells and the rate of differentiation into neurons were significantly decreased after 4-week SI compared with those in group-housed mice. Repeated treatment of fluoxetine prevented the SI-induced impairment of survival of newly divided cells and ameliorated spatial memory impairment and part of aggression in SI mice. Furthermore, we investigated the changes in gene expression in the DG of SI mice by using DNA microarray and real-time PCR. We finally found that SI reduced the expression of development-related genes Nurr1 and Npas4. These findings suggest that communication in juvenile is important in the survival and differentiation of newly divided cells, which may be associated with memory and aggression, and raise the possibility that the reduced expression of Nurr1 and/or Npas4 may contribute to the impairment of neurogenesis and memory and aggression induced by SI.
Collapse
Affiliation(s)
- Daisuke Ibi
- Laboratory of Neuropsychopharmacology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jiang L, Crews ST. Transcriptional specificity of Drosophila dysfusion and the control of tracheal fusion cell gene expression. J Biol Chem 2007; 282:28659-28668. [PMID: 17652079 PMCID: PMC2742625 DOI: 10.1074/jbc.m703803200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila Dysfusion basic-helix-loop-helix-PAS (bHLH-PAS) protein controls the transcription of genes that mediate tracheal fusion. Dysfusion is highly related to the mammalian Nxf protein that has been implicated in nervous system gene regulation. Toward the goal of understanding how Dysfusion controls fusion cell gene expression, the biochemical properties of Dysfusion were investigated using protein interaction experiments, cell culture-based transcription assays, and in vivo transgenic analyses. Dysfusion dimerizes with the Tango bHLH-PAS protein, and together they act as a DNA binding transcriptional activator. Dysfusion/Tango binds multiple NCGTG binding sites, with the following preference: TCGTG > GCGTG > ACGTG > CCGTG. This binding site promiscuity differs from the restricted binding site preferences of other bHLH-PAS/Tango heterodimers. However, it is identical to the binding site preferences of mammalian Nxf/Arnt, indicating that the specificity is evolutionarily conserved. Germ line transformation experiments using a fragment of the CG13196 Dysfusion target gene allowed identification of a fusion cell enhancer. Experiments in which NCGTG sites were mutated individually and in combination revealed that TCGTG sites were required for fusion cell expression but that the single ACGTG and GCGTG sites present were not. Finally, a reporter transgene containing four tandemly arranged TCGTG elements has strong expression in tracheal fusion cells. Transgenic misexpression of dysfusion further revealed that Dysfusion has the ability to activate transcription in multiple cell types, although it does this most effectively in tracheal cells and can only function at mid-embryogenesis and later.
Collapse
Affiliation(s)
- Lan Jiang
- Departments of Biochemistry and Biophysics, Biology, and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Stephen T Crews
- Departments of Biochemistry and Biophysics, Biology, and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599-3280.
| |
Collapse
|
33
|
Shamloo M, Soriano L, von Schack D, Rickhag M, Chin DJ, Gonzalez-Zulueta M, Gido G, Urfer R, Wieloch T, Nikolich K. Npas4, a novel helix-loop-helix PAS domain protein, is regulated in response to cerebral ischemia. Eur J Neurosci 2007; 24:2705-20. [PMID: 17156197 DOI: 10.1111/j.1460-9568.2006.05172.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Basic helix-loop-helix PAS domain proteins form a growing family of transcription factors. These proteins are involved in the process of adaptation to cellular stresses and environmental factors such as a change in oxygen concentration. We describe the identification and characterization of a recently cloned PAS domain protein termed Npas4 in ischemic rat brain. Using gene expression profiling following middle cerebral artery occlusion, we showed that the Npas4 mRNA is differentially expressed in ischemic tissue. The full-length gene was cloned from rat brain and its spatial and temporal expression characterized with in situ hybridization and Northern blotting. The Npas4 mRNA is specifically expressed in the brain and is highly up-regulated in ischemic tissues following both focal and global cerebral ischemic insults. Immunohistochemistry revealed a strong expression in the limbic system and thalamus, as well as in layers 3 and 5 in the cortex of the unchallenged brain. When overexpressed in HEK 293 cells, Npas4 appears as a protein of approximately 100 kDa. In brain samples, however, in addition to the 100 kDa band a specific 200 kDa immunoreactive band was also detected. Ischemic challenge lead to a decrease in the 200 kDa form and a simultaneous increase in the 100 kDa immunoreactivity. This could indicate a novel regulatory mechanism for activation and/or deactivation of this protein in response to ischemic brain injury.
Collapse
Affiliation(s)
- Mehrdad Shamloo
- AGY Therapeutics, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hester I, McKee S, Pelletier P, Thompson C, Storbeck C, Mears A, Schulz JB, Hakim AA, Sabourin LA. Transient expression of Nxf, a bHLH-PAS transactivator induced by neuronal preconditioning, confers neuroprotection in cultured cells. Brain Res 2007; 1135:1-11. [PMID: 17214977 DOI: 10.1016/j.brainres.2006.11.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 11/09/2006] [Accepted: 11/28/2006] [Indexed: 11/30/2022]
Abstract
Cortical spreading depression (CSD) induces waves of neuronal depolarization that confer neuroprotection to subsequent ischemic events in the rat brain. To gain insights into the molecular mechanisms elicited by CSD, we used representational difference analysis (RDA) to identify mRNAs induced by potassium depolarization in vivo. Using this approach, we have isolated a cDNA encoding the SIM2-related bHLH-PAS protein Nxf. Our results confirm that Nxf mRNA and protein are rapidly and transiently expressed in cortical neurons following CSD. Reporter assays show that Nxf is a transcriptional activator that associates with the bHLH-PAS sub-class co-factor ARNT2. Adenovirus-mediated expression of epitope-tagged Nxf results in cell death and the direct activation of the Bax gene in cultured cells. However, RNA interference studies show that endogenous Nxf is required for optimal neuroprotection by preconditioning in cultured F-11 cells. Together, our data indicate that Nxf is a novel bHLH-PAS transactivator transiently induced by preconditioning and that its sustained expression is detrimental. The identification of Nxf may represent an important step in our understanding of the molecular mechanisms of brain preconditioning and injury.
Collapse
Affiliation(s)
- Ian Hester
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jiang L, Crews ST. Dysfusion transcriptional control of Drosophila tracheal migration, adhesion, and fusion. Mol Cell Biol 2006; 26:6547-56. [PMID: 16914738 PMCID: PMC1592841 DOI: 10.1128/mcb.00284-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Drosophila dysfusion basic-helix-loop-helix-PAS transcription factor gene is expressed in specialized fusion cells that reside at the tips of migrating tracheal branches. dysfusion mutants were isolated, and genetic analysis of live embryos revealed that mutant tracheal branches migrate to close proximity but fail to recognize and adhere to each other. Misexpression of dysfusion throughout the trachea further indicated that dysfusion has the ability to both inhibit cell migration and promote ectopic tracheal fusion. Nineteen genes whose expression either increases or decreases in fusion cells during development were analyzed in dysfusion mutant embryos. dysfusion upregulates the levels of four genes, including the shotgun cell adhesion protein gene and the zona pellucida family transmembrane protein gene, CG13196. Misexpression experiments with CG13196 result in ectopic tracheal fusion events, suggesting that it also encodes a cell adhesion protein. Another target gene of dysfusion is members only, which inhibits protein nuclear export and influences tracheal fusion. dysfusion also indirectly downregulates protein levels of Trachealess, an important regulator of tracheal development. These results indicate that fusion cells undergo dynamic changes in gene expression as they switch from migratory to fusion modes and that dysfusion regulates a discrete, but important, set of these genes.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
36
|
Hahn ME, Karchner SI, Evans BR, Franks DG, Merson RR, Lapseritis JM. Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2006; 305:693-706. [PMID: 16902966 DOI: 10.1002/jez.a.323] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ligand-activated receptors are well-known targets of environmental chemicals that disrupt endocrine signaling. Genomic approaches are providing new opportunities to understand the comparative biology and molecular evolution of these receptors. One example of this is the aryl hydrocarbon receptor (AHR), a basic-helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) transcription factor through which planar aromatic hydrocarbons cause altered gene expression and toxicity. In contrast to humans and other mammals, which possess a single AHR, teleosts such as the Atlantic killifish (Fundulus heteroclitus) have at least two AHRs (AHR1 and AHR2). Analysis of sequenced genomes has revealed additional, unexpected AHR diversity in non-mammalian vertebrates, including the chicken Gallus gallus (three predicted AHR genes), bony fishes such as the pufferfish Takifugu (formerly Fugu) rubripes (five AHR genes) and zebrafish Danio rerio (three AHR genes), and cartilaginous fishes such as the spiny dogfish Squalus acanthias (three AHR genes). In contrast, invertebrates appear to possess single AHRs that do not bind typical ligands of vertebrate AHRs. We suggest that AHR diversity in vertebrates arose through both gene and whole-genome duplications combined with lineage-specific gene loss, and that sensitivity to the developmental toxicity of planar aromatic hydrocarbons may have had its origin in the evolution of the ligand-binding capacity of the AHR in the chordate lineage. Comparative molecular and genomic studies are providing new insights into AHR diversity and function in non-mammalian species, revealing additional complexity in mechanisms by which environmental chemicals interfere with receptor-dependent signaling.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|