1
|
Loffreda A, Nizzardo M, Arosio A, Ruepp MD, Calogero RA, Volinia S, Galasso M, Bendotti C, Ferrarese C, Lunetta C, Rizzuti M, Ronchi AE, Mühlemann O, Tremolizzo L, Corti S, Barabino SML. miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Prog Neurobiol 2020; 190:101803. [PMID: 32335272 DOI: 10.1016/j.pneurobio.2020.101803] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentless and fatal neurological disease characterized by the selective degeneration of motor neurons. No effective therapy is available for this disease. Several lines of evidence indicate that alteration of RNA metabolism, including microRNA (miRNA) processing, is a relevant pathogenetic factor and a possible therapeutic target for ALS. Here, we showed that the abundance of components in the miRNA processing machinery is altered in a SOD1-linked cellular model, suggesting consequent dysregulation of miRNA biogenesis. Indeed, high-throughput sequencing of the small RNA fraction showed that among the altered miRNAs, miR-129-5p was increased in different models of SOD1-linked ALS and in peripheral blood cells of sporadic ALS patients. We demonstrated that miR-129-5p upregulation causes the downregulation of one of its targets: the RNA-binding protein ELAVL4/HuD. ELAVL4/HuD is predominantly expressed in neurons, where it controls several key neuronal mRNAs. Overexpression of pre-miR-129-1 inhibited neurite outgrowth and differentiation via HuD silencing in vitro, while its inhibition with an antagomir rescued the phenotype. Remarkably, we showed that administration of an antisense oligonucleotide (ASO) inhibitor of miR-129-5p to an ALS animal model, SOD1 (G93A) mice, result in a significant increase in survival and improved the neuromuscular phenotype in treated mice. These results identify miR-129-5p as a therapeutic target that is amenable to ASO modulation for the treatment of ALS patients.
Collapse
Affiliation(s)
- Alessia Loffreda
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Alessandro Arosio
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20052 Monza, MB, Italy
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, Università degli Studi, 44121 Ferrara, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, Università degli Studi, 44121 Ferrara, Italy
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Carlo Ferrarese
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20052 Monza, MB, Italy; Neurology Unit, San Gerardo Hospital, Monza, MB, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, 20162 Milan, Italy
| | - Mafalda Rizzuti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Antonella E Ronchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Lucio Tremolizzo
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20052 Monza, MB, Italy; Neurology Unit, San Gerardo Hospital, Monza, MB, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Italy; Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Silvia M L Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Genevini P, Papiani G, Ruggiano A, Cantoni L, Navone F, Borgese N. Amyotrophic lateral sclerosis-linked mutant VAPB inclusions do not interfere with protein degradation pathways or intracellular transport in a cultured cell model. PLoS One 2014; 9:e113416. [PMID: 25409455 PMCID: PMC4237408 DOI: 10.1371/journal.pone.0113416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
VAPB is a ubiquitously expressed, ER-resident adaptor protein involved in interorganellar lipid exchange, membrane contact site formation, and membrane trafficking. Its mutant form, P56S-VAPB, which has been linked to a dominantly inherited form of Amyotrophic Lateral Sclerosis (ALS8), generates intracellular inclusions consisting in restructured ER domains whose role in ALS pathogenesis has not been elucidated. P56S-VAPB is less stable than the wild-type protein and, at variance with most pathological aggregates, its inclusions are cleared by the proteasome. Based on studies with cultured cells overexpressing the mutant protein, it has been suggested that VAPB inclusions may exert a pathogenic effect either by sequestering the wild-type protein and other interactors (loss-of-function by a dominant negative effect) or by a more general proteotoxic action (gain-of-function). To investigate P56S-VAPB degradation and the effect of the inclusions on proteostasis and on ER-to-plasma membrane protein transport in a more physiological setting, we used stable HeLa and NSC34 Tet-Off cell lines inducibly expressing moderate levels of P56S-VAPB. Under basal conditions, P56S-VAPB degradation was mediated exclusively by the proteasome in both cell lines, however, it could be targeted also by starvation-stimulated autophagy. To assess possible proteasome impairment, the HeLa cell line was transiently transfected with the ERAD (ER Associated Degradation) substrate CD3δ, while autophagic flow was investigated in cells either starved or treated with an autophagy-stimulating drug. Secretory pathway functionality was evaluated by analyzing the transport of transfected Vesicular Stomatitis Virus Glycoprotein (VSVG). P56S-VAPB expression had no effect either on the degradation of CD3δ or on the levels of autophagic markers, or on the rate of transport of VSVG to the cell surface. We conclude that P56S-VAPB inclusions expressed at moderate levels do not interfere with protein degradation pathways or protein transport, suggesting that the dominant inheritance of the mutant gene may be due mainly to haploinsufficiency.
Collapse
Affiliation(s)
- Paola Genevini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, and Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milano, Italy
| | - Giulia Papiani
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, and Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milano, Italy
| | - Annamaria Ruggiano
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, and Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milano, Italy
| | - Lavinia Cantoni
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Francesca Navone
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, and Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milano, Italy
- * E-mail: (FN); (NB)
| | - Nica Borgese
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, and Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milano, Italy
- Department of Health Science, Magna Graecia University of Catanzaro, Catanzaro, Italy
- * E-mail: (FN); (NB)
| |
Collapse
|
3
|
Gregoire S, Glitzos K, Kwon I. Suppressing mutation-induced protein aggregation in mammalian cells by mutating residues significantly displaced upon the original mutation. Biochem Eng J 2014; 91:196-203. [PMID: 26190933 DOI: 10.1016/j.bej.2014.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mutations introduced to wild-type proteins naturally, or intentionally via protein engineering, often lead to protein aggregation. In particular, protein aggregation within mammalian cells has significant implications in the disease pathology and biologics production; making protein aggregation modulation within mammalian cells a very important engineering topic. Previously, we showed that the semi-rational design approach can be used to reduce the intracellular aggregation of a protein by recovering the conformational stability that was lowered by the mutation. However, this approach has limited utility when no rational design approach to enhance conformational stability is readily available. In order to overcome this limitation, we investigated whether the modification of residues significantly displaced upon the original mutation is an effective way to reduce protein aggregation in mammalian cells. As a model system, human copper, zinc superoxide dismutase mutant containing glycine to alanine mutation at position 93 (SOD1G93A) was used. A panel of mutations was introduced into residues substantially displaced upon the G93A mutation. By using cell-based aggregation assays, we identified several novel variants of SOD1G93A with reduced aggregation propensity within mammalian cells. Our findings successfully demonstrate that the aggregation of a mutant protein can be suppressed by mutating the residues significantly displaced upon the original mutation.
Collapse
Affiliation(s)
- Simpson Gregoire
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4741, United States
| | - Kelly Glitzos
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4741, United States
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4741, United States ; School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| |
Collapse
|
4
|
Gregoire S, Zhang S, Costanzo J, Wilson K, Fernandez EJ, Kwon I. Cis-suppression to arrest protein aggregation in mammalian cells. Biotechnol Bioeng 2013; 111:462-74. [PMID: 24114411 DOI: 10.1002/bit.25119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/18/2013] [Accepted: 09/09/2013] [Indexed: 12/20/2022]
Abstract
Protein misfolding and aggregation are implicated in numerous human diseases and significantly lower production yield of proteins expressed in mammalian cells. Despite the importance of understanding and suppressing protein aggregation in mammalian cells, a protein design and selection strategy to modulate protein misfolding/aggregation in mammalian cells has not yet been reported. In this work, we address the particular challenge presented by mutation-induced protein aggregation in mammalian cells. We hypothesize that an additional mutation(s) can be introduced in an aggregation-prone protein variant, spatially near the original mutation, to suppress misfolding and aggregation (cis-suppression). As a model protein, we chose human copper, zinc superoxide dismutase mutant (SOD1(A4V) ) containing an alanine to valine mutation at residue 4, associated with the familial form of amyotrophic lateral sclerosis. We used the program RosettaDesign to identify Phe20 in SOD1(A4V) as a key residue responsible for SOD1(A4V) conformational destabilization. This information was used to rationally develop a pool of candidate mutations at the Phe20 site. After two rounds of mammalian-cell based screening of the variants, three novel SOD1(A4V) variants with a significantly reduced aggregation propensity inside cells were selected. The enhanced stability and reduced aggregation propensity of the three novel SOD1(A4V) variants were verified using cell fractionation and in vitro stability assays.
Collapse
Affiliation(s)
- Simpson Gregoire
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, 22904-4741
| | | | | | | | | | | |
Collapse
|
5
|
Gregoire S, Kwon I. A revisited folding reporter for quantitative assay of protein misfolding and aggregation in mammalian cells. Biotechnol J 2012; 7:1297-307. [PMID: 22623352 DOI: 10.1002/biot.201200103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/15/2012] [Accepted: 05/21/2012] [Indexed: 01/12/2023]
Abstract
Protein misfolding and aggregation play important roles in many physiological processes. These include pathological protein aggregation in neurodegenerative diseases and biopharmaceutical protein aggregation during production in mammalian cells. To develop a simple non-invasive assay for protein misfolding and aggregation in mammalian cells, the folding reporter green fluorescent protein (GFP) system, originally developed for bacterial cells, was evaluated. As a folding reporter, GFP was fused to the C-terminus of a panel of human copper/zinc superoxide dismutase (SOD1) mutants with varying misfolding/aggregation propensities. Flow cytometric analysis of transfected HEK293T and NSC-34 cells revealed that the mean fluorescence intensities of the cells expressing GFP fusion of SOD1 variants exhibited an inverse correlation with the misfolding/aggregation propensities of the four SOD1 variants. Our results support the hypothesis that the extent of misfolding/aggregation of a target protein in mammalian cells can be quantitatively estimated by measuring the mean fluorescence intensity of the cells expressing GFP fusion. The assay method developed herein will facilitate the understanding of aggregation process of SOD1 variants and the identification of aggregation inhibitors. The method also has great promise for misfolding/aggregation studies of other proteins in mammalian cells.
Collapse
Affiliation(s)
- Simpson Gregoire
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
6
|
Glutamate and glutathione interplay in a motor neuronal model of amyotrophic lateral sclerosis reveals altered energy metabolism. Neurobiol Dis 2011; 43:346-55. [PMID: 21530659 DOI: 10.1016/j.nbd.2011.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/23/2011] [Accepted: 04/07/2011] [Indexed: 12/20/2022] Open
Abstract
Impairment of mitochondrial function might contribute to oxidative stress associated with neurodegeneration in amyotrophic lateral sclerosis (ALS). Glutamate levels in tissues of ALS patients are sometimes altered. In neurons, mitochondrial metabolism of exogenous glutamine is mainly responsible for the net synthesis of glutamate, which is a neurotransmitter, but it is also necessary for the synthesis of glutathione, the main endogenous antioxidant. We investigated glutathione synthesis and glutamine/glutamate metabolism in a motor neuronal model of familial ALS. In standard culture conditions (with glutamine) or restricting glutamine or cystine, the level of glutathione was always lower in the cell line expressing the mutant (G93A) human Cu, Zn superoxide dismutase (G93ASOD1) than in the line expressing wild-type SOD1. With glutamine the difference in glutathione was associated with a lower glutamate and impairment of the glutamine/glutamate metabolism as evidenced by lower glutaminase and cytosolic malate dehydrogenase activity. d-β-hydroxybutyrate, as an alternative to glutamine as energy substrate in addition to glucose, reversed the decreases of cytosolic malate dehydrogenase activity and glutamate and glutathione. However, in the G93ASOD1 cell line, in all culture conditions the expression of pyruvate dehydrogenase kinase l protein, which down-regulates pyruvate dehydrogenase activity, was induced, together with an increase in lactate release in the medium. These findings suggest that the glutathione decrease associated with mutant SOD1 expression is due to mitochondrial dysfunction caused by the reduction of the flow of glucose-derived pyruvate through the TCA cycle; it implies altered glutamate metabolism and depends on the different mitochondrial energy substrates.
Collapse
|
7
|
Basso M, Samengo G, Nardo G, Massignan T, D'Alessandro G, Tartari S, Cantoni L, Marino M, Cheroni C, De Biasi S, Giordana MT, Strong MJ, Estevez AG, Salmona M, Bendotti C, Bonetto V. Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS One 2009; 4:e8130. [PMID: 19956584 PMCID: PMC2780298 DOI: 10.1371/journal.pone.0008130] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/10/2009] [Indexed: 01/12/2023] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease, and protein aggregation has been proposed as a possible pathogenetic mechanism. However, the aggregate protein constituents are poorly characterized so knowledge on the role of aggregation in pathogenesis is limited. Methodology/Principal Findings We carried out a proteomic analysis of the protein composition of the insoluble fraction, as a model of protein aggregates, from familial ALS (fALS) mouse model at different disease stages. We identified several proteins enriched in the detergent-insoluble fraction already at a preclinical stage, including intermediate filaments, chaperones and mitochondrial proteins. Aconitase, HSC70 and cyclophilin A were also significantly enriched in the insoluble fraction of spinal cords of ALS patients. Moreover, we found that the majority of proteins in mice and HSP90 in patients were tyrosine-nitrated. We therefore investigated the role of nitrative stress in aggregate formation in fALS-like murine motor neuron-neuroblastoma (NSC-34) cell lines. By inhibiting nitric oxide synthesis the amount of insoluble proteins, particularly aconitase, HSC70, cyclophilin A and SOD1 can be substantially reduced. Conclusion/Significance Analysis of the insoluble fractions from cellular/mouse models and human tissues revealed novel aggregation-prone proteins and suggests that nitrative stress contribute to protein aggregate formation in ALS.
Collapse
Affiliation(s)
- Manuela Basso
- Dulbecco Telethon Institute, Milan, Italy
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Giuseppina Samengo
- Dulbecco Telethon Institute, Milan, Italy
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Giovanni Nardo
- Dulbecco Telethon Institute, Milan, Italy
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Tania Massignan
- Dulbecco Telethon Institute, Milan, Italy
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Giuseppina D'Alessandro
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Silvia Tartari
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Lavinia Cantoni
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Marianna Marino
- Department of Neuroscience, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Cristina Cheroni
- Department of Neuroscience, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Silvia De Biasi
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Milan, Italy
| | | | - Michael J. Strong
- Robarts Research Institute and Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Alvaro G. Estevez
- Burke Medical Research Institute, White Plains, New York, United States of America
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Caterina Bendotti
- Department of Neuroscience, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Valentina Bonetto
- Dulbecco Telethon Institute, Milan, Italy
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
- * E-mail:
| |
Collapse
|
8
|
Tartari S, D'Alessandro G, Babetto E, Rizzardini M, Conforti L, Cantoni L. Adaptation to G93Asuperoxide dismutase 1 in a motor neuron cell line model of amyotrophic lateral sclerosis: the role of glutathione. FEBS J 2009; 276:2861-74. [PMID: 19459941 DOI: 10.1111/j.1742-4658.2009.07010.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Motor neuron degeneration in amyotrophic lateral sclerosis involves oxidative damage. Glutathione (GSH) is critical as an antioxidant and a redox modulator. We used a motor neuronal cell line (NSC-34) to investigate whether wild-type and familial amyotrophic lateral sclerosis-linked G93A mutant Cu,Zn superoxide dismutase (wt/G93ASOD1) modified the GSH pool and glutamate cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis. We studied the effect of various G93ASOD1 levels and exposure times. Mutant Cu,Zn superoxide dismutase induced an adaptive process involving the upregulation of GSH synthesis, even at very low expression levels. However, cells with a high level of G93ASOD1 cultured for 10 weeks showed GSH depletion and a decrease in expression of the modulatory subunit of GCL. These cells also had lower levels of GSH and GCL activity was not induced after treatment with the pro-oxidant tert-butylhydroquinone. Cells with a low level of G93ASOD1 maintained higher GSH levels and GCL activity, showing that the exposure time and the level of the mutant protein modulate GSH synthesis. We conclude that failure of the regulation of the GSH pathway caused by G93ASOD1 may contribute to motor neuron vulnerability and we identify this pathway as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Tartari
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
In generating a conditional transgenic murine model based on a tetracycline-regulated system, we obtained unexpected patterns of expression due to the transcriptional inactivity of the tet-responder promoter. Here we show strong cell-type-restricted expression that was variegated to an extent determined by the number of responder transgene copies integrated into the host genome.
Collapse
|
10
|
Klopotowska D, Strzadala L, Matuszyk J. Inducibility of doxycycline-regulated gene in neural and neuroendocrine cells strongly depends on the appropriate choice of a tetracycline-responsive promoter. Neurochem Int 2007; 52:221-9. [PMID: 17618706 DOI: 10.1016/j.neuint.2007.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/10/2007] [Accepted: 05/16/2007] [Indexed: 11/25/2022]
Abstract
Elucidation of the mechanisms underlying specific receptor activation of neural and neuroendocrine cells will require the establishment of cellular systems that permit the regulation of the expression of the protein of interest. In a tetracycline (Tet)-regulated system, the gene encoding the protein of interest is under the control of a Tet promoter and its transcription is activated in the presence of doxycycline (Dox) by the Tet transactivator rtTA. Acceptable inducibility of the gene's expression requires a high level of its expression in the presence of Dox and a minimal basal expression in the absence of Dox. Two Tet promoters are compared here, the original PhCMV*-1 and the second-generation Ptight, with respect to the inducibility of the gene of interest in neuroendocrine and neural cells genetically engineered to express rtTA, namely PC12-Tet-On cells and MB-G-18 cells (mouse brain-derived cells with the phenotype of neuron-restricted precursors). This study demonstrates that the use of Ptight provided a much higher Dox-induced maximal expression in both cell lines, while the basal activities of the two Tet promoters were at similar levels. The additional use of the Tet-controlled silencer (tTS) caused almost complete abrogation of the leakiness of the Ptight promoter and an increase in the inducibility of the regulated gene, but the maximal levels of gene expression driven in the presence of Dox were also markedly reduced.
Collapse
Affiliation(s)
- Dagmara Klopotowska
- Department of Experimental Oncology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | | | | |
Collapse
|
11
|
Raimondi A, Mangolini A, Rizzardini M, Tartari S, Massari S, Bendotti C, Francolini M, Borgese N, Cantoni L, Pietrini G. Cell culture models to investigate the selective vulnerability of motoneuronal mitochondria to familial ALS-linked G93ASOD1. Eur J Neurosci 2006; 24:387-99. [PMID: 16903849 DOI: 10.1111/j.1460-9568.2006.04922.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mitochondrial damage induced by superoxide dismutase (SOD1) mutants has been proposed to have a causative role in the selective degeneration of motoneurons in amyotrophic lateral sclerosis (ALS). In order to investigate the basis of the tissue specificity of mutant SOD1 we compared the effect of the continuous expression of wild-type or mutant (G93A) human SOD1 on mitochondrial morphology in the NSC-34 motoneuronal-like, the N18TG2 neuroblastoma and the non-neuronal Madin-Darby Canine Kidney (MDCK) cell lines. Morphological alterations of mitochondria were observed in NSC-34 expressing the G93A mutant (NSC-G93A) but not the wild-type SOD1, whereas a ten-fold greater level of total expression of the mutant had no effect on mitochondria of non-motoneuronal cell lines. Fragmented network, swelling and cristae remodelling but not vacuolization of mitochondria or other intracellular organelles were observed only in NSC-G93A cells. The mitochondrial alterations were not explained by a preferential localization of the mutant within NSC-G93A mitochondria, as a higher amount of the mutant SOD1 was found in mitochondria of MDCK-G93A cells. Our results suggest that mitochondrial vulnerability of motoneurons to G93ASOD1 is recapitulated in NSC-34 cells, and that peculiar features in network dynamics may account for the selective alterations of motoneuronal mitochondria.
Collapse
Affiliation(s)
- Andrea Raimondi
- Department of Pharmacology, School of Medicine, Center of Excellence on Neurodegenerative Diseases, University of Milano, Consiglio Nazionale delle Ricerche, CNR, Institute of Neuroscience, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|