1
|
Boumil EF, Vohnoutka R, Lee S, Pant H, Shea TB. Assembly and turnover of neurofilaments in growing axonal neurites. Biol Open 2018; 7:bio.028795. [PMID: 29158321 PMCID: PMC5829495 DOI: 10.1242/bio.028795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurofilaments (NFs) are thought to provide stability to the axon. We examined NF dynamics within axonal neurites of NB2a/d1 neuroblastoma by transient transfection with green fluorescent protein-tagged NF-heavy (GFP-H) under the control of a tetracycline-inducible promoter. Immunofluorescent and biochemical analyses demonstrated that GFP-H expressed early during neurite outgrowth associated with a population of centrally-situated, highly-phosphorylated crosslinked NFs along the length of axonal neurites (‘bundled NFs’). By contrast, GFP-H expressed after considerable neurite outgrowth displayed markedly reduced association with bundled NFs and was instead more evenly distributed throughout the axon. This differential localization was maintained for up to 2 weeks in culture. Once considerable neurite outgrowth had progressed, GFP that had previously associated with the NF bundle during early expression was irreversibly depleted by photobleaching. Cessation of expression allowed monitoring of NF turnover. GFP-H associated bundled NFs underwent slower decay than GFP-H associated with surrounding, less-phosphorylated NFs. Notably, GFP associated with bundled NFs underwent similar decay rates within the core and edges of this bundle. These results are consistent with previous demonstration of a resident NF population within axonal neurites, but suggest that this population is more dynamic than previously considered. Summary: Immunofluorescent and radiolabel analyses demonstrate that neurofilaments establish a resident population within growing axonal neurites that undergoes exchange with a surrounding, transporting pool.
Collapse
Affiliation(s)
- Edward F Boumil
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Rishel Vohnoutka
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Sangmook Lee
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harish Pant
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 , USA
| | - Thomas B Shea
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
2
|
Gibbs KL, Greensmith L, Schiavo G. Regulation of Axonal Transport by Protein Kinases. Trends Biochem Sci 2016; 40:597-610. [PMID: 26410600 DOI: 10.1016/j.tibs.2015.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
The intracellular transport of organelles, proteins, lipids, and RNA along the axon is essential for neuronal function and survival. This process, called axonal transport, is mediated by two classes of ATP-dependent motors, kinesins, and cytoplasmic dynein, which carry their cargoes along microtubule tracks. Protein kinases regulate axonal transport through direct phosphorylation of motors, adapter proteins, and cargoes, and indirectly through modification of the microtubule network. The misregulation of axonal transport by protein kinases has been implicated in the pathogenesis of several nervous system disorders. Here, we review the role of protein kinases acting directly on axonal transport and discuss how their deregulation affects neuronal function, paving the way for the exploitation of these enzymes as novel drug targets.
Collapse
Affiliation(s)
- Katherine L Gibbs
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK.
| |
Collapse
|
3
|
Lee S, Pant HC, Shea TB. Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics. J Cell Sci 2014; 127:4064-77. [PMID: 25015294 DOI: 10.1242/jcs.153346] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-terminal neurofilament phosphorylation mediates cation-dependent self-association leading to neurofilament incorporation into the stationary axonal cytoskeleton. Multiple kinases phosphorylate the C-terminal domains of the heavy neurofilament subunit (NF-H), including cyclin-dependent protein kinase 5 (CDK5), mitogen-activated protein kinases (MAPKs), casein kinase 1 and 2 (CK1 and CK2) and glycogen synthase kinase 3β (GSK3β). The respective contributions of these kinases have been confounded because they phosphorylate multiple substrates in addition to neurofilaments and display extensive interaction. Herein, differentiated NB2a/d1 cells were transfected with constructs expressing GFP-tagged NF-H, isolated NF-H sidearms and NF-H lacking the distal-most 187 amino acids. Cultures were treated with roscovitine, PD98059, Li(+), D4476, tetrabromobenzotriazole and calyculin, which are active against CDK5, MKK1 (also known as MAP2K1), GSK3β, CK1, CK2 and protein phosphatase 1 (PP1), respectively. Sequential phosphorylation by CDK5 and GSK3β mediated the neurofilament-neurofilament associations. The MAPK pathway (i.e. MKK1 to ERK1/2) was found to downregulate GSK3β, and CK1 activated PP1, both of which promoted axonal transport and restricted neurofilament-neurofilament associations to axonal neurites. The MAPK pathway and CDK5, but not CK1 and GSK3β, inhibited neurofilament proteolysis. These findings indicate that phosphorylation of neurofilaments by the proline-directed MAPK pathway and CDK5 counterbalance the impact of phosphorylation of neurofilaments by the non-proline-directed CK1 and GSK3β.
Collapse
Affiliation(s)
- Sangmook Lee
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harish C Pant
- Cytoskeletal Protein Regulation Section, NIH, NINDS, Bethesda, MD 20892, USA
| | - Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
4
|
Nikitina LS, Dorofeeva NA, Kirillova OD, Korotkov AA, Glazova M, Chernigovskaya EV. Role of the ERK signaling pathway in regulating vasopressin secretion in dehydrated rats. Biotech Histochem 2013; 89:199-208. [DOI: 10.3109/10520295.2013.832799] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Abstract
The purpose of this paper is to develop a model capable of simulating traffic jams in slow axonal transport. Slowing of slow axonal transport is an early sign of some neurodegenerative diseases. Axonal swellings observed near the end stage of such diseases may be an indication of traffic jams developing in axons that cause the slowing down of slow axonal transport. Traffic jams may result from misregulation of microtubule-associated proteins caused by an imbalance in intracellular signaling or by mutations of these proteins. This misregulation leads to a decay of microtubule tracks in axons, effectively reducing the number of "railway tracks" available for molecular-motor-assisted transport of intracellular organelles. In this paper, the decay of microtubule tracks is modeled by a reduction of the number density of microtubules in the central part of the axon. Simulation results indicate that the model predicts the build-up of the bell-shaped concentration wave, as the wave approaches the bottleneck (blockage) region. This increase in concentration will likely plug the bottleneck region resulting in a traffic jam that would hinder the slow axonal transport.
Collapse
Affiliation(s)
- A. V. KUZNETSOV
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910, USA
| | - A. A. AVRAMENKO
- Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine
| | - D. G. BLINOV
- Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine
| |
Collapse
|
6
|
Mungenast AE, Tsai LH. Addressing the complex etiology of Alzheimer’s disease: the role of p25/Cdk5. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by the progressive loss of forebrain neurons and the deterioration of learning and memory. Therapies for AD have primarily focused upon either the inhibition of amyloid synthesis or its deposition in the brain, but clinical testing to date has not yet found an effective amelioration of cognitive symptoms. Synaptic loss closely correlates with the degree of dementia in AD patients. However, mouse AD models that target the amyloid-β pathway generally do not exhibit a profound loss of synapses, despite extensive synaptic dysfunction. The increased generation of p25, an activator of the cyclin-dependent kinase 5 (Cdk5) has been found in both human patients and mouse models of neurodegeneration. The current work reviews our knowledge, to date, on the role of p25/Cdk5 in Alzheimer’s disease, with a focus upon the interaction of amyloid-β and p25/Cdk5 in synaptic dysfunction and neuronal loss.
Collapse
Affiliation(s)
- Alison E Mungenast
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Lee S, Sunil N, Shea TB. C-terminal neurofilament phosphorylation fosters neurofilament-neurofilament associations that compete with axonal transport. Cytoskeleton (Hoboken) 2010; 68:8-17. [PMID: 20862740 DOI: 10.1002/cm.20488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 09/16/2010] [Indexed: 12/20/2022]
Abstract
Neurofilaments (NFs) associate with each other and with other cytoskeletal elements to form a lattice that supports the mature axon. Phosphorylation contributes to formation of this structure by fostering cation-dependent interactions among NF sidearms. By inducing NF bundling, phosphorylation impedes their axonal transport. To examine the impact of the known NF kinase cdk5 on these phenomena, transfected cells with constructs expressing GFP-tagged NF-H sidearms (lacking the rod domain to preclude assembly) with and without site-directed mutagenesis of 7 cdk5 consensus sites, and monitored the impact on NF transport and association with the axonal NF bundle. These mutations did not alter transport but pseudo-phosphorylated mutants displayed a greater association with axonal NF bundles. By contrast, these same mutations in full-length NF-H altered NF transport as well as bundling. Since isolated sidearms cannot assemble, they can only interact with NFs via a single sidearm-sidearm interaction, while assembled NFs can form multiple such interactions. These finding suggest that individual sidearm-sidearm interactions are dynamic and do not persist long enough to slow NF transport, and that bundle formation and maintenance depends upon both the long half-life of NF polymers and the establishment of multiple phosphorylation-dependent sidearm-mediated interactions among NFs.
Collapse
Affiliation(s)
- Sangmook Lee
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | | | | |
Collapse
|
8
|
Morel M, Authelet M, Dedecker R, Brion J. Glycogen synthase kinase-3β and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons. Neuroscience 2010; 167:1044-56. [DOI: 10.1016/j.neuroscience.2010.02.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 01/01/2023]
|
9
|
Increased expression of cdk5/p25 in N2a cells leads to hyperphosphorylation and impaired axonal transport of neurofilament proteins. Life Sci 2010; 86:532-7. [DOI: 10.1016/j.lfs.2010.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/02/2010] [Accepted: 02/06/2010] [Indexed: 11/21/2022]
|
10
|
Kushkuley J, Chan WKH, Lee S, Eyer J, Leterrier JF, Letournel F, Shea TB. Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules. J Cell Sci 2009; 122:3579-86. [PMID: 19737816 DOI: 10.1242/jcs.051318] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The phosphorylation of neurofilaments (NFs) has long been considered to regulate their axonal transport rate and in doing so to provide stability to mature axons. Axons contain a centrally situated ;bundle' of closely opposed phospho-NFs that display a high degree of NF-NF associations and phospho-epitopes, surrounded by less phosphorylated ;individual' NFs that are often associated with kinesin and microtubules (MTs). Bundled NFs transport substantially slower than the surrounding individual NFs and might represent a resident population that stabilizes axons and undergoes replacement by individual NFs. To examine this possibility, fractions enriched in bundled NFs and individual NFs were generated from mice and NB2a/d1 cells by sedimentation of cytoskeletons over a sucrose cushion. More kinesin was recovered within individual versus bundled NF fractions. Individual but not bundled NFs aligned with purified MTs under cell-free conditions. The percentage of NFs that aligned with MTs was increased by the addition of kinesin, and inhibited by anti-kinesin antibodies. Bundles dissociated following incubation with EGTA or alkaline phosphatase, generating individual NFs that retained or were depleted of phospho-epitopes, respectively. These dissociated NFs aligned with MTs at a level identical to those originally isolated as individual NFs regardless of phosphorylation state. EGTA-mediated dissociation of bundles was prevented and reversed by excess Ca(2+), whereas individual NFs did not associate in the presence of excess Ca(2+). These findings confirm that bundling competes with NF-MT association, and provide a mechanism by which C-terminal NF phosphorylation might indirectly contribute to the observed slowing in axonal transport of phospho-NFs.
Collapse
Affiliation(s)
- Jacob Kushkuley
- Center for Cellular Neurobiology and Neurodegeneration Research, Departments of Biological Sciences and Biochemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Shea TB, Lee S, Kushkuley J, Dubey M, Chan WKH. Neurofilament dynamics: a tug of war by microtubule motors. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structural support for axons, which can consist of volumes thousands of times larger than the neuronal perikaryon, is provided in part by neurofilaments (NFs), the major fibrous constituent of the axonal cytoskeleton. Most NFs undergo anterograde transport (towards the synapse or growth cone), while a few undergo retrograde transport (back towards the perikaryon). Some NFs exhibit an extended residence time along axons, which allows NFs to provide structural support to the axon yet minimizes NF turnover, which would otherwise impart a prohibitive metabolic burden upon the neuron. Herein, we explore known and hypothesized roles for microtubule motors in transport and distribution of NFs along axons. We present evidence that those NFs that display extended residence along axons are critically dependent upon surrounding microtubules, and that simultaneous interaction with multiple microtubule motors provides the architectural force regulating their distribution.
Collapse
Affiliation(s)
- Thomas B Shea
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Sangmook Lee
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Jacob Kushkuley
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Maya Dubey
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Walter K-H Chan
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
12
|
Cheung YT, Lau WKW, Yu MS, Lai CSW, Yeung SC, So KF, Chang RCC. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 2009; 30:127-35. [DOI: 10.1016/j.neuro.2008.11.001] [Citation(s) in RCA: 432] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 11/24/2022]
|
13
|
Cuchillo-Ibanez I, Seereeram A, Byers HL, Leung KY, Ward MA, Anderton BH, Hanger DP. Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J 2008; 22:3186-95. [PMID: 18511549 DOI: 10.1096/fj.08-109181] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Defective axonal transport has been proposed as an underlying mechanism that may give rise to neurodegeneration. We investigated the effect of phosphorylation on the axonal transport of tau, a neuronal protein that stabilizes microtubules and is hyperphosphorylated and mislocalized in Alzheimer's disease. We report here that specific inhibition of glycogen synthase kinase-3 (GSK-3) reduces tau phosphorylation and significantly decreases the overall rate of axonal transport of tau in rat cortical neurons. Tau mutants, with serine/threonine targets of GSK-3 mutated to glutamate to mimic a permanent state of phosphorylation, were transported at a significantly increased rate compared to wild-type tau. Conversely, tau mutants, in which alanine replaced serine/threonine to mimic permanent dephosphorylation, were transported at a decreased rate compared to wild-type tau. We also found that tau interacts with the light chain of kinesin-1 and that this is dependent on the phosphorylation state of tau. Tau phosphorylation by GSK-3 increased binding, and dephosphorylated tau exhibited a reduced association with kinesin-1. We conclude that GSK-3 phosphorylation of tau modulates its axonal transport by regulating binding to kinesin-1. Hyperphosphorylated tau in Alzheimer's disease appearing first in distal portions of axons may result from aberrant axonal transport of phosphorylated tau reported here.
Collapse
Affiliation(s)
- Inmaculada Cuchillo-Ibanez
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (P037), De Crespigny Park, SE5 8AF London, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kanungo J, Zheng YL, Amin ND, Pant HC. The Notch signaling inhibitor DAPT down-regulates cdk5 activity and modulates the distribution of neuronal cytoskeletal proteins. J Neurochem 2008; 106:2236-48. [PMID: 18662245 PMCID: PMC2631422 DOI: 10.1111/j.1471-4159.2008.05551.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Notch signaling is critical for the development of the nervous system. Cyclin-dependent kinase 5 (cdk5) is a neuronal kinase involved in neuronal development and phosphorylates a number of neuronal cytoskeletal proteins. To determine the relationship between Notch and cdk5 signaling, we tested the effects of the Notch inhibitor, N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT) on cdk5 expression, activity and cytoskeletal protein distribution in the rat cortical neurons in primary cultures. Neurons treated with 10 microM DAPT showed attenuated cdk5 activity in spite of an up-regulation of cdk5 protein level, consistent with a phenomenon reported in the cdk5 transgenic mice. Immunoblot and immunofluorescence analyses showed an increased level of cdk5, but not p35. Phospho-tau and phospho-neurofilament showed a shift from axons to cell bodies in DAPT-treated cells. DAPT-induced attenuation of cdk5 activity was restored by over-expression of p35 indicating that it interacted with cdk5 and up-regulated nascent cdk5 activity. p35 over-expression also rescued DAPT-induced translocation of phospho-tau and phospho-neurofilament. Immunoprecipitation followed by immunoblotting demonstrated that DAPT does not disrupt cdk5 and p35 interaction. Moreover, DAPT up-regulated neurogenin that is negatively regulated by Notch, and down-regulated Hes1, a downstream target of Notch, suggesting that Notch signaling in the cortical neurons was disrupted. Semi-quantitative and quantitative RT-PCR analyses confirmed that DAPT up-regulated cdk5 expression at the transcriptional level. These results establish a link between Notch signaling and cdk5 expression regulating neuronal cytoskeletal protein dynamics.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
15
|
Cagnon L, Braissant O. Role of caspases, calpain and cdk5 in ammonia-induced cell death in developing brain cells. Neurobiol Dis 2008; 32:281-92. [PMID: 18722528 DOI: 10.1016/j.nbd.2008.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/23/2008] [Accepted: 07/14/2008] [Indexed: 11/26/2022] Open
Abstract
Hyperammonemia in neonates and infants causes irreversible damages in the developing CNS due to brain cell loss. Elucidating the mechanisms triggering ammonia-induced cell death in CNS is necessary for the development of neuroprotective strategies. We used reaggregated developing brain cell cultures derived from fetal rat telencephalon exposed to ammonia as an experimental model. Ammonia induced neuronal and oligodendroglial death, triggered apoptosis and activated caspases and calpain. Probably due to calpain activation, ammonia caused the cleavage of the cyclin-dependent kinase 5 activator, p35, to p25, the cdk5/p25 complex being known to lead to neurodegeneration. Roscovitine, a cdk5 inhibitor, protected neurons from ammonia-induced cell death. However, roscovitine also impaired axonal growth, probably through inhibition of the remaining cdk5/p35 activity, which is involved in neurite outgrowth. Thus, cdk5 appears as a promising therapeutic target for treating hyperammonemic newborns and infants, especially if one develops specific cdk5/p25 inhibitors.
Collapse
Affiliation(s)
- Laurène Cagnon
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | | |
Collapse
|
16
|
Dubey M, Chaudhury P, Kabiru H, Shea TB. Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: Neurofilaments attenuate tau-mediated neurite instability. ACTA ACUST UNITED AC 2008; 65:89-99. [DOI: 10.1002/cm.20243] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
DeFuria J, Shea TB. Arsenic inhibits neurofilament transport and induces perikaryal accumulation of phosphorylated neurofilaments: Roles of JNK and GSK-3β. Brain Res 2007; 1181:74-82. [DOI: 10.1016/j.brainres.2007.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/04/2007] [Accepted: 04/07/2007] [Indexed: 11/15/2022]
|
18
|
DeFuria J, Chen P, Shea TB. Divergent effects of the MEKK-1/JNK pathway on NB2a/d1 differentiation: Some activity is required for outgrowth and stabilization of neurites but overactivation inhibits both phenomena. Brain Res 2006; 1123:20-6. [PMID: 17078934 DOI: 10.1016/j.brainres.2006.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 11/21/2022]
Abstract
c-Jun N-terminal kinase (JNK), along with its upstream activator MEKK-1, is typically thought of as a stress-activated kinase that mediates apoptosis. However, additional studies indicate that the MEKK-1/JNK pathway mediates critical aspects of neuronal survival and differentiation. Herein, we demonstrate that transfection of differentiated NB2a/d1 cells with a construct expression constitutively activated (ca) MEKK-1 increases levels of phospho-dependent neurofilament (NF) immunoreactivity within perikarya, while expression of a dominant-negative (dn) form of MEKK-1 decreases it. Steady-state levels of perikaryal phospho-NF immunoreactivity are reduced and the increase resulting from expression of caMEKK-1 is prevented, by the JNK inhibitor SP600125, suggesting that JNK is a major downstream effector of MEKK-1 on NF phosphorylation. Unexpectedly, both caMEKK-1 and dnMEKK-1 inhibited neuritogenesis as well as translocation of NFs into newly elaborated neurites. The JNK inhibitor SP600125 also inhibited NF transport in a dose-dependent manner. caMEKK-1 also prevented the increase in NF transport otherwise mediated by MAP kinase. Finally, both caMEKK-1 and dnMEKK-1 prevented initial neuritogenesis. These findings indicate that the MEKK-1/JNK pathway regulates critical aspects of initial outgrowth, and subsequent stabilization of axonal neurites.
Collapse
Affiliation(s)
- Jason DeFuria
- Departments of Biological Sciences and Biochemistry, Center Cell Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, Lowell, MA 01854, USA
| | | | | |
Collapse
|
19
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase with a multitude of functions. Although Cdk5 is widely expressed, it has been studied most extensively in neurons. Since its initial characterization, the fundamental contribution of Cdk5 to an impressive range of neuronal processes has become clear. These phenomena include neural development, dopaminergic function and neurodegeneration. Data from different fields have recently converged to provide evidence for the participation of Cdk5 in synaptic plasticity, learning and memory. In this review, we consider recent data implicating Cdk5 in molecular and cellular mechanisms underlying synaptic plasticity. We relate these findings to its emerging role in learning and memory. Particular attention is paid to the activation of Cdk5 by p25, which enhances hippocampal synaptic plasticity and memory, and suggests formation of p25 as a physiological process regulating synaptic plasticity and memory.
Collapse
Affiliation(s)
- Marco Angelo
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | |
Collapse
|