1
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
2
|
Rouchka EC, de Almeida C, House RB, Daneshmand JC, Chariker JH, Saraswat-Ohri S, Gomes C, Sharp M, Shum-Siu A, Cesarz GM, Petruska JC, Magnuson DS. Construction of a searchable database for gene expression changes in spinal cord injury experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526630. [PMID: 36778366 PMCID: PMC9915599 DOI: 10.1101/2023.02.01.526630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a debilitating disease resulting in an estimated 18,000 new cases in the United States on an annual basis. Significant behavioral research on animal models has led to a large amount of data, some of which has been catalogued in the Open Data Commons for Spinal Cord Injury (ODC-SCI). More recently, high throughput sequencing experiments have been utilized to understand molecular mechanisms associated with SCI, with nearly 6,000 samples from over 90 studies available in the Sequence Read Archive. However, to date, no resource is available for efficiently mining high throughput sequencing data from SCI experiments. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies as well as homologous discovery across species. We have processed 1,196 publicly available RNA-seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.
Collapse
Affiliation(s)
- Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, KY USA
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville School of Medicine, 522 East Gray Street, Louisville, KY USA 40202
- Bioinformatics Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
| | - Carlos de Almeida
- Translational Neuroscience Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
| | - Randi B. House
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY
| | - Jonah C. Daneshmand
- Bioinformatics Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
| | - Julia H. Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville School of Medicine, 522 East Gray Street, Louisville, KY USA 40202
- Department of Neuroscience Training, School of Medicine, University of Louisville, Louisville, KY
| | - Sujata Saraswat-Ohri
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| | - Morgan Sharp
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Greta M. Cesarz
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
| | - Jeffrey C. Petruska
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| | - David S.K. Magnuson
- Translational Neuroscience Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
3
|
Zhao X, Li X, Guo H, Liu P, Ma M, Wang Y. Resolvin D1 attenuates mechanical allodynia after burn injury: Involvement of spinal glia, p38 mitogen-activated protein kinase, and brain-derived neurotrophic factor/tropomyosin-related kinase B signaling. Mol Pain 2023; 19:17448069231159970. [PMID: 36765459 PMCID: PMC9986910 DOI: 10.1177/17448069231159970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Resolvin D1 (RvD1) suppresses inflammatory, postoperative, and neuropathic pain. The present study assessed the roles and mechanisms of RvD1 in mechanical allodynia after burn injury. A rat model of burn injury was established for analyses, and RvD1 was injected intraperitoneally. Pain behavior and the expression levels of spinal dorsal horn Iba-1 (microglia marker), GFAP (astrocyte marker), p-p38 mitogen-activated protein kinase (MAPK), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) were detected by behavioral and immunocytochemical assays. The results showed that RvD1 attenuated mechanical allodynia after burn injury, prevented microglial and astroglial activation, and downregulated p-p38 MAPK in microglia and BDNF/TrkB following burn injury. Similarly, inhibition of p38 MAPK and BDNF/TrkB signaling attenuated mechanical allodynia after burn injury. In addition, inhibition of p38 MAPK prevented spinal microglial activation and downregulated BDNF/TrkB following burn injury. Furthermore, inhibition of BDNF/TrkB signaling prevented spinal microglial activation and downregulated p-p38 MAPK within spinal microglia. Taken together, this study demonstrated that RvD1 might attenuate mechanical allodynia after burn injury by inhibiting spinal cord glial activation, microglial p38 MAPK, and BDNF/TrkB signaling in the spinal dorsal horn.
Collapse
Affiliation(s)
- Xiaona Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Li
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiling Guo
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panmei Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minyu Ma
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanping Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Bagó-Mas A, Korimová A, Deulofeu M, Verdú E, Fiol N, Svobodová V, Dubový P, Boadas-Vaello P. Polyphenolic grape stalk and coffee extracts attenuate spinal cord injury-induced neuropathic pain development in ICR-CD1 female mice. Sci Rep 2022; 12:14980. [PMID: 36056079 PMCID: PMC9440260 DOI: 10.1038/s41598-022-19109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
More than half of spinal cord injury (SCI) patients develop central neuropathic pain (CNP), which is largely refractory to current treatments. Considering the preclinical evidence showing that polyphenolic compounds may exert antinociceptive effects, the present work aimed to study preventive effects on SCI-induced CNP development by repeated administration of two vegetal polyphenolic extracts: grape stalk extract (GSE) and coffee extract (CE). Thermal hyperalgesia and mechanical allodynia were evaluated at 7, 14 and 21 days postinjury. Then, gliosis, ERK phosphorylation and the expression of CCL2 and CX3CL1 chemokines and their receptors, CCR2 and CX3CR1, were analyzed in the spinal cord. Gliosis and CX3CL1/CX3CR1 expression were also analyzed in the anterior cingulate cortex (ACC) and periaqueductal gray matter (PAG) since they are supraspinal structures involved in pain perception and modulation. GSE and CE treatments modulated pain behaviors accompanied by reduced gliosis in the spinal cord and both treatments modulated neuron-glia crosstalk-related biomolecules expression. Moreover, both extracts attenuated astrogliosis in the ACC and PAG as well as microgliosis in the ACC with an increased M2 subpopulation of microglial cells in the PAG. Finally, GSE and CE prevented CX3CL1/CX3CR1 upregulation in the PAG, and modulated their expression in ACC. These findings suggest that repeated administrations of either GSE or CE after SCI may be suitable pharmacologic strategies to attenuate SCI-induced CNP development by means of spinal and supraspinal neuroinflammation modulation.
Collapse
Affiliation(s)
- Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Andrea Korimová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, Girona, Spain
| | - Viktorie Svobodová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.
| |
Collapse
|
5
|
PPARα agonist relieves spinal cord injury in rats by activating Nrf2/HO-1 via the Raf-1/MEK/ERK pathway. Aging (Albany NY) 2021; 13:24640-24654. [PMID: 34799468 PMCID: PMC8660597 DOI: 10.18632/aging.203699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
Objective: To observe the inhibitory effects of the peroxisome proliferator-activated receptor alpha (PPARα) agonist palmitoylethanolamide (PEA) on inflammatory responses and oxidative stress injury in rats with spinal cord injury (SCI). Methods: The SCI rat model was established using modified Allen's method and the changes in rats’ joint motion were observed by Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) at 1, 3 and 7 days after modeling, HE Staining and Nissl Staining has been carried out to evaluate the pathological lesion of spinal cords in rats. Besides, Immunohistochemical (IHC) was performed to detect the reactive oxygen species (ROS), expression levels of acrylamide (ACR) and manganese superoxide dismutase (MnSOD) in rat spinal cords, and Western Blotting was applied to measure protein expression levels of nuclear factor-kappa B (NF-κB), B cell lymphoma-2 (Bcl-2), BCL-2 associated X (BAX), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), phosphorylated (p)-Akt, HO-1, Nrf2, trithorax-1 (TRX-1), Raf-1, MEK, ERK, p-MEK and p-ERK. Results: The PPARα agonist PEA could alleviate SCI in rats, inhibit inflammatory responses, mitigate oxidative stress injury, reduce the apoptotic rate and promote SCI rats motor function recovery. In addition, the PPARα agonist PEA was able to activate the phosphorylation of MEK and ERK, stimulate Nrf-2 translocation into the nucleus and up-regulate the expressions of HO-1 and TRX-1. Conclusion: PPARα agonist PEA can relieve SCI in rats by inhibiting inflammatory responses and oxidative stress, which may involve a mechanism associated with the activation of Nrf2/HO-1 via the Raf-1/MEK/ERK pathway.
Collapse
|
6
|
Quan M, Hwang WH, Kim JH, Kim YY. Analysis of pain markers and epidural fibrosis caused by repeated spinal surgery in Sprague-Dawley rats. BMC Musculoskelet Disord 2021; 22:16. [PMID: 33402133 PMCID: PMC7786924 DOI: 10.1186/s12891-020-03920-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/26/2020] [Indexed: 11/18/2022] Open
Abstract
Background Epidural fibrosis is one of the aetiologies of pain following a spinal revision surgery. It is reported that the specific members of the mitogen – activated protein kinases (MAPK) family might mediate neuropathic pain. However, roles of epidural fibrosis caused by repeated spinal surgeries and pain-related proteins in causing the post spinal surgery syndrome remain unknown. Using a rat spinal surgery epidural fibrosis and adhesion model, in this study, we evaluated and investigated the relationship between pain markers and epidural fibrosis. Methods Sprague–Dawley rats that underwent the spinal surgery were divided into three groups: group A (single laminectomy), group B (two repeated surgeries) and group C (three repeated surgeries). Dural thickness was measured in each experimental group, and immunohistochemical analysis and western blotting of mitogen-activated protein kinases were performed (ERK, p38 and JNK) using the spine cord. Results Dural thickness was 6.363 ± 1.911 μm in group A, 13.238 ± 2.123 μm in group B and 19.4 ± 2.115 μm in group C, respectively. In the western blotting, phosphorylated ERK expression gradually increased with the number of repeated surgeries, and expression in groups B (1.77-fold) and C (2.42-fold) increased as compared to expression in group A. Phosphorylated p38 showed an increasing trend with the number of repeated surgeries, and groups B (1.17-fold) and C (1.33-fold) expression increased compared with group A. However, phosphorylated JNK expression did not gradually increase with the number of repeated surgeries, and groups B (1.62-fold) and C (1.43-fold) expression increased compared with group A. Excluding phosphorylated JNK, immunohistochemical analysis revealed that phosphorylated ERK and p38 expression gradually increased with the number of repeated surgeries in the spine dorsal horn, as evidenced by western blotting. Conclusions Repeated spinal surgeries may increase dural thickness and expression of phosphorylated ERK and p38 in the spinal dorsal horn, and it suggests that the neuropathic pain is likely induced by epidural fibrosis and that the pain increases with the number of repeated surgeries. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-020-03920-z.
Collapse
Affiliation(s)
- Meiling Quan
- Department of Pathophysiology, School of Basic Medical Sciences, Beihua University, Jilin, 132021, China.,Department of Orthopedics, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Won-Ha Hwang
- Department of Orthopedics, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Jae-Hoon Kim
- Department of Orthopedics, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Young-Yul Kim
- Department of Orthopedics, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea.
| |
Collapse
|
7
|
Yu CG, Bondada V, Joshi A, Reneer DV, Telling GC, Saatman KE, Geddes JW. Calpastatin Overexpression Protects against Excitotoxic Hippocampal Injury and Traumatic Spinal Cord Injury. J Neurotrauma 2020; 37:2268-2276. [PMID: 32718209 DOI: 10.1089/neu.2020.7122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small molecule inhibitors of calcium-dependent proteases, calpains (CAPNs), protect against neurodegeneration induced by a variety of insults including excitotoxicity and spinal cord injury (SCI). Many of these compounds, however, also inhibit other proteases, which has made it difficult to evaluate the contribution of calpains to neurodegeneration. Calpastatin is a highly specific endogenous inhibitor of classical calpains, including CAPN1 and CAPN2. In the present study, we utilized transgenic mice that overexpress human calpastatin under the prion promoter (PrP-hCAST) to evaluate the hypothesis that calpastatin overexpression protects against excitotoxic hippocampal injury and contusive SCI. The PrP-hCAST organotypic hippocampal slice cultures showed reduced neuronal death and reduced calpain-dependent proteolysis (α-spectrin breakdown production, 145 kDa) at 24 h after N-methyl-D-aspartate (NMDA) injury compared with the wild-type (WT) cultures (n = 5, p < 0.05). The PrP-hCAST mice (n = 13) displayed a significant improvement in locomotor function at one and three weeks after contusive SCI compared with the WT controls (n = 9, p < 0.05). Histological assessment of lesion volume and tissue sparing, performed on the same animals used for behavioral analysis, revealed that calpastatin overexpression resulted in a 30% decrease in lesion volume (p < 0.05) and significant increases in tissue sparing, white matter sparing, and gray matter sparing at four weeks post-injury compared with WT animals. Calpastatin overexpression reduced α-spectrin breakdown by 51% at 24 h post-injury, compared with WT controls (p < 0.05, n = 3/group). These results provide support for the hypothesis that sustained calpain-dependent proteolysis contributes to pathological deficits after excitotoxic injury and traumatic SCI.
Collapse
Affiliation(s)
- Chen Guang Yu
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Vimala Bondada
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Aashish Joshi
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Dexter V Reneer
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Glenn C Telling
- Department of Microbiology, Immunology & Pathology, Colorado State University College of Veterinary Medicine and Biomedical Science, Fort Collins, Colorado, USA
| | - Kathryn E Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - James W Geddes
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
8
|
CRISPR, Prime Editing, Optogenetics, and DREADDs: New Therapeutic Approaches Provided by Emerging Technologies in the Treatment of Spinal Cord Injury. Mol Neurobiol 2020; 57:2085-2100. [DOI: 10.1007/s12035-019-01861-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
|
9
|
Yang X, Wang Y, Wu C, Ling EA. Animal Venom Peptides as a Treasure Trove for New Therapeutics Against Neurodegenerative Disorders. Curr Med Chem 2019; 26:4749-4774. [PMID: 30378475 DOI: 10.2174/0929867325666181031122438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and cerebral ischemic stroke, impose enormous socio-economic burdens on both patients and health-care systems. However, drugs targeting these diseases remain unsatisfactory, and hence there is an urgent need for the development of novel and potent drug candidates. METHODS Animal toxins exhibit rich diversity in both proteins and peptides, which play vital roles in biomedical drug development. As a molecular tool, animal toxin peptides have not only helped clarify many critical physiological processes but also led to the discovery of novel drugs and clinical therapeutics. RESULTS Recently, toxin peptides identified from venomous animals, e.g. exenatide, ziconotide, Hi1a, and PcTx1 from spider venom, have been shown to block specific ion channels, alleviate inflammation, decrease protein aggregates, regulate glutamate and neurotransmitter levels, and increase neuroprotective factors. CONCLUSION Thus, components of venom hold considerable capacity as drug candidates for the alleviation or reduction of neurodegeneration. This review highlights studies evaluating different animal toxins, especially peptides, as promising therapeutic tools for the treatment of different neurodegenerative diseases and disorders.
Collapse
Affiliation(s)
- Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Chunyun Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
10
|
Castany S, Codony X, Zamanillo D, Merlos M, Verdú E, Boadas-Vaello P. Repeated Sigma-1 Receptor Antagonist MR309 Administration Modulates Central Neuropathic Pain Development After Spinal Cord Injury in Mice. Front Pharmacol 2019; 10:222. [PMID: 30967775 PMCID: PMC6439356 DOI: 10.3389/fphar.2019.00222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Up to two-thirds of patients affected by spinal cord injury (SCI) develop central neuropathic pain (CNP), which has a high impact on their quality of life. Most of the patients are largely refractory to current treatments, and new pharmacological strategies are needed. Recently, it has been shown that the acute administration of the σ1R antagonist MR309 (previously developed as E-52862) at 28 days after spinal cord contusion results in a dose-dependent suppression of both mechanical allodynia and thermal hyperalgesia in wild-type CD-1 Swiss female mice. The present work was addressed to determine whether MR309 might exert preventive effects on CNP development by repeated administration during the first week after SCI in mice. To this end, the MR309 (16 or 32 mg/kg i.p.) modulation on both thermal hyperalgesia and mechanical allodynia development were evaluated weekly up to 28 days post-injury. In addition, changes in pro-inflammatory cytokine (TNF-α, IL-1β) expression and both the expression and activation (phosphorylation) of the N-methyl-D-aspartate receptor subunit 2B (NR2B-NMDA) and extracellular signal-regulated kinases (ERK1/2) were analyzed. The repeated treatment of SCI-mice with MR309 resulted in significant pain behavior attenuation beyond the end of the administration period, accompanied by reduced expression of central sensitization-related mechanistic correlates, including extracellular mediators (TNF-α and IL-1β), membrane receptors/channels (NR2B-NMDA) and intracellular signaling cascades (ERK/pERK). These findings suggest that repeated MR309 treatment after SCI may be a suitable pharmacologic strategy to modulate SCI-induced CNP development.
Collapse
Affiliation(s)
- Sílvia Castany
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona, Girona, Spain
| | - Xavier Codony
- Esteve Pharmaceuticals, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Spain
| | - Daniel Zamanillo
- Esteve Pharmaceuticals, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Spain
| | - Manuel Merlos
- Esteve Pharmaceuticals, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona, Girona, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona, Girona, Spain
| |
Collapse
|
11
|
Yu CG, Bondada V, Ghoshal S, Singh R, Pistilli CK, Dayaram K, Iqbal H, Sands M, Davis KL, Bondada S, Geddes JW. Repositioning Flubendazole for Spinal Cord Injury. J Neurotrauma 2019; 36:2618-2630. [PMID: 30747048 DOI: 10.1089/neu.2018.6160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We previously reported the serendipitous observation that fenbendazole, a benzimidazole anthelmintic, improved functional and pathological outcomes following thoracic spinal cord contusion injury in mice when administered pre-injury. Fenbendazole is widely used in veterinary medicine. However, it is not approved for human use and it was uncertain if only post-injury administration would offer similar benefits. In the present study we evaluated post-injury administration of a closely related, human anthelmintic drug, flubendazole, using a rat spinal cord contusion injury model. Flubendazole, administered i.p. 5 or 10 mg/kg day, beginning 3 h post-injury and daily thereafter for 2 or 4 weeks, resulted in improved locomotor function after contusion spinal cord injury (SCI) compared with vehicle-treated controls. Histological analysis of spinal cord sections showed that such treatment with flubendazole also reduced lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing. Flubendazole inhibited the activation of glial fibrillary acidic protein (GFAP); suppressed cyclin B1 expression and Bruton tyrosine kinase activation, markers of B cell activation/proliferation and inflammation; and reduced B cell autoimmune response. Together, these results suggest the use of the benzimidazole anthelmintic flubendazole as a potential therapeutic for SCI.
Collapse
Affiliation(s)
- Chen Guang Yu
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Sarbani Ghoshal
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Ranjana Singh
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Christina K Pistilli
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kavi Dayaram
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hina Iqbal
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Madison Sands
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kate L Davis
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Subarrao Bondada
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
12
|
Sun L, Zhou J, Sun C. MicroRNA-211-5p Enhances Analgesic Effect of Dexmedetomidine on Inflammatory Visceral Pain in Rats by Suppressing ERK Signaling. J Mol Neurosci 2019; 68:19-28. [DOI: 10.1007/s12031-019-01278-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/08/2019] [Indexed: 12/25/2022]
|
13
|
Castany S, Gris G, Vela JM, Verdú E, Boadas-Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci Rep 2018; 8:3873. [PMID: 29497125 PMCID: PMC5832850 DOI: 10.1038/s41598-018-22217-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
Sigma-1 receptor (σ1R) knockout (KO) CD1 mice, generated by homologous recombination, and separate pharmacological studies in wild type (WT) mice were done to investigate the role of this receptor in the development of pain-related behaviours (thermal hyperalgesia and mechanical allodynia) in mice after spinal cord contusion injury (SCI) - a model of central neuropathic pain. The modulatory effect of σ1R KO on extracellular mediators and signalling pathways in the spinal cord was also investigated. In particular, changes in the expression of inflammatory cytokines (tumour necrosis factor TNF-α, interleukin IL-1β) and both the expression and activation (phosphorylation) of the N-methyl-D-aspartate receptor subunit 2B (NR2B-NMDA) and extracellular signal-regulated kinases (ERK1/2) were analysed. Compared with WT mice, both mechanical and thermal hypersensitivity were attenuated in σ1R KO mice following SCI. Accordingly, treatment of WT mice with the σ1R antagonist MR309 (previously developed as E-52862; S1RA) after SCI exerted antinociceptive effects (i.e. reduced mechanical allodynia and thermal hyperalgesia). Attenuated nociceptive responses in σ1R KO were accompanied by reduced expression of TNF- α and IL-1β as well as decreased activation/phosphorylation of NR2B-NMDA receptors and ERK1/2. These findings suggest that σ1R may modulate central neuropathic pain and point to regulation of sensitization-related phenomena as a possible mechanism.
Collapse
Affiliation(s)
- Sílvia Castany
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona (UdG), Girona, Spain
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Georgia Gris
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - José Miguel Vela
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona (UdG), Girona, Spain.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona (UdG), Girona, Spain.
| |
Collapse
|
14
|
Fu X, Shen Y, Wang W, Li X. MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling. Clin Exp Pharmacol Physiol 2017; 45:68-74. [PMID: 28925510 DOI: 10.1111/1440-1681.12856] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 01/28/2023]
Abstract
Spinal cord injury (SCI) is a major disability requiring more effective treatment than is currently available. MicroRNAs have been shown to effectively regulate gene expression at the translational level. The aim of the present study was to explore the potential role of miR-30-5p and possible mechanism in SCI. We found that miR-30-5p was notably down-regulated, while Neurod 1 expression was highly elevated in microglia from the mouse model of SCI. Additionally, overexpression of miR-30a-5p significantly suppressed inflammatory responses as reflected by a decrease in the secretion of the cytokines TNF-α, IL-1β and IL-10 triggered by SCI. Furthermore, introduction of miR-30a-5p strengthened the scavenging of oxygen free radicals accompanied by an increase in the expression of SEPN1, TXNL1 and GPX1. More importantly, our study explored that Neurod 1 was a direct and functional target of miR-30a-5p, which was validated by the dual luciferase reporter assay. qRT-PCR and western blot analysis further validated that miR-30a-5p negatively regulated the expression of Neurod 1. Mechanistically, overexpression of miR-30a-5p or silencing of the Neurod 1 gene prevented the MAPK/ERK signalling and inhibited inflammatory responses, meanwhile activated SEPN1, TXNL1 and GPX1. These findings indicate that miR-30a-5p ameliorates inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling.
Collapse
Affiliation(s)
- Xiaodong Fu
- Department of Orthopedics, School of Medicine, South Campus, Renji Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Yi Shen
- Department of Orthopedics, School of Medicine, South Campus, Renji Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Weili Wang
- Department of Orthopedics, School of Medicine, South Campus, Renji Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Xiaomiao Li
- Department of Orthopedics, School of Medicine, South Campus, Renji Hospital, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
15
|
Xu G, Cui Y, Wang L, Zhang J, Shen A, Li W, Bao G, Sun Y, Cui Z. Temporospatial expression of fibulin-1 after acute spinal cord injury in rats. J Spinal Cord Med 2015; 38:709-16. [PMID: 24969770 PMCID: PMC4725805 DOI: 10.1179/2045772314y.0000000228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Fibulin-1 is a matricellular protein that plays important roles in motility inhibition in a variety of cells and blocks the proliferation of cultured neural stem cells. The biological function of fibulin-1 in the spinal cord has not been fully elucidated. METHODS To clarify the expressions and possible functions of fibulin-1 in spinal cord injury (SCI), we performed an acute spinal cord contusion injury model in adult rats. Our work studied the temporospatial expression patterns of fibulin-1. RESULTS Western blot analysis revealed that fibulin-1 levels significantly increased 5 days after spinal cord contusion. Immunohistochemistry confirmed an increased number of fibulin-1 immunopositive cells about 2 mm from the lesion site. Moreover, double immunofluorescence labeling suggested that these changes were especially prominent in neurons and microglia. CONCLUSION These findings suggest that fibulin-1 may be involved in neuronal apoptosis and microglial activation after SCI.
Collapse
Affiliation(s)
- Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Ying Cui
- Department of Orthopedics, General Hospital of Nanjing Military Region, Nanjing, China
| | - Lingling Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Aiguo Shen
- Department of Immunology, Medical College, Nantong University, Nantong, China
| | - Weidong Li
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China,Correspondence to: Zhiming Cui, Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China.
| |
Collapse
|
16
|
Wen T, Hou J, Wang F, Zhang Y, Zhang T, Sun T. Comparative analysis of molecular mechanism of spinal cord injury with time based on bioinformatics data. Spinal Cord 2015; 54:431-8. [PMID: 26503224 DOI: 10.1038/sc.2015.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/16/2015] [Accepted: 09/01/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVES This study was designed to explore the molecular mechanisms of spinal cord injury (SCI) with time. METHODS The gene expression profile (GSE45006) including four non-injured spinal cord samples as sham-control group and 20 thoracic transected spinal cords samples as experimental group at different times was downloaded from Gene Expression Omnibus database. The time-course changes of the SCI-related differentially expressed genes (DEGs) were identified. In addition, time-series expression profile clusters of DEGs were obtained, followed by gene ontology (GO) and pathway enrichment analysis of the DEGs. Moreover, the transcriptional regulatory network was constructed. RESULTS There were 1420, 492, 743, 568 and 533 DEGs respectively at d1, d3, w1, w2 and w8 compared with that of sham group. Importantly, 101 overlapped regulated DEGs were identified at five time points and 370 collaboratively regulated genes were identified in cluster 6. Significant functions of overlapped regulated DEGs were obtained including response to wounding and developmental process. In addition, the DEGs, such as CD14 molecule (CD14) and chemokine (C-C motif) ligand 2 (CCL2), were enriched mostly in the pathways related to tuberculosis, phagosome and NF-kappa B signaling pathway. From the transcriptional regulatory network, we identified some transription factors (TFs), including member of E26 transformation-specific (ETS) oncogene family (ELK1) and zinc finger and BTB domain containing 7A (Zbtb7a). CONCLUSION The DEGs related to immune response during SCI may provide underlying targets for treatment of SCI. Moreover, the TFs ZBTB7A and ELK1 and their target gene (dual specificity phosphatase 18 (DUSP18)) might be therapeutic targets for the treatment of SCI.
Collapse
Affiliation(s)
- T Wen
- Chinese PLA Medical College, Beijing, China.,Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - J Hou
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - F Wang
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - Y Zhang
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - T Zhang
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - T Sun
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| |
Collapse
|
17
|
Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11515-015-1373-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Long-term memory deficits are associated with elevated synaptic ERK1/2 activation and reversed by mGluR5 antagonism in an animal model of autism. Neuropsychopharmacology 2014; 39:1664-73. [PMID: 24448645 PMCID: PMC4023139 DOI: 10.1038/npp.2014.13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/31/2013] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
A significant proportion of patients with autism exhibit some degree of intellectual disability. The BTBR T(+) Itpr3(tf)/J mouse strain exhibits behaviors that align with the major diagnostic criteria of autism. To further evaluate the BTBR strain's cognitive impairments, we quantified hippocampus-dependent object location memory (OLM) and found that one-third of the BTBR mice exhibited robust memory, whereas the remainder did not. Fluorescence deconvolution tomography was used to test whether synaptic levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), a protein that contributes importantly to plasticity, correlate with OLM scores in individual mice. In hippocampal field CA1, the BTBRs had fewer post-synaptic densities associated with high levels of phosphorylated (p-) ERK1/2 as compared with C57BL/6 mice. Although counts of p-ERK1/2 immunoreactive synapses did not correlate with OLM performance, the intensity of synaptic p-ERK1/2 immunolabeling was negatively correlated with OLM scores across BTBRs. Metabotropic glutamate receptor (mGluR) 5 signaling activates ERK1/2. Therefore, we tested whether treatment with the mGluR5 antagonist MPEP normalizes synaptic and learning measures in BTBR mice: MPEP facilitated OLM and decreased synaptic p-ERK1/2 immunolabeling intensity without affecting numbers of p-ERK1/2+ synapses. In contrast, semi-chronic ampakine treatment, which facilitates memory in other models of cognitive impairment, had no effect on OLM in BTBRs. These results suggest that intellectual disabilities associated with different neurodevelopmental disorders on the autism spectrum require distinct therapeutic strategies based on underlying synaptic pathology.
Collapse
|
19
|
Truini A, Garcia-Larrea L, Cruccu G. Reappraising neuropathic pain in humans--how symptoms help disclose mechanisms. Nat Rev Neurol 2013; 9:572-82. [PMID: 24018479 DOI: 10.1038/nrneurol.2013.180] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuropathic pain--that is, pain arising directly from a lesion or disease that affects the somatosensory system--is a common clinical problem, and typically causes patients intense distress. Patients with neuropathic pain have sensory abnormalities on clinical examination and experience pain of diverse types, some spontaneous and others provoked. Spontaneous pain typically manifests as ongoing burning pain or paroxysmal electric shock-like sensations. Provoked pain includes pain induced by various stimuli or even gentle brushing (dynamic mechanical allodynia). Recent clinical and neurophysiological studies suggest that the various pain types arise through distinct pathophysiological mechanisms. Ongoing burning pain primarily reflects spontaneous hyperactivity in nociceptive-fibre pathways, originating from 'irritable' nociceptors, regenerating nerve sprouts or denervated central neurons. Paroxysmal sensations can be caused by several mechanisms; for example, electric shock-like sensations probably arise from high-frequency bursts generated in demyelinated non-nociceptive Aβ fibres. Most human and animal findings suggest that brush-evoked allodynia originates from Aβ fibres projecting onto previously sensitized nociceptive neurons in the dorsal horn, with additional contributions from plastic changes in the brainstem and thalamus. Here, we propose that the emerging mechanism-based approach to the study of neuropathic pain might aid the tailoring of therapy to the individual patient, and could be useful for drug development.
Collapse
Affiliation(s)
- Andrea Truini
- Department of Neurology and Psychiatry, Sapienza University, Viale Università 30, 00185 Rome, Italy
| | | | | |
Collapse
|
20
|
Walker CL, Liu NK, Xu XM. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries. FRONTIERS IN BIOLOGY 2013; 8:10.1007/s11515-013-1255-1. [PMID: 24348522 PMCID: PMC3858858 DOI: 10.1007/s11515-013-1255-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain and spinal cord injuries initiate widespread temporal and spatial neurodegeneration, through both necrotic and programmed cell death mechanisms. Inflammation, reactive oxidation, excitotoxicity and cell-specific dysregulation of metabolic processes are instigated by traumatic insult and are main contributors to this cumulative damage. Successful treatments rely on prevention or reduction of the magnitude of disruption, and interfering with injurious cellular responses through modulation of signaling cascades is an effective approach. Two intracellular signaling pathways, the phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling cascades play various cellular roles under normal and pathological conditions. Activation of both pathways can influence anatomical and functional outcomes in multiple CNS disorders. However, some mechanisms involve inhibiting or enhancing one pathway or the other, or both, in propagating specific downstream effects. Though many intracellular mechanisms contribute to cell responses to insult, this review examines the evidence exploring PTEN/PI3K and MAPK signaling influence on pathology, neuroprotection, and repair and how these pathways may be targeted for advancing knowledge and improving neurological outcome after injury to the brain and spinal cord.
Collapse
Affiliation(s)
- Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA ; Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA ; Departmentof Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA ; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA ; Departmentof Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA ; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA ; Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA ; Departmentof Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA ; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
21
|
Zeng J, Kim D, Li KW, Sharp K, Steward O, Zaucke F, Luo ZD. Thrombospondin-4 contributes to spinal cord injury-induced changes in nociception. Eur J Pain 2013; 17:1458-64. [PMID: 23649982 DOI: 10.1002/j.1532-2149.2013.00326.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND Our previous data have indicated that nerve injury-induced up-regulation of thrombospondin-4 (TSP4) proteins in dorsal spinal cord plays a causal role in neuropathic pain state development in a spinal nerve ligation model. To investigate whether TSP4 proteins also contribute to the development of centrally mediated changes in nociception after spinal cord injury (SCI), we investigated whether SCI induced TSP4 dysregulation, and if so, whether this change correlated with changes in nociception in a T9 spinal cord contusion injury model. METHODS Behavioural sensitivity to mechanical, thermal stimuli and locomotor function recovery were tested blindly in SCI or sham rats post-injury. Intrathecal antisense or mismatch control oligodeoxynucleotides were used to treat SCI rats with nociceptive hyperreflexia, and Western blots were used to measure TSP4 protein levels in dorsal spinal cord samples. RESULTS SCI induced below-level hindpaw hypersensitivity to stimuli. TSP4 protein levels are up-regulated in dorsal spinal cord of SCI rats with nociceptive hyperreflexia, but not in SCI rats without nociceptive hyperreflexia. There was no significant difference in motor function recovery post-injury between SCI rats with or without nociceptive hyperreflexia. Intrathecal treatment with TSP4 antisense, but not mismatch control, oligodeoxynucleotides led to reversal of injury-induced TSP4 up-regulation and nociceptive hyperreflexia in SCI rats. CONCLUSIONS SCI leads to TSP4 up-regulation in lumbar spinal cord that may play a critical role in mediating centrally mediated behavioural hypersensitivity. Blocking this pathway may be helpful in management of SCI-induced changes in nociception.
Collapse
Affiliation(s)
- J Zeng
- Department of Anesthesiology & Perioperative Care, University of California Irvine, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Yu CG, Li Y, Raza K, Yu XX, Ghoshal S, Geddes JW. Calpain 1 knockdown improves tissue sparing and functional outcomes after spinal cord injury in rats. J Neurotrauma 2013; 30:427-33. [PMID: 23102374 PMCID: PMC4169127 DOI: 10.1089/neu.2012.2561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To evaluate the hypothesis that calpain 1 knockdown would reduce pathological damage and functional deficits after spinal cord injury (SCI), we developed lentiviral vectors encoding calpain 1 shRNA and eGFP as a reporter (LV-CAPN1 shRNA). The ability of LV-CAPN1 shRNA to knockdown calpain 1 was confirmed in rat NRK cells using Northern and Western blot analysis. To investigate the effects on spinal cord injury, LV-CAPN1shRNA or LV-mismatch control shRNA (LV-control shRNA) were administered by convection enhanced diffusion at spinal cord level T10 in Long-Evans female rats (200-250 g) 1 week before contusion SCI, 180 kdyn force, or sham surgery at the same thoracic level. Intraspinal administration of the lentiviral particles resulted in transgene expression, visualized by eGFP, in spinal tissue at 2 weeks after infection. Calpain 1 protein levels were reduced by 54% at T10 2 weeks after shRNA-mediated knockdown (p<0.05, compared with the LV-control group, n=3 per group) while calpain 2 levels were unchanged. Intraspinal administration of LV-CAPN1shRNA 1 week before contusion SCI resulted in a significant improvement in locomotor function over 6 weeks postinjury, compared with LV-control administration (p<0.05, n=10 per group). Histological analysis of spinal cord sections indicated that pre-injury intraspinal administration of LV-CAPN1shRNA significantly reduced spinal lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing (p<0.05, n=10 per group). Together, results support the hypothesis that calpain 1 activation contributes to the tissue damage and impaired locomotor function after SCI, and that calpain1 represents a potential therapeutic target.
Collapse
Affiliation(s)
- Chen Guang Yu
- Spinal Cord and Brain Injury Research Center and Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Hougland MT, Harrison BJ, Magnuson DSK, Rouchka EC, Petruska JC. The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in Lumbar Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Survival Time. Front Physiol 2013; 3:478. [PMID: 23316162 PMCID: PMC3540763 DOI: 10.3389/fphys.2012.00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12-week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.
Collapse
Affiliation(s)
- M Tyler Hougland
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY, USA ; Laboratory of Neural Physiology and Plasticity, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery Louisville, KY, USA
| | | | | | | | | |
Collapse
|
24
|
Callaerts-Vegh Z, Leo S, Vermaercke B, Meert T, D'Hooge R. LPA5 receptor plays a role in pain sensitivity, emotional exploration and reversal learning. GENES BRAIN AND BEHAVIOR 2012; 11:1009-19. [PMID: 23039190 DOI: 10.1111/j.1601-183x.2012.00840.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/27/2012] [Accepted: 08/22/2012] [Indexed: 11/26/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid acting on the nervous system through at least 6 different G protein-coupled receptors. In this study, we examined mice lacking the LPA5 receptor using an extensive battery of behavioral tests. LPA5-deficient mice showed decreased pain sensitivity in tail withdrawal, faster recovery in one inflammatory pain procedure (complete Freund's adjuvant-induced inflammation) and attenuated responses under specific neuropathic pain conditions. Notably, deletion of LPA5 also induced nocturnal hyperactivity and reduced anxiety in the mutant mice. Several exploratory tasks revealed signs of reduced anxiety in LPA5 knockout mice including increased visits to the arena center and reduced thigmotaxis in the open field, and more open arm entries in the elevated plus maze. Finally, LPA5 knockout mice also displayed marked reduction in social exploration, although several other tests indicated that these mice were able to respond normally to environmental stimuli. While learning and memory performance was not impaired in LPA5-deficient mice, we found differences, e.g., targeted swim strategy and reversal learning, as well as scheduled appetitive conditioning that might indicate differential motivational behavior. These results imply that LPA5 might be involved in both nociception and mechanisms of pain hypersensitivity, as well as in anxiety-related and motivational behaviors. These observations further support the proposed involvement of LPA signaling in psychopathology.
Collapse
Affiliation(s)
- Z Callaerts-Vegh
- Laboratory of Biological Psychology, Leuven Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven
| | - S Leo
- Laboratory of Biological Psychology, Leuven Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven.,Department of Neuroscience, Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | - B Vermaercke
- Laboratory of Biological Psychology, Leuven Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven
| | - T Meert
- Laboratory of Biological Psychology, Leuven Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven.,Department of Neuroscience, Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Leuven Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven
| |
Collapse
|
25
|
Rothe K, Solinski HJ, Boekhoff I, Gudermann T, Breit A. Morphine activates the E twenty six-like transcription factor-1/serum response factor pathway via extracellular signal-regulated kinases 1/2 in F11 cells derived from dorsal root ganglia neurons. J Pharmacol Exp Ther 2012; 342:41-52. [PMID: 22454534 DOI: 10.1124/jpet.112.192757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Morphine-induced signaling via opioid receptors (ORs) in dorsal root ganglia (DRG) neurons, the spinal cord, and various brain regions has been shown to modulate gene activity. Hitherto, little attention has been paid to extracellular signal-regulated kinases-1/2 (ERK-1/2)-mediated activation of the serum response factor (SRF) and ternary complex factors (TCFs) such as the E twenty six-like transcription factor-1 (ELK-1) in this context. Using TCF/SRF-dependent reporter gene constructs, a specific ERK-1/2 inhibitor and a dominant-negative ELK-1 mutant, we show herein that morphine activates ELK-1 via ERK-1/2 in DRG-derived F11 cells endogenously expressing μ and δ ORs. Previous studies with glioma cell lines such as NG108-15 cells attributed morphine-induced gene expression to the activation of the cAMP-responsive element binding protein (CREB). Thus, we also analyzed morphine-dependent activation of CREB in F11 and NG108-15 cells. In contrast to the CREB stimulation found in NG108-15 cells, we observed an inhibitory effect of morphine in F11 cells, indicating cell type-specific regulation of CREB by morphine. To obtain data about putative target genes of morphine-induced ELK-1/SRF activation, we analyzed mRNA levels of 15 ELK-1/SRF-dependent genes in cultured rat DRG neurons and F11 cells. We identified the early growth response protein-4 (EGR-4) as the strongest up-regulated gene in both cell types and observed ELK-1 activity-dependent activation of an EGR-4-driven reporter in F11 cells. Overall, we reveal an important role of ELK-1 for morphine-dependent gene induction in DRG-derived cells and propose that ELK-1 and EGR-4 contribute to the effects of morphine on neuronal plasticity.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Early Growth Response Transcription Factors/genetics
- Early Growth Response Transcription Factors/metabolism
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- MAP Kinase Signaling System/drug effects
- Mice
- Morphine/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Signal Transduction/drug effects
- Ternary Complex Factors/genetics
- Ternary Complex Factors/metabolism
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
- Up-Regulation/drug effects
- ets-Domain Protein Elk-1/genetics
- ets-Domain Protein Elk-1/metabolism
Collapse
Affiliation(s)
- Kathrin Rothe
- Walther-Straub-Institut of Pharmacology and Toxicology, Ludwig-Maximilians University of Munich, Goethestrasse 33, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
26
|
Lee JW, Jergova S, Furmanski O, Gajavelli S, Sagen J. Predifferentiated GABAergic neural precursor transplants for alleviation of dysesthetic central pain following excitotoxic spinal cord injury. Front Physiol 2012; 3:167. [PMID: 22754531 PMCID: PMC3385582 DOI: 10.3389/fphys.2012.00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/08/2012] [Indexed: 12/26/2022] Open
Abstract
Intraspinal quisqualic acid (QUIS) injury induce (i) mechanical and thermal hyperalgesia, (ii) progressive self-injurious overgrooming of the affected dermatome. The latter is thought to resemble painful dysesthesia observed in spinal cord injury (SCI) patients. We have reported previously loss of endogenous GABA immunoreactive (IR) cells in the superficial dorsal horn of QUIS rats 2 weeks post injury. Further histological evaluation showed that GABA-, glycine-, and synaptic vesicular transporter VIAAT-IR persisted but were substantially decreased in the injured spinal cord. In this study, partially differentiated GABA-IR embryonic neural precursor cells (NPCs) were transplanted into the spinal cord of QUIS rats to reverse overgrooming by replenishing lost inhibitory circuitry. Rat E14 NPCs were predifferentiated in 0.1 ng/ml FGF-2 for 4 h prior to transplantation. In vitro immunocytochemistry of transplant cohort showed large population of GABA-IR NPCs that double labeled with nestin but few colocalized with NeuN, indicating partial maturation. Two weeks following QUIS lesion at T12-L1, and following the onset of overgrooming, NPCs were transplanted into the QUIS lesion sites; bovine adrenal fibroblast cells were used as control. Overgrooming was reduced in >55.5% of NPC grafted animals, with inverse relationship between the number of surviving GABA-IR cells and the size of overgrooming. Fibroblast-control animals showed a progressive worsening of overgrooming. At 3 weeks post-transplantation, numerous GABA-, nestin-, and GFAP-IR cells were present in the lesion site. Surviving grafted GABA-IR NPCs were NeuN+ and GFAP−. These results indicate that partially differentiated NPCs survive and differentiate in vivo into neuronal cells following transplantation into an injured spinal cord. GABA-IR NPC transplants can restore lost dorsal horn inhibitory signaling and are useful in alleviating central pain following SCI.
Collapse
Affiliation(s)
- Jeung Woon Lee
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami Miami, FL, USA
| | | | | | | | | |
Collapse
|
27
|
Choi DC, Lee JY, Lim EJ, Baik HH, Oh TH, Yune TY. Inhibition of ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats. Exp Neurol 2012; 236:268-82. [PMID: 22634758 DOI: 10.1016/j.expneurol.2012.05.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/23/2012] [Accepted: 05/16/2012] [Indexed: 12/16/2022]
Abstract
Acupuncture (AP) is currently used worldwide to relieve pain. However, little is known about its mechanisms of action. We found that after spinal cord injury (SCI), AP inhibited the production of superoxide anion (O(2)·), which acted as a modulator for microglial activation, and the analgesic effect of AP was attributed to its anti-microglial activating action. Direct injection of a ROS scavenger inhibited SCI-induced NP. After contusion injury which induces the below-level neuropathic pain (NP), Shuigou and Yanglingquan acupoints were applied. AP relieved mechanical allodynia and thermal hyperalgesia, while vehicle and simulated AP did not. AP also decreased the proportion of activated microglia, and inhibited both p38MAPK and ERK activation in microglia at the L4-5. Also, the level of prostaglandin E(2) (PGE2), which is produced via ERK signaling and mediates the below-level pain through PGE2 receptor, was reduced by AP. Injection of p38MAPK or ERK inhibitors attenuated NP and decreased PGE2 production. Furthermore, ROS produced after injury-induced p38MAPK and ERK activation in microglia, and mediated mechanical allodynia and thermal hyperalgesia, which were inhibited by AP or a ROS scavenger. AP also inhibited the expression of inflammatory mediators. Therefore, our results suggest that the analgesic effect of AP may be partly mediated by inhibiting ROS-induced microglial activation and inflammatory responses after SCI and provide the possibility that AP can be used effectively as a non-pharmacological intervention for SCI-induced chronic NP in patients.
Collapse
Affiliation(s)
- Doo C Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Lau D, Harte SE, Morrow TJ, Wang S, Mata M, Fink DJ. Herpes simplex virus vector-mediated expression of interleukin-10 reduces below-level central neuropathic pain after spinal cord injury. Neurorehabil Neural Repair 2012; 26:889-97. [PMID: 22593113 DOI: 10.1177/1545968312445637] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neuroimmune activation in the spinal dorsal horn plays an important role in the pathogenesis of chronic pain after peripheral nerve injury. OBJECTIVE The aim of this study was to examine the role of neuroimmune activation in below-level neuropathic pain after traumatic spinal cord injury (SCI). METHODS Right hemilateral SCI was created in male Sprague-Dawley rats by controlled blunt impact through a T12 laminectomy. Pain-related behaviors were assessed using both evoked reflex responses and an operant conflict-avoidance test. Neuroimmune activation was blocked by the anti-inflammatory cytokine interleukin-10 (IL-10) delivered by a nonreplicating herpes simplex virus (HSV)-based gene transfer vector (vIL10). Markers of neuroimmune activation were assessed using immunohistochemistry and Western blot. RESULTS One week after SCI, injured animals demonstrated mechanical allodynia, thermal hyperalgesia, and mechanical hyperalgesia in the hind limbs below the level of injury. Animals inoculated with vIL10 had a statistically significant reduction in all of these measures compared to injured rats or injured rats inoculated with control vector. Conflict-avoidance behavior of injured rats inoculated with vIL10 was consistent with significantly reduced pain compared with injured rats injected with control vector. These behavioral results correlated with a significant decrease in spinal tumor necrosis factor α (mTNFα) expression assessed by Western blot and astrocyte activation assessed by glial fibrillary acidic protein immunohistochemistry. CONCLUSION Below-level pain after SCI is characterized by neuroimmune activation (increase mTNFα and astrocyte activation). Blunting of the neuroimmune response by HSV-mediated delivery of IL-10 reduced pain-related behaviors, and may represent a potential novel therapeutic agent.
Collapse
Affiliation(s)
- Darryl Lau
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Wang LN, Yang JP, Ji FH, Zhan Y, Jin XH, Xu QN, Wang XY, Zuo JL. Brain-derived neurotrophic factor modulates N-methyl-D-aspartate receptor activation in a rat model of cancer-induced bone pain. J Neurosci Res 2012; 90:1249-60. [PMID: 22354476 DOI: 10.1002/jnr.22815] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/03/2011] [Accepted: 09/15/2011] [Indexed: 01/26/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) released within the spinal cord induces phosphorylation of N-methyl-D-aspartate (NMDA) receptors on the spinal cord neurons. This process is necessary for maintaining pain hypersensitivity after nerve injury. However, little is known about the role of BDNF and NMDA receptors in cancer-induced bone pain (CIBP), whose features are unique. This study demonstrates a critical role of the BDNF-modulated NMDA subunit 1 (NR1) in the induction and maintenance of behavioral hypersensitivity in a rat model of CIBP, both in the spinal cord and in the dorsal root ganglia (DRG). We selectively suppressed BDNF expression by RNA interference (RNAi) using intrathecal administration of BDNF small interfering RNA (siRNA). Then, we assessed mechanical threshold and spontaneous pain in CIBP rats. Real-time PCR, Western blotting, and fluorescent immunohistochemical staining were used to detect BDNF or NR1 both in vivo and in vitro. BDNF and phospho-NR1 were expressed under CIBP experimental conditions, with expression levels peaking at day 6 (BDNF) or 9 (NR1). Intrathecal BDNF siRNA prevented CIBP at an early stage of tumor growth (days 4-6). However, at later stages (days 10-12), intrathecal BDNF siRNA only attenuated, but did not completely block, the established CIBP. BDNF-induced NMDA receptor activation in the spinal cord or DRG leads to central sensitization and behavioral hypersensitivity. Thus, BDNF might provide a targeting opportunity for alleviating CIBP.
Collapse
Affiliation(s)
- Li-Na Wang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Calcium/calmodulin dependent kinase II contributes to persistent central neuropathic pain following spinal cord injury. Pain 2012; 153:710-721. [PMID: 22296735 DOI: 10.1016/j.pain.2011.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/22/2011] [Accepted: 12/13/2011] [Indexed: 01/18/2023]
Abstract
Chronic central neuropathic pain after central nervous system injuries remains refractory to therapeutic interventions. A novel approach would be to target key intracellular signaling proteins that are known to contribute to continued activation by phosphorylation of kinases, transcription factors, and/or receptors that contribute to changes in membrane excitability. We demonstrate that one signaling kinase, calcium/calmodulin-dependent kinase II (CaMKII), is critical in maintaining aberrant dorsal horn neuron hyperexcitability in the neuropathic pain condition after spinal cord injury (SCI). After contusion SCI at spinal level T10, activated CaMKII (phosphorylated, pCaMKII) expression is significantly upregulated in the T7/8 spinal dorsal horn in neurons, but not glial cells, and in oligodendrocytes in the dorsal column in the same rats that displayed at-level mechanical allodynia. Furthermore, identified spinothalamic neurons demonstrated significant increases of pCaMKII after SCI compared to sham-treated control animals. However, neither astrocytes nor microglia showed pCaMKII expression in either sham-treated or SCI rats. To demonstrate causality, treatment of SCI rats with KN-93, which prevents CaMKII activation, significantly attenuated at-level mechanical allodynia and aberrant wide dynamic range neuronal activity evoked by brush, pressure, and pinch stimuli and a graded series of von Frey stimuli, respectively. Persistent CaMKII activation contributes to chronic central neuropathic pain by mechanisms that involve maintained hyperexcitability of wide dynamic range dorsal horn neurons. Furthermore, targeting key signaling proteins is a novel, useful therapeutic strategy for treating chronic central neuropathic pain.
Collapse
|
32
|
Crown ED. The role of mitogen activated protein kinase signaling in microglia and neurons in the initiation and maintenance of chronic pain. Exp Neurol 2011; 234:330-9. [PMID: 22062045 DOI: 10.1016/j.expneurol.2011.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/17/2011] [Accepted: 10/23/2011] [Indexed: 12/13/2022]
Abstract
Effective treatments for patients suffering from chronic pain remain an area of intense focus within the pharmaceutical industry, as the development of novel therapies would help to treat an area of significant unmet medical need. The successful development of pharmacological agents to treat inflammatory and neuropathic pain conditions relies on a thorough understanding of the mechanisms that underlie the development and maintenance of chronic pain states. The goal of this review is to highlight recent discoveries regarding the intracellular signaling mechanisms that appear to play a critical role in persistent inflammatory and neuropathic pain. The review will focus on the mitogen activated protein kinase family of enzymes and the data suggesting that treatments designed to inhibit the activation of these enzymes may lead to significant advancements in the treatment of chronic pain. The review will also highlight the important interplay between neurons and non-neuronal cells (i.e., microglia and astrocytes) within the dorsal horn of the spinal cord in the generation and maintenance of chronic inflammatory and neuropathic pain.
Collapse
|
33
|
Klinger M, Sacks S, Cervero F. A role for extracellular signal-regulated kinases 1 and 2 in the maintenance of persistent mechanical hyperalgesia in ovariectomized mice. Neuroscience 2011; 172:483-93. [DOI: 10.1016/j.neuroscience.2010.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 12/13/2022]
|
34
|
Extracellular signal-regulated kinases in pain of peripheral origin. Eur J Pharmacol 2010; 650:8-17. [PMID: 20950608 DOI: 10.1016/j.ejphar.2010.09.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/01/2010] [Accepted: 09/23/2010] [Indexed: 12/17/2022]
Abstract
Activation of members of the family of enzymes known as extracellular signal-regulated kinases (ERKs) is now known to be involved in the development and/or maintenance of the pain associated with many inflammatory conditions, such as herniated spinal disc pain, chronic inflammatory articular pain, and the pain associated with bladder inflammation. Moreover, ERKs are implicated in the development of neuropathic pain signs in animals which are subjected to the lumbar 5 spinal nerve ligation model and the chronic constriction injury model of neuropathic pain. The position has now been reached where all scientists working on pain subjects ought to be aware of the importance of ERKs, if only because certain of these enzymes are increasingly employed as experimental markers of nociceptive processing. Here, we introduce the reader, first, to the intracellular context in which these enzymes function. Thereafter, we consider the involvement of ERKs in mediating nociceptive signalling to the brain resulting from noxious stimuli at the periphery which will be interpreted by the brain as pain of peripheral origin.
Collapse
|
35
|
Daulhac L, Maffre V, Mallet C, Etienne M, Privat AM, Kowalski-Chauvel A, Seva C, Fialip J, Eschalier A. Phosphorylation of spinal N-methyl-d-aspartate receptor NR1 subunits by extracellular signal-regulated kinase in dorsal horn neurons and microglia contributes to diabetes-induced painful neuropathy. Eur J Pain 2010; 15:169.e1-169.e12. [PMID: 20594879 DOI: 10.1016/j.ejpain.2010.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/10/2010] [Accepted: 06/01/2010] [Indexed: 01/15/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) contributes to central sensitization in the spinal cord, a phenomenon which comprises various pathophysiological mechanisms responsible for neuropathic pain-like signs in animal models. NMDAR function is modulated by post-translational modifications including phosphorylation, and this is proposed to underlie its involvement in the production of pain hypersensitivity. As in diabetic patients, streptozotocin-induced diabetic rats exhibit or not somatic mechanical hyperalgesia; these rats were named DH and DNH respectively. At three weeks of diabetes, we present evidence that somatic mechanical hyperalgesia was correlated with an enhanced phosphorylation of the NMDAR NR1 subunit (pNR1) in the rat spinal cord. This increase was not found in normal and DNH rats, suggesting that this regulation was specific to hyperalgesia. Double immunofluorescence studies revealed that the numbers of pNR1-immunoreactive neurons and microglial cells were significantly increased in all laminae (I-II and III-VI) of the dorsal horn from DH animals. Western-blots analysis showed no change in NR1 protein levels, whatever the behavioural and glycemic status of the animals. Chronic intrathecal treatment (5μg/rat/day for 7days) by U0126 and MK801, which blocked MEK (an upstream kinase of extracellular signal-regulated protein kinase: ERK) and the NMDAR respectively, simultaneously suppressed somatic mechanical hyperalgesia developed by diabetic rats and decreased pNR1. These results indicate for the first time that increased expression of pNR1 is regulated by ERK and the NMDAR via a feedforward mechanism in spinal neurons and microglia and represents one mechanism involved in central sensitization and somatic mechanical hyperalgesia after diabetes.
Collapse
Affiliation(s)
- Laurence Daulhac
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Faculté de Pharmacie, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cruz CD, Cruz F. The ERK 1 and 2 pathway in the nervous system: from basic aspects to possible clinical applications in pain and visceral dysfunction. Curr Neuropharmacol 2010; 5:244-52. [PMID: 19305741 PMCID: PMC2644492 DOI: 10.2174/157015907782793630] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/09/2007] [Accepted: 07/19/2007] [Indexed: 12/16/2022] Open
Abstract
The extracellular signal-regulated kinases 1 and 2 (ERK) cascade, member of the mitogen-activated protein kinases superfamily of signalling pathways, is one of the best characterized pathways as many protein interactions and phosphorylation events have been systematically studied. Traditionally, ERK are associated with the regulation of proliferation and differentiation as well as survival of various cell types. Their activity is controlled by phosphorylation on specific aminoacidic residues, which is induced by a variety of external cues, including growth-promoting factors. In the nervous system, ERK phosphorylation is induced by binding of neurotrophins to their specific tyrosine kinase receptors or by neuronal activity leading to glutamate release and binding to its ionotropic and metabotropic receptors. Some studies have provided evidence of its importance in neuroplastic events. In particular, ERK phosphorylation in the spinal cord was shown to be nociceptive-specific and its upregulation, occurring in cases of chronic inflammatory and neuropathic pain, seems to be of the utmost importance to behavioural changes observed in those conditions. In fact, experiments using specific inhibitors of ERK phosphorylation have proved that ERK directly contributes to allodynia and hyperalgesia caused by spinal cord injury or chronic pain. Additionally, spinal ERK phosphorylation regulates the micturition reflex in experimental models of bladder inflammation and chronic spinal cord transection. In this review we will address the main findings that suggest that ERK might be a future therapeutic target to treat pain and other complications arising from chronic pain or neuronal injury.
Collapse
Affiliation(s)
- Célia D Cruz
- Institute of Histology and Embryology, Faculty of Medicine and IBMC, University of Porto, Portugal.
| | | |
Collapse
|
37
|
Chiu HY, Lin HH, Lai CC. Cocaine- and amphetamine-regulated transcript (CART) peptide activates ERK pathways via NMDA receptors in rat spinal cord dorsal horn in an age-dependent manner. ACTA ACUST UNITED AC 2010; 164:90-6. [PMID: 20595030 DOI: 10.1016/j.regpep.2010.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/10/2010] [Accepted: 05/30/2010] [Indexed: 12/24/2022]
Abstract
Activation of extracellular signal-regulated kinase (ERK) cascade in the spinal cord dorsal horn may contribute to pain hypersensitivity. Our recent study showed that cocaine- and amphetamine-regulated transcript peptide fragment 55-102 (CARTp) increased the levels of phosphoserine 896 and phosphoserine 897 on the N-methyl-d-aspartate (NMDA) receptor NR1 subunit (pNR1-ser896 and pNR1-ser897) via protein kinase A (PKA) and protein kinase C (PKC) signaling pathways leading to increases in NMDA receptor function in spinal cord dorsal horn neurons. Because NMDA receptor, PKC, and PKA signaling pathways may participate in ERK activation, we examined the effects of CARTp on ERK activation in spinal cord dorsal horn neurons in vitro. Western blot analysis showed a significant increase in the level of phosphorylated (activated) ERK (pERK) in the dorsal part of the spinal cord slices after incubation of the slices with CARTp (300nM). Co-administration of CARTp with an NMDA receptor antagonist, MK801 or AP5, or an ERK inhibitor PD98059 blocked the increase in the level of pERK. Interestingly, the increase in the level of pERK by CARTp was observed in postnatal week 3 (W3) and postnatal week 4 (W4), but not in postnatal week 2 (W2) rats. The age-related responses were also noted by CARTp-induced increases in the levels of pNR1-ser896 and pNR1-ser897. In the in vitro electrophysiological study, CARTp increased the amplitude of NMDA-mediated depolarizations in spinal substantia gelatinosa neurons of W3 and W4 rats, but not W2 rats. The results suggest that CARTp activation of ERK signals via the NMDA receptor in the spinal cord dorsal horn was age-dependent.
Collapse
Affiliation(s)
- Hong-Yi Chiu
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | | | | |
Collapse
|
38
|
Spinal cord injuries containing asymmetrical damage in the ventrolateral funiculus is associated with a higher incidence of at-level allodynia. THE JOURNAL OF PAIN 2010; 11:864-75. [PMID: 20338826 DOI: 10.1016/j.jpain.2009.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 10/09/2009] [Accepted: 12/10/2009] [Indexed: 01/13/2023]
Abstract
UNLABELLED Approximately 70% of male rats receiving severe T8 spinal contusions develop allodynia in T5-7 dermatomes (at-level) beginning 2 weeks after injury. In contrast, rats having either complete transections or dorsal hemisections do not develop allodynia at-level after chronic spinal cord injury (SCI). In the present study, incomplete laceration and contusion injuries were made to test for neuroanatomical correlates between areas of white matter damage/sparing at the lesion epicenter and the presence/absence of allodynia. After incomplete laceration lesions and 6 weeks of behavioral testing, histological reconstruction and analysis of the lesion epicenters revealed a significant difference (P < .001) in the amount of ventrolateral funiculus (VLF) asymmetry between rats showing pain-like responses evoked by touch (74.5% +/- 8.4% side-to-side difference in VLF damage) versus those not responding to touch (11.3% +/- 4.4% side-to-side difference in VLF damage). A 5-week mean allodynia score for each rat that incorporates a full range of forces that are all innocuous in intact controls revealed that the degree of hypersensitivity at level is related to the extent of VLF asymmetry after SCI. No other damaged spinal white matter or gray matter area was correlated with sensitivity to touch. Similar findings were obtained for rats receiving T8 contusions, a more clinically relevant injury. These data suggest that different extents of damage/sparing between the 2 sides of VLF probably are a requisite for the development of allodynia after SCI. PERSPECTIVE A side-to-side lesion asymmetry after chronic SCI in a rodent model was found to be highly correlated with the presence and degree of allodynia. Greater insight of key factors contributing to the development and maintenance of chronic neuropathic pain is important for improving quality of life.
Collapse
|
39
|
Yu CG, Yezierski RP, Joshi A, Raza K, Li Y, Geddes JW. Involvement of ERK2 in traumatic spinal cord injury. J Neurochem 2010; 113:131-42. [PMID: 20067580 DOI: 10.1111/j.1471-4159.2010.06579.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) are implicated in the pathophysiology of spinal cord injury (SCI). However, the specific functions of individual ERK isoforms in neurodegeneration are largely unknown. We investigated the hypothesis that ERK2 activation may contribute to pathological and functional deficits following SCI and that ERK2 knockdown using RNA interference may provide a novel therapeutic strategy for SCI. Lentiviral ERK2 shRNA and siRNA were utilized to knockdown ERK2 expression in the spinal cord following SCI. Pre-injury intrathecal administration of ERK2 siRNA significantly reduced excitotoxic injury-induced activation of ERK2 (p < 0.001) and caspase 3 (p < 0.01) in spinal cord. Intraspinal administration of lentiviral ERK2 shRNA significantly reduced ERK2 expression in the spinal cord (p < 0.05), but did not alter ERK1 expression. Administration of the lentiviral ERK2 shRNA vector 1 week prior to severe spinal cord contusion injury resulted in a significant improvement in locomotor function (p < 0.05), total tissue sparing (p < 0.05), white matter sparing (p < 0.05), and gray matter sparing (p < 0.05) 6 weeks following severe contusive SCI. Our results suggest that ERK2 signaling is a novel target associated with the deleterious consequences of spinal injury.
Collapse
Affiliation(s)
- Chen-Guang Yu
- Spinal Cord and Brain Injury Research Center and Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Oh MJ, Seo TB, Kwon KB, Yoon SJ, Elzi DJ, Kim BG, Namgung U. Axonal Outgrowth and Erk1/2 Activation by Training after Spinal Cord Injury in Rats. J Neurotrauma 2009; 26:2071-82. [DOI: 10.1089/neu.2008.0800] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Myung-Jin Oh
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Tae Beom Seo
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Ku-Birm Kwon
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Sung-Jin Yoon
- Department of Physical Education, Korea University, Seoul, Korea
| | - David J. Elzi
- Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, Texas
| | - Byung G. Kim
- Brain Disease Research Center, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| |
Collapse
|
41
|
Peng G, Han M, Du Y, Lin A, Yu L, Zhang Y, Jing N. SIP30 is regulated by ERK in peripheral nerve injury-induced neuropathic pain. J Biol Chem 2009; 284:30138-47. [PMID: 19723624 DOI: 10.1074/jbc.m109.036756] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ERK plays an important role in chronic neuropathic pain. However, the underlying mechanism is largely unknown. Here we show that in chronic constriction injury-treated rat spinal cords, up-regulation of SIP30 (SNAP25-interacting protein 30), which is involved in the development and maintenance of chronic constriction injury-induced neuropathic pain, correlates with ERK activation and that the up-regulation of SIP30 is suppressed by intrathecal delivery of the MEK inhibitor U0126. In PC12 cells, up-regulation of SIP30 by nerve growth factor is also dependent on ERK activation. We found that there is an ERK-responsive region in the rat sip30 promoter. Activation of ERK promotes the recruitment of the transcription factor cyclic AMP-response element-binding protein to the sip30 gene promoter. Taken together, our results provide a potential downstream target of ERK activation-mediated neuropathic pain.
Collapse
Affiliation(s)
- Guangdun Peng
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Gwak YS, Unabia GC, Hulsebosch CE. Activation of p-38alpha MAPK contributes to neuronal hyperexcitability in caudal regions remote from spinal cord injury. Exp Neurol 2009; 220:154-61. [PMID: 19699199 DOI: 10.1016/j.expneurol.2009.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/10/2009] [Accepted: 08/13/2009] [Indexed: 12/24/2022]
Abstract
In the present study, we examined whether activation of p-38alpha MAPK modulates mechanical allodynia and neuronal hyperexcitability, and if propentofylline (PPF, a glial modulator) modulates specifically localized activated p-38alpha MAPK expression in caudal regions remote from a low thoracic hemisection injury in rats. T13 spinal hemisection produces bilateral mechanical allodynia in hindpaws with evoked (in response to mechanical stimuli) neuronal hyperexcitability in lumbar spinal wide dynamic range (WDR) neurons compared to sham controls. The mechanical allodynia and the evoked activity of WDR neurons is attenuated by intrathecal and topical administration of SB203580, an inhibitor of p-38 MAPK activation, dose dependently (p<0.05); however, the spontaneous activity showed no significant differences compared to sham controls. After T13 spinal hemisection, significantly increased phosphorylated (activated form) p-38alpha MAPK expression was present in both superficial and deep dorsal horn neurons as well as in microglia, but not in astrocytes, in the lumbar spinal cord compared to sham controls (p<0.05). Intrathecal application of PPF significantly attenuated the expression of phosphorylated p-38alpha MAPK in superficial dorsal horn neurons (10 mM) and in microglia (1 and 10 mM) in the lumbar spinal cord compared to the hemisection group (p<0.05). In conclusion, our present data demonstrate that activated neuronal and microglial, but not astrocytic, p-38alpha MAPK contributes to the maintenance of neuronal hyperexcitability in caudal regions following spinal cord injury.
Collapse
Affiliation(s)
- Young S Gwak
- Department of Neuroscience, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA.
| | | | | |
Collapse
|
43
|
Teraishi T, Miura K. Toward anin situphospho-protein atlas: phospho- and site-specific antibody-based spatio-temporally systematized detection of phosphorylated proteinsin vivo. Bioessays 2009; 31:831-42. [DOI: 10.1002/bies.200900006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Intracerebroventricular Administration of Ouabain to Rats Changes the Expression of NMDA Receptor Subunits in Cerebral Cortex and Hippocampus. Neurochem Res 2009; 34:1650-7. [DOI: 10.1007/s11064-009-9956-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 03/11/2009] [Indexed: 01/29/2023]
|
45
|
Yune TY, Park HG, Lee JY, Oh TH. Estrogen-Induced Bcl-2 Expression after Spinal Cord Injury Is Mediated through Phosphoinositide-3-Kinase/Akt-Dependent CREB Activation. J Neurotrauma 2008; 25:1121-31. [DOI: 10.1089/neu.2008.0544] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Tae Y. Yune
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
| | - Hong G. Park
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
| | - Jee Y. Lee
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Tae H. Oh
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
| |
Collapse
|
46
|
Crown ED, Gwak YS, Ye Z, Johnson KM, Hulsebosch CE. Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury. Exp Neurol 2008; 213:257-67. [PMID: 18590729 DOI: 10.1016/j.expneurol.2008.05.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 01/26/2023]
Abstract
Recent work regarding chronic central neuropathic pain (CNP) following spinal cord injury (SCI) suggests that activation of key signaling molecules such as members of the mitogen activated protein kinase (MAPK) family play a role in the expression of at-level mechanical allodynia. Previously, we have shown that the development of at-level CNP following moderate spinal cord injury is correlated with increased expression of the activated (and thus phosphorylated) forms of the MAPKs extracellular signal related kinase and p38 MAPK. The current study extends this work by directly examining the role of p38 MAPK in the maintenance of at-level CNP following spinal cord injury. Using a combination of behavioral, immunocytochemical, and electrophysiological measures we demonstrate that increased activation of p38 MAPK occurs in the spinal cord just rostral to the site of injury in rats that develop at-level mechanical allodynia after moderate SCI. Immunocytochemical analyses indicate that the increases in p38 MAPK activation occurred in astrocytes, microglia, and dorsal horn neurons in the spinal cord rostral to the site of injury. Inhibiting the enzymatic activity of p38 MAPK dose dependently reverses the behavioral expression of at-level mechanical allodynia and also decreases the hyperexcitability seen in thoracic dorsal horn neurons after moderate SCI. Taken together, these novel data are the first to demonstrate causality that increased activation of p38 MAPK in multiple cell types play an important role in the maintenance of at-level CNP following spinal cord injury.
Collapse
Affiliation(s)
- Eric D Crown
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1043, USA.
| | | | | | | | | |
Collapse
|
47
|
Garcia-Larrea L, Magnin M. Physiopathologie de la douleur neuropathique : revue des modèles expérimentaux et des mécanismes proposés. Presse Med 2008; 37:315-40. [DOI: 10.1016/j.lpm.2007.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 01/22/2023] Open
|
48
|
Fu ES, Zhang YP, Sagen J, Yang ZQ, Bethea JR. Transgenic glial nuclear factor-kappa B inhibition decreases formalin pain in mice. Neuroreport 2007; 18:713-7. [PMID: 17426605 DOI: 10.1097/wnr.0b013e3280d9e869] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this work, we studied transgenic glial fibrillary acidic protein-IkappaBalpha-dn mice that selectively inactivate the classical nuclear factor kappaB pathway by overexpressing the inhibitory protein of kappaBalpha in astrocytes, under the control of glial fibrillary acidic protein promoter. We sought to determine if glial nuclear factor kappaB inhibition decreases formalin pain. Formalin testing was carried out on 25-35 g littermate adult male wild-type and transgenic C57Bl/6 mice. Formalin increased spinal cord c-Fos expression and glial fibrillary acidic protein immunostaining in both wild-type and transgenic mice. Transgenic glial fibrillary acidic protein-inhibitory protein of kappaBalpha-dn mice had lower duration of formalin-induced paw-licking behavior. These data support a role of glial nuclear factor kappaB inhibition in reducing pain after peripheral nerve inflammation.
Collapse
Affiliation(s)
- Eugene S Fu
- Department of Anesthesiology, University of Miami School of Medicine, Miami, Florida 33136, USA.
| | | | | | | | | |
Collapse
|
49
|
Zhao P, Waxman SG, Hains BC. Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci 2007; 27:2357-68. [PMID: 17329433 PMCID: PMC6673468 DOI: 10.1523/jneurosci.0138-07.2007] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many patients with traumatic spinal cord injury (SCI) report pain that persists indefinitely and is resistant to available therapeutic approaches. We recently showed that microglia become activated after experimental SCI and dynamically maintain hyperresponsiveness of spinal cord nociceptive neurons and pain-related behaviors. Mechanisms of signaling between microglia and neurons that help to maintain abnormal pain processing are unknown. In this study, adult male Sprague Dawley rats underwent T9 spinal cord contusion injury. Four weeks after injury when lumbar dorsal horn multireceptive neurons became hyperresponsive and when behavioral nociceptive thresholds to mechanical and thermal stimuli were decreased, we tested the hypothesis that prostaglandin E2 (PGE2) contributes to signaling between microglia and neurons. Immunohistochemical data showed specific localization of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2), an upstream regulator of PGE2 release, to microglial cells and a neuronal localization of the PGE2 receptor E-prostanoid 2 (EP2). Enzyme immunoassay analysis showed that PGE2 release was dependent on microglial activation and ERK1/2 phosphorylation. Pharmacological antagonism of PGE2 release was achieved with the mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] and the microglial inhibitor minocycline. Cyclooxygenase-2 expression in microglia was similarly reduced by MEK1/2 inhibition. PD98059 and EP2 receptor blockade with AH6809 (6-isopropoxy-9-oxoxanthene-2-carboxylic acid) resulted in a decrease in hyperresponsiveness of dorsal horn neurons and partial restoration of behavioral nociceptive thresholds. Selective targeting of dorsal horn microglia with the Mac-1-SAP immunotoxin, a chemical conjugate of mouse monoclonal antibody to CD11b and the ribosome-inactivating protein saporin, resulted in reduced microglia staining, reduction in PGE2 levels, and reversed pain-related behaviors [corrected]. On the basis of these observations, we propose a PGE2-dependent, ERK1/2-regulated microglia-neuron signaling pathway that mediates the microglial component of pain maintenance after injury to the spinal cord.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, and Rehabilitation Research Center, Virginia Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, and Rehabilitation Research Center, Virginia Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Bryan C. Hains
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, and Rehabilitation Research Center, Virginia Connecticut Healthcare System, West Haven, Connecticut 06516
| |
Collapse
|
50
|
Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Zhang YQ. Protein kinases as potential targets for the treatment of pathological pain. Handb Exp Pharmacol 2007:359-89. [PMID: 17087130 DOI: 10.1007/978-3-540-33823-9_13] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pathological pain or clinical pain refers to tissue injury-induced inflammatory pain and nerve injury-induced neuropathic pain and is often chronic. Pathological pain is an expression of neural plasticity that occurs both in the peripheral nervous system (e.g., primary sensory nociceptors), termed peripheral sensitization, and in the central nervous system (e.g., dorsal horn and brain neurons), termed central sensitization. Our insufficient understanding of mechanisms underlying the induction and maintenance of injury-induced neuronal plasticity hinders successful treatment for pathological pain. The human genome encodes 518 protein kinases, representing one of the largest protein families. There is growing interest in developing protein kinase inhibitors for the treatment of a number of diseases. Although protein kinases were not favored as targets for analgesics, studies in the last decade have demonstrated important roles of these kinases in regulating neuronal plasticity and pain sensitization. Multiple protein kinases have been implicated in peripheral and central sensitization following intense noxious stimuli and injuries. In particular, mitogen-activated protein kinases (MAPKs), consisting of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), are downstream to many kinases and are activated in primary sensory and dorsal horn neurons by nociceptive activity, growth factors and inflammatory mediators, contributing to the induction and maintenance of pain sensitization via posttranslational, translational, and transcriptional regulation. MAPKs are also activated in spinal glial cells (microglia and astrocytes) after injuries, leading to the synthesis of inflammatory mediators/neuroactive substances that act on nociceptive neurons, enhancing and prolonging pain sensitization. Inhibition of multiple kinases has been shown to attenuate inflammatory and neuropathic pain in different animal models. Development of specific inhibitors for protein kinases to target neurons and glial cells will shed light on the development of new therapies for debilitating chronic pain.
Collapse
Affiliation(s)
- R R Ji
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MRB 604, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|