1
|
Rosa M, Bech-Serra JJ, Canals F, Zajac JM, Talmont F, Arsequell G, Valencia G. Optimized Proteomic Mass Spectrometry Characterization of Recombinant Human μ-Opioid Receptor Functionally Expressed in Pichia pastoris Cell Lines. J Proteome Res 2015; 14:3162-73. [PMID: 26090583 DOI: 10.1021/acs.jproteome.5b00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human μ-opioid receptor (hMOR) is a class-A G-protein-coupled receptor (GPCR), a prime therapeutic target for the management of moderate and severe pain. A chimeric form of the receptor has been cocrystallized with an opioid antagonist and resolved by X-ray diffraction; however, further direct structural analysis is still required to identify the active form of the receptor to facilitate the rational design of hMOR-selective agonist and antagonists with therapeutic potential. Toward this goal and in spite of the intrinsic difficulties posed by the highly hydrophobic transmembrane motives of hMOR, we have comprehensively characterized by mass spectrometry (MS) analysis the primary sequence of the functional hMOR. Recombinant hMOR was overexpressed as a C-terminal c-myc and 6-his tagged protein using an optimized expression procedure in Pichia pastoris cells. After membrane solubilization and metal-affinity chromatography purification, a procedure was devised to enhance the concentration of the receptor. Subsequent combinations of in-solution and in-gel digestions using either trypsin, chymotrypsin, or proteinase K, followed by matrix-assisted laser desorption ionization time-of-flight MS or nanoliquid chromatography coupled with tandem MS analyses afforded an overall sequence coverage of up to >80%, a level of description first attained for an opioid receptor and one of the six such high-coverage MS-based analyses of any GPCR.
Collapse
Affiliation(s)
- Mònica Rosa
- †Unit of Glycoconjugate Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), 08034 Barcelona, Spain
| | - Joan Josep Bech-Serra
- ‡Proteomics Laboratory, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, ProteoRed ISCIII, 08035 Barcelona, Spain
| | - Francesc Canals
- ‡Proteomics Laboratory, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, ProteoRed ISCIII, 08035 Barcelona, Spain
| | - Jean Marie Zajac
- §Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Franck Talmont
- §Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Gemma Arsequell
- †Unit of Glycoconjugate Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), 08034 Barcelona, Spain
| | - Gregorio Valencia
- †Unit of Glycoconjugate Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
2
|
Mundra JJ, Terskiy A, Howells RD. Naltrindole inhibits human multiple myeloma cell proliferation in vitro and in a murine xenograft model in vivo. J Pharmacol Exp Ther 2012; 342:273-87. [PMID: 22537770 PMCID: PMC3400794 DOI: 10.1124/jpet.112.194159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023] Open
Abstract
It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrindole, a nonpeptidic δ-opioid receptor-selective antagonist; therefore, we hypothesized that human multiple myeloma (MM) would be a valuable model for studying potential antineoplastic properties of naltrindole. [(3)H]naltrindole exhibited saturable, low-affinity binding to intact human MM cells; however, the pharmacological profile of the binding site differed considerably from the properties of δ-, κ-, and μ-opioid receptors, and opioid receptor mRNA was not detected in MM cells by reverse transcriptase-polymerase chain reaction. Naltrindole inhibited the proliferation of cultured human U266 MM cells in a time- and dose-dependent manner with an EC(50) of 16 μM. The naltrindole-induced inhibition of U266 cell proliferation was not blocked by a 10-fold molar excess of naltrexone, a nonselective opioid antagonist. Additive inhibition of MM cell proliferation was observed when using a combination of naltrindole with the histone deacetylase inhibitor sodium valproate, the proteasome inhibitor bortezomib, the glucocorticoid receptor agonist dexamethasone, and the HMG CoA reductase inhibitor simvastatin. Treatment of U266 cells with naltrindole significantly decreased the level of the active, phosphorylated form of the kinases, extracellular signal-regulated kinase and Akt, which may be related to its antiproliferative activity. The antiproliferative activity of naltrindole toward MM cells was maintained in cocultures of MM and bone marrow-derived stromal cells, mimicking the bone marrow microenvironment. In vivo, naltrindole significantly decreased tumor cell volumes in human MM cell xenografts in severe combined immunodeficient mice. We hypothesize that naltrindole inhibits the proliferation of MM cells through a nonopioid receptor-dependent mechanism.
Collapse
Affiliation(s)
- Jyoti Joshi Mundra
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey, USA
| | | | | |
Collapse
|
3
|
Expression and localization of opioid receptors during the maturation of human oocytes. Reprod Biomed Online 2012; 24:550-7. [DOI: 10.1016/j.rbmo.2012.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/10/2012] [Accepted: 02/15/2012] [Indexed: 11/23/2022]
|
4
|
Reyes G, Nivillac NMI, Chalsev M, Coe IR. Analysis of recombinant tagged equilibrative nucleoside transporter 1 (ENT1) expressed in E. coli. Biochem Cell Biol 2011; 89:246-55. [PMID: 21455275 DOI: 10.1139/o10-155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nucleoside transporters (NTs) are integral membrane proteins necessary for the cellular entry of nucleoside analog drugs used in chemotherapeutic treatment of conditions such as cancer and viral or parasitic infections. NTs are also the targets of certain drugs used in the treatment of various cardiovascular conditions. Because of the importance of NTs in drug uptake, determination of the three-dimensional structure of these proteins, particularly hENT1, has the potential to improve these treatments through structure-based design of more specifically targeted and transported drugs. In this paper, we use NMR spectroscopy to investigate the structure of the large intracellular loop between transmembrane domains 6 and 7 and we also describe a method for the successful overexpression of full-length hENT1 in a bacterial system. Recombinant tandem histidine-affinity (HAT) and 3×FLAG tagged hENT1 was overexpressed in E. coli, affinity purified, and functionally characterized by nitrobenzylthioinosine (NBTI) binding. Anti-3×FLAG immunodetection confirmed the expression of N-HAT-3×FLAG-hENT1, while increased NBTI binding (3.2-fold compared with controls) confirmed the conformational integrity of the recombinant hENT1 within the bacterial inner membrane. Yields of recombinant hENT1 using this approach were ~15 µg/L of bacterial culture and this approach provides a basis for large-scale production of protein for a variety of purposes.
Collapse
Affiliation(s)
- German Reyes
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | | |
Collapse
|
5
|
Albrizio M, Lacalandra GM, Micera E, Guaricci AC, Nicassio M, Zarrilli A. Delta opioid receptor on equine sperm cells: subcellular localization and involvement in sperm motility analyzed by computer assisted sperm analyzer (CASA). Reprod Biol Endocrinol 2010; 8:78. [PMID: 20579355 PMCID: PMC2901311 DOI: 10.1186/1477-7827-8-78] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Opioid receptors and endogenous opioid peptides act not only in the control of nociceptive pathways, indeed several reports demonstrate the effects of opiates on sperm cell motility and morphology suggesting the importance of these receptors in the modulation of reproduction in mammals. In this study we investigated the expression of delta opioid receptors on equine spermatozoa by western blot/indirect immunofluorescence and its relationship with sperm cell physiology. METHODS We analyzed viability, motility, capacitation, acrosome reaction and mitochondrial activity in the presence of naltrindole and DPDPE by means of a computer assisted sperm analyzer and a fluorescent confocal microscope. The evaluation of viability, capacitation and acrosome reaction was carried out by the double CTC/Hoechst staining, whereas mitochondrial activity was assessed by means of MitoTracker Orange dye. RESULTS We showed that in equine sperm cells, delta opioid receptor is expressed as a doublet of 65 and 50 kDa molecular mass and is localized in the mid piece of tail; we also demonstrated that naltrindole, a delta opioid receptor antagonist, could be utilized in modulating several physiological parameters of the equine spermatozoon in a dose-dependent way. We also found that low concentrations of the antagonist increase sperm motility whereas high concentrations show the opposite effect. Moreover low concentrations hamper capacitation, acrosome reaction and viability even if the percentage of cells with active mitochondria seems to be increased; the opposite effect is exerted at high concentrations. We have also observed that the delta opioid receptor agonist DPDPE is scarcely involved in affecting the same parameters at the employed concentrations. CONCLUSIONS The results described in this paper add new important details in the comprehension of the mammalian sperm physiology and suggest new insights for improving reproduction and for optimizing equine breeding.
Collapse
Affiliation(s)
- Maria Albrizio
- Department of Animal Production, Faculty of Veterinary Medicine, University of Bari, I-70010, Valenzano (BA), Italy
| | | | | | | | | | | |
Collapse
|
6
|
Reyes G, Naydenova Z, Abdulla P, Chalsev M, Villani A, Rose JB, Chaudary N, DeSouza L, Siu KWM, Coe IR. Characterization of mammalian equilibrative nucleoside transporters (ENTs) by mass spectrometry. Protein Expr Purif 2010; 73:1-9. [PMID: 20399865 DOI: 10.1016/j.pep.2010.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins that facilitate the movement of nucleosides and hydrophilic nucleoside analog (NA) drugs across cell membranes. ENTs are also targets for cardioprotectant drugs, which block re-uptake of the purine nucleoside adenosine, thereby enhancing purinergic receptor signaling pathways. ENTs are therefore important contributors to drug bioavailability and efficacy. Despite this important clinical role, very little is known about the structure and regulation of ENTs. Biochemical and structural studies on ENT proteins have been limited by their low endogenous expression levels, hydrophobicity and labile nature. To address these issues, we developed an approach whereby tagged mammalian ENT1 protein was over-expressed in mammalian cell lines, confirmed to be functional and isolated by affinity purification to sufficient levels to be analyzed using MALDI-TOF and tandem MS mass spectrometry. This proteomic approach will allow for a more detailed analysis of the structure, function and regulation of ENTs in the future.
Collapse
Affiliation(s)
- German Reyes
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wannemacher KM, Terskiy A, Bian S, Yadav PN, Li H, Howells RD. Purification and mass spectrometric analysis of the kappa opioid receptor. Brain Res 2008; 1230:13-26. [PMID: 18656460 PMCID: PMC2570952 DOI: 10.1016/j.brainres.2008.06.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/18/2008] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
Abstract
A clonal human embryonic kidney (HEK) 293 cell line was established that stably expressed the rat kappa-opioid receptor (rKOR) with a FLAG epitope at the amino terminus. The Kd for [3H]diprenorphine was 1.1+/-0.2 nM, and the Bmax was 2.6+/-0.4 pmol/mg. Dynorphin A (1-13), U69,593 and naloxone competitively inhibited [3H]diprenorphine binding with Ki values of 2.0, 18 and 18 nM, respectively, in good agreement with previously reported affinities for the unmodified receptor. U69,593 stimulated [35S]GTPgammaS binding in a concentration-dependent manner and caused phosphorylation of mitogen-activated protein (MAP) kinase, indicating that the activated epitope-tagged receptor triggered appropriate signaling pathways. Immunoblot analysis demonstrated that two immunoreactive receptor species with apparent molecular masses of 42 and 52 kDa were expressed. Previous studies indicated that the 42 kDa protein was localized intracellularly and was a precursor of the 52 kDa receptor, which was present at the cell surface. rKOR was extracted from transfected HEK 293 cell membranes with n-dodecyl-beta-D-maltopyranoside. Sequential use of wheat germ agglutinin chromatography, Sephacryl S300 gel filtration chromatography, anti-FLAG immunoaffinity chromatography and SDS/PAGE permitted purification of the 52 kDa receptor. MALDI-TOF mass spectrometry was used to identify peptides derived from rKOR following sequential in-gel digestion with trypsin and cyanogen bromide. Eighteen rKOR peptides were detected, corresponding to 27.1% coverage of the receptor. Precursor-selective MS/MS confirmed the identity of most of these peptides. In addition, we have identified heat shock protein 70 (HSP70) as a rKOR-interacting protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Western
- Cell Line
- Chromatography, Affinity
- Chromatography, Agarose
- Chromatography, Gel
- Electrophoresis, Polyacrylamide Gel
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- HSP70 Heat-Shock Proteins/analysis
- Humans
- Immunochemistry
- Immunoprecipitation
- Mass Spectrometry
- Membranes/chemistry
- Membranes/metabolism
- Protein Hydrolysates/chemistry
- Radioligand Assay
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/isolation & purification
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Wheat Germ Agglutinins/chemistry
Collapse
Affiliation(s)
- Kenneth M. Wannemacher
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-Graduate School of Biomedical Science, Newark, NJ
| | - Alexandra Terskiy
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-Graduate School of Biomedical Science, Newark, NJ
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ
| | - Shengjie Bian
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ
- Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ
| | - Prem N. Yadav
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ
| | - Hong Li
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-Graduate School of Biomedical Science, Newark, NJ
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ
- Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ
| | - Richard D. Howells
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-Graduate School of Biomedical Science, Newark, NJ
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ
- Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ
| |
Collapse
|
8
|
Fu C, Hu J, Liu T, Ago T, Sadoshima J, Li H. Quantitative analysis of redox-sensitive proteome with DIGE and ICAT. J Proteome Res 2008; 7:3789-802. [PMID: 18707151 PMCID: PMC2577071 DOI: 10.1021/pr800233r] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative modifications of protein thiols are important mechanisms for regulating protein functions. The present study aimed to compare the relative effectiveness of two thiol-specific quantitative proteomic techniques, difference gel electrophoresis (DIGE) and isotope coded affinity tag (ICAT), for the discovery of redox-sensitive proteins in heart tissues. We found that these two methods were largely complementary; each could be used to reveal a set of unique redox-sensitive proteins. Some of these proteins are low-abundant signaling proteins and membrane proteins. From DIGE analysis, we found that both NF-kappaB-repressing protein and epoxide hydrolase were sensitive to H 2O 2 oxidation. In ICAT analysis, we found that specific cysteines within sacroplasmic endoplamic reticulum calcium ATPase 2 and voltage-dependent anion-selective channel protein 1 were sensitive to H 2O 2 oxidation. From these analyses, we conclude that both methods should be employed for proteome-wide studies, to maximize the possibility of identifying proteins containing redox-sensitive cysteinyl thiols in complex biological systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Li
- To whom correspondence should be addressed. Hong Li, Department of Biochemistry and Molecular Biology, UMDNJ-NJMS, 185 S. Orange Ave. MSB E-609, Newark, NJ 07103. Tel: 973-972-8396. Fax: 973-972-5594. E-mail:
| |
Collapse
|
9
|
Ho JTC, White JF, Grisshammer R, Hess S. Analysis of a G protein-coupled receptor for neurotensin by liquid chromatography-electrospray ionization-mass spectrometry. Anal Biochem 2008; 376:13-24. [PMID: 18294946 PMCID: PMC2628288 DOI: 10.1016/j.ab.2007.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/29/2007] [Accepted: 12/21/2007] [Indexed: 11/17/2022]
Abstract
The type 1 neurotensin receptor (NTS1) belongs to the G protein-coupled receptor (GPCR) family. GPCRs are involved in important physiological processes, but for many GPCRs ligand binding sites and other structural features have yet to be elucidated. Comprehensive analyses by mass spectrometry (MS) could address such issues, but they are complicated by the hydrophobic nature of the receptors. Recombinant NTS1 must be purified in the presence of detergents to maintain solubility and functionality of the receptor, to allow testing of ligand, or to allow G protein interaction. However, detergents are detrimental to MS analyses. Hence, steps need to be taken to substitute the detergents with MS-compatible polar/organic solvents. Here we report the characterization of NTS1 by electrospray ionization (ESI)-MS with emphasis on methods to transfer intact NTS1 or its proteolytic peptides into compatible solvents by protein precipitation and liquid chromatography (LC) prior to ESI-MS analyses. Molecular mass measurement of intact recombinant NTS1 was performed using a mixture of chloroform/methanol/aqueous trifluoroacetic acid as the mobile phase for size exclusion chromatography-ESI-MS analysis. In a separate experiment, NTS1 was digested with a combination of cyanogen bromide and trypsin and/or chymotrypsin. Subsequent reversed phase LC-ESI-tandem MS analysis resulted in greater than 80% sequence coverage of the NTS1 protein, including all seven transmembrane domains. This work represents the first comprehensive analysis of recombinant NTS1 using MS.
Collapse
MESH Headings
- Chromatography, Gel
- Chromatography, Liquid/methods
- Chymotrypsin/metabolism
- Cyanogen Bromide/chemistry
- Receptors, G-Protein-Coupled/analysis
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neurotensin/analysis
- Receptors, Neurotensin/chemistry
- Receptors, Neurotensin/metabolism
- Spectrometry, Mass, Electrospray Ionization/methods
- Trypsin/metabolism
Collapse
Affiliation(s)
- Jenny TC Ho
- Proteome Exploration Laboratory, Beckman Institute, MC 139-74, California Institute of Technology, Pasadena, CA 91125
| | - Jim F. White
- Membrane Protein Structure and Function Unit, National Institute of Neurological Disorders and Stroke, NIH, DHHS, Rockville, MD
| | - Reinhard Grisshammer
- Membrane Protein Structure and Function Unit, National Institute of Neurological Disorders and Stroke, NIH, DHHS, Rockville, MD
| | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, MC 139-74, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
10
|
Cox HD, Chao CK, Patel SA, Thompson CM. Efficient digestion and mass spectral analysis of vesicular glutamate transporter 1: a recombinant membrane protein expressed in yeast. J Proteome Res 2008; 7:570-8. [PMID: 18179165 PMCID: PMC3247074 DOI: 10.1021/pr070452b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Attempts to characterize recombinant integral membrane proteins (IMPs) by mass spectrometry are frequently hindered by several factors including the detergents required for extraction and purification that interferes with analysis, poor solubility, incomplete digestion, and limited identification of the transmembrane domain-spanning peptides. The goal of this study was to examine and develop methods for purification of an IMP that are amenable to downstream digestion of the protein and peptide analysis by mass spectrometry. In this study, we have overexpressed a candidate IMP, the vesicular glutamate transporter 1 (VGLUT1) in Pichia pastoris and examined conditions for the efficient affinity purification, in-solution digestion, and analysis of the protein. Analysis of the intact purified protein without detergent was performed by MALDI-TOF mass spectrometry. The purified IMP was digested with trypsin, and the resulting peptides were identified. A method that utilizes differential solubility and ionization properties of hydrophobic and hydrophilic peptides was developed. Large hydrophobic peptides were only detected in solutions containing 50% formic acid. Ionization of hydrophilic peptides was suppressed in formic acid, but they produced a strong signal in 50% acetonitrile. Eighty-seven percent sequence coverage of the protein was obtained with only one large hydrophobic peptide that remained unidentified. The results demonstrate a simple method to purify and digest a recombinant IMP for analysis by mass spectrometry.
Collapse
Affiliation(s)
- Holly D. Cox
- Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812
| | - Chih-Kai Chao
- Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812
| | - Sarjubhai A. Patel
- Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812
| | - Charles M. Thompson
- Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812
| |
Collapse
|
11
|
Lee BK, Jung KS, Son C, Kim H, VerBerkmoes NC, Arshava B, Naider F, Becker JM. Affinity purification and characterization of a G-protein coupled receptor, Saccharomyces cerevisiae Ste2p. Protein Expr Purif 2007; 56:62-71. [PMID: 17646109 PMCID: PMC2065862 DOI: 10.1016/j.pep.2007.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/01/2007] [Accepted: 06/10/2007] [Indexed: 11/28/2022]
Abstract
We present an example of expression and purification of a biologically active G-protein coupled receptor (GPCR) from yeast. An expression vector was constructed to encode the Saccharomyces cerevisiae GPCR alpha-factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Ligand binding and signaling assays of the epitope-tagged, mutated receptor showed it maintained the full wild-type biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5% n-dodecyl maltoside (DM). Approximately 120 microg of purified alpha-factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (K(d)) of the purified alpha-factor receptor in DM micelles was 28 nM as compared to K(d)=12.7 nM for Ste2p in cell membranes, and approximately 40% of the purified receptor was correctly folded as judged by ligand saturation binding. About 50% of the receptor sequence was retrieved from MALDI-TOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the alpha-factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.
Collapse
Affiliation(s)
- Byung-Kwon Lee
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 USA
| | - Kyung-Sik Jung
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 USA
| | - Cagdas Son
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 USA
| | - Heejung Kim
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 USA
| | | | - Boris Arshava
- Department of Chemistry, College of Staten Island, CUNY, Staten Island, NY 10301 USA
| | - Fred Naider
- Department of Chemistry, College of Staten Island, CUNY, Staten Island, NY 10301 USA
- The Leonard and Esther Term Professor at the College of Staten Island
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 USA
| |
Collapse
|
12
|
Zvonok N, Yaddanapudi S, Williams J, Dai S, Dong K, Rejtar T, Karger BL, Makriyannis A. Comprehensive proteomic mass spectrometric characterization of human cannabinoid CB2 receptor. J Proteome Res 2007; 6:2068-79. [PMID: 17472360 DOI: 10.1021/pr060671h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The CB1 and CB2 cannabinoid receptors belong to the GPCR superfamily and are associated with a variety of physiological and pathophysiological processes. Both receptors, with several lead compounds at different phases of development, are potentially useful targets for drug discovery. For this reason, fully elucidating the structural features of these membrane-associated proteins would be extremely valuable in designing more selective, novel therapeutic drug molecules. As a first step toward obtaining information on the structural features of the drug-receptor complex, we describe the full mass spectrometric (MS) analysis of the recombinant human cannabinoid CB2 receptor. This first complete proteomic characterization of a GPCR protein beyond rhodopsin was accomplished by a combination of several LC/MS approaches involving nanocapillary liquid chromatography, coupled with either a quadrupole-linear ion trap or linear ion trap-FTICR mass spectrometer. The CB2 receptor, with incorporated N-terminal FLAG and C-terminal HIS6 epitope tags, was functionally expressed in baculovirus cells and purified using a single step of anti-FLAG M2 affinity chromatography. To overcome the difficulties involved with in-gel digestion, due to the highly hydrophobic nature of this membrane-associated protein, we conducted in-solution trypsin and chymotrypsin digestions of purified and desalted samples in the presence of a low concentration of CYMAL5. This was followed by nanoLC peptide separation and analysis using a nanospray ESI source operated in the positive mode. The results can be reported confidently, based on the overlapping sequence data obtained using the highly mass accurate LTQ-FT and the 4000 Q-Trap mass spectrometers. Both instruments gave very similar patterns of identified peptides, with full coverage of all transmembrane helices, resulting in the complete characterization of the cannabinoid CB2 receptor. Mass spectrometric identification of all amino acid residues in the cannabinoid CB2 receptor is a key step toward the "Ligand Based Structural Biology" approach developed in our laboratory for characterizing ligand binding sites in GPCRs using a variety of covalent cannabinergic ligands.
Collapse
Affiliation(s)
- Nikolai Zvonok
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Alves ID, Sachon E, Bolbach G, Millstine L, Lavielle S, Sagan S. Analysis of an Intact G-Protein Coupled Receptor by MALDI-TOF Mass Spectrometry: Molecular Heterogeneity of the Tachykinin NK-1 Receptor. Anal Chem 2007; 79:2189-98. [PMID: 17295451 DOI: 10.1021/ac062415u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integral membrane proteins are among the most challenging targets for biomedical research as most important cellular functions are tied to these proteins. To analyze intrinsically their structure/function, their transduction mechanism, or both, these proteins are commonly expressed in cultured cells as recombinant proteins. However, it is not possible to check whether these recombinant proteins are homogeneously or heterogeneously expressed. Owing to difficulties in their purification, very few mass spectrometry studies have been performed with those proteins and even less with G-protein coupled receptors. Here we have set up a procedure that is highly compatible with MALDI-TOF mass spectrometry to analyze an intact histidine-tagged G-protein coupled, namely, the tachykinin NK-1 receptor expressed in CHO cells, solubilized and purified using cobalt or nickel chelating magnetic beads. The metal-chelating magnetic beads containing the receptor were directly spotted on the MALDI plate for analysis. SDS-PAGE, combined with in-gel digestion analyzed by mass spectrometry, Western blot ((His)6 and FLAG M2 tags), photoaffinity labeling with a radioactive agonist, and Edman sequencing, confirmed the identity of the purified protein as the human tachykinin NK-1 receptor. Mass spectrometry study of both the glycosylated and deglycosylated intact protein forms revealed the existence of several receptor species that is tempting to correlate with the unusual pharmacological behavior of the receptor.
Collapse
Affiliation(s)
- Isabel D Alves
- Synthèse, Structure et Fonction de Molécules Bioactives, and Plateforme de Protéomique et de Spectrométrie de Masse, Université Pierre et Marie Curie-Paris 6, UMR 7613 CNRS, Paris, France. alves@ ccr.jussieu.fr
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
15
|
Agirregoitia E, Valdivia A, Carracedo A, Casis L, Gil J, Subiran N, Ochoa C, Irazusta J. Expression and localization of delta-, kappa-, and mu-opioid receptors in human spermatozoa and implications for sperm motility. J Clin Endocrinol Metab 2006; 91:4969-75. [PMID: 16984994 DOI: 10.1210/jc.2006-0599] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Endogenous opioid peptides signal through delta-, kappa-, and mu-opioid receptors. Some of these peptides such as endorphins and enkephalins are present in the male reproductive tract, but the presence of the corresponding receptors in human sperm cells has not yet been reported. OBJECTIVE Our objective was to study the expression and localization of delta-, kappa-, and mu-opioid receptors on human spermatozoa and the implication in sperm motility. METHODS The expression of receptors was studied by RT-PCR, Western blot, and immunofluorescence techniques. We evaluated the effects of activation of each opioid receptor by specific agonist and antagonist. RESULTS Human spermatozoa express delta-, kappa-, and mu-opioid receptors. These receptors were located in different parts of the head, in the middle region, and in the tail of the sperm. Progressive motility of spermatozoa, an important parameter to evaluate male fertility, was found to be significantly reduced after incubation with the mu-receptor agonist morphine, whereas this effect was antagonized in the presence of the corresponding antagonist naloxone. The delta-receptor antagonist naltrindole significantly reduced progressive motility immediately after its addition. However, the delta-receptor agonist DPDPE had no significant effect. Finally, neither the kappa-receptor agonist U50488 nor its antagonist nor-binaltorphimine significantly affected the progressive motility of human spermatozoa. CONCLUSION We report for first time the presence of functional delta-, kappa-, and mu-opioid receptors in human sperm membranes. These findings are indicative of a role for the opioid system in the regulation of sperm physiology.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Adult
- Analgesics, Opioid/pharmacology
- Humans
- Male
- Morphine/pharmacology
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/physiology
- Sperm Motility/drug effects
- Sperm Motility/physiology
- Spermatozoa/cytology
- Spermatozoa/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, PO Box 699, Bilbao, 48080 Bizkaia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:128-39. [PMID: 16402416 DOI: 10.1002/jms.948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|