1
|
Do C, Lang C, Lin J, Darbary H, Krupska I, Gaba A, Petukhova L, Vonsattel JP, Gallagher M, Goland R, Clynes R, Dwork A, Kral J, Monk C, Christiano A, Tycko B. Mechanisms and Disease Associations of Haplotype-Dependent Allele-Specific DNA Methylation. Am J Hum Genet 2016; 98:934-955. [PMID: 27153397 DOI: 10.1016/j.ajhg.2016.03.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/25/2016] [Indexed: 10/21/2022] Open
Abstract
Haplotype-dependent allele-specific methylation (hap-ASM) can impact disease susceptibility, but maps of this phenomenon using stringent criteria in disease-relevant tissues remain sparse. Here we apply array-based and Methyl-Seq approaches to multiple human tissues and cell types, including brain, purified neurons and glia, T lymphocytes, and placenta, and identify 795 hap-ASM differentially methylated regions (DMRs) and 3,082 strong methylation quantitative trait loci (mQTLs), most not previously reported. More than half of these DMRs have cell type-restricted ASM, and among them are 188 hap-ASM DMRs and 933 mQTLs located near GWAS signals for immune and neurological disorders. Targeted bis-seq confirmed hap-ASM in 12/13 loci tested, including CCDC155, CD69, FRMD1, IRF1, KBTBD11, and S100A(∗)-ILF2, associated with immune phenotypes, MYT1L, PTPRN2, CMTM8 and CELF2, associated with neurological disorders, NGFR and HLA-DRB6, associated with both immunological and brain disorders, and ZFP57, a trans-acting regulator of genomic imprinting. Polymorphic CTCF and transcription factor (TF) binding sites were over-represented among hap-ASM DMRs and mQTLs, and analysis of the human data, supplemented by cross-species comparisons to macaques, indicated that CTCF and TF binding likelihood predicts the strength and direction of the allelic methylation asymmetry. These results show that hap-ASM is highly tissue specific; an important trans-acting regulator of genomic imprinting is regulated by this phenomenon; and variation in CTCF and TF binding sites is an underlying mechanism, and maps of hap-ASM and mQTLs reveal regulatory sequences underlying supra- and sub-threshold GWAS peaks in immunological and neurological disorders.
Collapse
|
2
|
Ladd AN. CUG-BP, Elav-like family (CELF)-mediated alternative splicing regulation in the brain during health and disease. Mol Cell Neurosci 2012; 56:456-64. [PMID: 23247071 DOI: 10.1016/j.mcn.2012.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 11/27/2022] Open
Abstract
Alternative splicing is an important mechanism for generating transcript and protein diversity. In the brain, alternative splicing is particularly prevalent, and alternative splicing factors are highly enriched. These include the six members of the CUG-BP, Elav-like family (CELF). This review summarizes what is known about the expression of different CELF proteins in the nervous system and the evidence that they are important in neural development and function. The involvement of CELF proteins in the pathogenesis of a number of neurodegenerative disorders, including myotonic dystrophy, spinocerebellar ataxia, fragile X syndrome, spinal muscular atrophy, and spinal and bulbar muscular atrophy is discussed. Finally, the known targets of CELF-mediated alternative splicing regulation in the nervous system and the functional consequences of these splicing events are reviewed. This article is part of a Special Issue entitled "RNA and splicing regulation in neurodegeneration."
Collapse
Affiliation(s)
- Andrea N Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
3
|
Lee JH, Cheng R, Barral S, Reitz C, Medrano M, Lantigua R, Jiménez-Velazquez IZ, Rogaeva E, St George-Hyslop PH, Mayeux R. Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. ARCHIVES OF NEUROLOGY 2011; 68:320-8. [PMID: 21059989 PMCID: PMC3268783 DOI: 10.1001/archneurol.2010.292] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To identify novel loci for late-onset Alzheimer disease (LOAD) in Caribbean Hispanic individuals and to replicate the findings in a publicly available data set from the National Institute on Aging Late-Onset Alzheimer's Disease Family Study. DESIGN Nested case-control genome-wide association study. SETTING The Washington Heights-Inwood Columbia Aging Project and the Estudio Familiar de Influencia Genetica de Alzheimer study. PARTICIPANTS Five hundred forty-nine affected and 544 unaffected individuals of Caribbean Hispanic ancestry. INTERVENTION The Illumina HumanHap 650Y chip for genotyping. MAIN OUTCOME MEASURE Clinical diagnosis or pathologically confirmed diagnosis of LOAD. RESULTS The strongest support for allelic association was for rs9945493 on 18q23 (P=1.7×10(-7)), but 22 additional single-nucleotide polymorphisms (SNPs) had a P value less than 9×10(-6) under 3 different analyses: unadjusted and stratified by the presence or absence of the APOE ε4 allele. Of these SNPs, 5 SNPs (rs4669573 and rs10197851 on 2p25.1; rs11711889 on 3q25.2; rs1117750 on 7p21.1; and rs7908652 on 10q23.1) were associated with LOAD in an independent cohort from the National Institute on Aging Late-Onset Alzheimer's Disease Family Study. We also replicated genetic associations for CLU, PICALM, and BIN1. CONCLUSIONS Our genome-wide search of Caribbean Hispanic individuals identified several novel genetic variants associated with LOAD and replicated these associations in a white cohort. We also replicated associations in CLU, PICALM, and BIN1 in the Caribbean Hispanic cohort.
Collapse
Affiliation(s)
- Joseph H Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Gertrude H Sergievsky Center, 630 W 168th St, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wijsman EM, Pankratz ND, Choi Y, Rothstein JH, Faber KM, Cheng R, Lee JH, Bird TD, Bennett DA, Diaz-Arrastia R, Goate AM, Farlow M, Ghetti B, Sweet RA, Foroud TM, Mayeux R, The NIA-LOAD/NCRAD Family Study Group. Genome-wide association of familial late-onset Alzheimer's disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genet 2011; 7:e1001308. [PMID: 21379329 PMCID: PMC3040659 DOI: 10.1371/journal.pgen.1001308] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/12/2011] [Indexed: 12/13/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of dementia in the elderly. The National Institute of Aging-Late Onset Alzheimer's Disease Family Study and the National Cell Repository for Alzheimer's Disease conducted a joint genome-wide association study (GWAS) of multiplex LOAD families (3,839 affected and unaffected individuals from 992 families plus additional unrelated neurologically evaluated normal subjects) using the 610 IlluminaQuad panel. This cohort represents the largest family-based GWAS of LOAD to date, with analyses limited here to the European-American subjects. SNPs near APOE gave highly significant results (e.g., rs2075650, p = 3.2×10(-81)), but no other genome-wide significant evidence for association was obtained in the full sample. Analyses that stratified on APOE genotypes identified SNPs on chromosome 10p14 in CUGBP2 with genome-wide significant evidence for association within APOE ε4 homozygotes (e.g., rs201119, p = 1.5×10(-8)). Association in this gene was replicated in an independent sample consisting of three cohorts. There was evidence of association for recently-reported LOAD risk loci, including BIN1 (rs7561528, p = 0.009 with, and p = 0.03 without, APOE adjustment) and CLU (rs11136000, p = 0.023 with, and p = 0.008 without, APOE adjustment), with weaker support for CR1. However, our results provide strong evidence that association with PICALM (rs3851179, p = 0.69 with, and p = 0.039 without, APOE adjustment) and EXOC3L2 is affected by correlation with APOE, and thus may represent spurious association. Our results indicate that genetic structure coupled with ascertainment bias resulting from the strong APOE association affect genome-wide results and interpretation of some recently reported associations. We show that a locus such as APOE, with large effects and strong association with disease, can lead to samples that require appropriate adjustment for this locus to avoid both false positive and false negative evidence of association. We suggest that similar adjustments may also be needed for many other large multi-site studies.
Collapse
Affiliation(s)
- Ellen M. Wijsman
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Nathan D. Pankratz
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yoonha Choi
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Joseph H. Rothstein
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
| | - Kelley M. Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rong Cheng
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Joseph H. Lee
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Thomas D. Bird
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alison M. Goate
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bernardino Ghetti
- Department of Pathology, Division of Neuropathology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Richard Mayeux
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | | |
Collapse
|
5
|
Impact of selenite and selenate on differentially expressed genes in rat liver examined by microarray analysis. Biosci Rep 2010; 30:293-306. [PMID: 19681755 DOI: 10.1042/bsr20090089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sodium selenite and sodium selenate are approved inorganic Se (selenium) compounds in human and animal nutrition serving as precursors for selenoprotein synthesis. In recent years, numerous additional biological effects over and above their functions in selenoproteins have been reported. For greater insight into these effects, our present study examined the influence of selenite and selenate on the differential expression of genes encoding non-selenoproteins in the rat liver using microarray technology. Five groups of nine growing male rats were fed with an Se-deficient diet or diets supplemented with 0.20 or 1.0 mg of Se/kg as sodium selenite or sodium selenate for 8 weeks. Genes that were more than 2.5-fold up- or down-regulated by selenite or selenate compared with Se deficiency were selected. GPx1 (glutathione peroxidase 1) was up-regulated 5.5-fold by both Se compounds, whereas GPx4 was up-regulated by only 1.4-fold. Selenite and selenate down-regulated three phase II enzymes. Despite the regulation of many other genes in an analogous manner, frequently only selenate changed the expression of these genes significantly. In particular, genes involved in the regulation of the cell cycle, apoptosis, intermediary metabolism and those involved in Se-deficiency disorders were more strongly influenced by selenate. The comparison of selenite- and selenate-regulated genes revealed that selenate may have additional functions in the protection of the liver, and that it may be more active in metabolic regulation. In our opinion the more pronounced influence of selenate compared with selenite on differential gene expression results from fundamental differences in the metabolism of these two Se compounds.
Collapse
|
6
|
Otsuka N, Tsuritani K, Sakurai T, Kato K, Matoba R, Itoh J, Okuyama S, Yamada K, Yoneda Y. Transcriptional induction and translational inhibition of Arc and Cugbp2 in mice hippocampus after transient global ischemia under normothermic condition. Brain Res 2009; 1287:136-45. [PMID: 19559013 DOI: 10.1016/j.brainres.2009.06.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
Abstract
Mild hypothermia protects against neuronal damage after transient global ischemia in experimental animals. The exact mechanism of this protective effect remains to be elucidated. The purpose of the present study was to investigate the molecular mechanisms relevant to different neurologic responses to hypothermia and normothermia. Transient global ischemia was induced in C57BL/6 mice by bilateral common carotid artery occlusion for 10 min. Hypothermia provided robust neuroprotection in the hippocampus region and dramatically reduced the mortality rate. Using adaptor-tagged competitive polymerase chain reaction, we obtained the relative transcription levels of 1210 genes in the hippocampal region and compared the expression patterns of these genes. Two genes, Activity-regulated cytoskeleton-associated protein (Arc) and CUG-binding protein-2 (Cugbp2), showed remarkable and persistent increases in their expression levels in normothermic mice, compared with in both sham and hypothermic mice. Despite the increased transcription of Arc and Cugbp2, an immunohistochemistry analysis did not show comparable increases in the translations of both genes. Only a transient increase in Arc protein was observed in the granule cells of the dentate gyrus at 6 h after reperfusion. A remarkable decrease in Cugbp2 protein was observed in the pyramidal cells of the hippocampal CA1-CA3, in accordance with the progress of neuronal degeneration. A decrease in Cugbp2 protein was not observed in hypothermic mice. These results suggest that transient global ischemia induces the translational inhibition of genes with increased expression not in hypothermic, but in normothermic mice. Thus, translational inhibition might play an important role in the progress of neuronal injury after transient global ischemia.
Collapse
Affiliation(s)
- Noboru Otsuka
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|