1
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
2
|
Wu GF, Ren S, Tang RY, Xu C, Zhou JQ, Lin SM, Feng Y, Yang QH, Hu JM, Yang JC. Antidepressant effect of taurine in chronic unpredictable mild stress-induced depressive rats. Sci Rep 2017; 7:4989. [PMID: 28694433 PMCID: PMC5504064 DOI: 10.1038/s41598-017-05051-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Depression, a psychiatric and dysthymic disorder, severely affects the learning, work and life quality. The main pathogenesis of depression is associated with central nervous system (CNS) dysfunction. Taurine has been demonstrated to exert protective effects on the brain development and can improve learning ability and memory. Our study investigated the antidepressant-like effects of taurine pre-treatment by examining the changes in depression-like behavior, hormones, neurotransmitters, inflammatory factors and neurotrophic factors in the hippocampus of a chronic unpredictable mild stress (CUMS)-induced depressive rat model. Taurine was found to inhibit the decrease of sucrose consumption and prevent the deficiency of spatial memory and anxiety in rats exposed to CUMS, suggesting a preventive effect of taurine on depression-like behavior. Furthermore, the decreased levels of 5-hydroxytryptamine, dopamine, noradrenaline; the increased levels of glutamate, corticosterone; and the decreased expressions of fibroblast growth factor-2, vascular endothelial growth factor and brain derived neurotrophic factor in depressive rats were hindered by taurine pre-administration. However, tumor necrosis factor-α and interleukin-1β levels were not significantly changed by taurine. The results demonstrated that the anti-depressive effect of taurine may be involved in the regulation of hypothalamic-pituitary-adrenal (HPA) axis and the promotion of neurogenesis, neuronal survival and growth in the hippocampus.
Collapse
Affiliation(s)
- Gao-Feng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Shuang Ren
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Ri-Yi Tang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Chang Xu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Jia-Qi Zhou
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Shu-Mei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Ying Feng
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Qun-Hui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Jian-Min Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China.
| | - Jian-Cheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China.
| |
Collapse
|
3
|
Guillebaud F, Girardet C, Abysique A, Gaigé S, Barbouche R, Verneuil J, Jean A, Leprince J, Tonon MC, Dallaporta M, Lebrun B, Troadec JD. Glial Endozepines Inhibit Feeding-Related Autonomic Functions by Acting at the Brainstem Level. Front Neurosci 2017; 11:308. [PMID: 28611581 PMCID: PMC5447764 DOI: 10.3389/fnins.2017.00308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/16/2017] [Indexed: 01/05/2023] Open
Abstract
Endozepines are endogenous ligands for the benzodiazepine receptors and also target a still unidentified GPCR. The endozepine octadecaneuropeptide (ODN), an endoproteolytic processing product of the diazepam-binding inhibitor (DBI) was recently shown to be involved in food intake control as an anorexigenic factor through ODN-GPCR signaling and mobilization of the melanocortinergic signaling pathway. Within the hypothalamus, the DBI gene is mainly expressed by non-neuronal cells such as ependymocytes, tanycytes, and protoplasmic astrocytes, at levels depending on the nutritional status. Administration of ODN C-terminal octapeptide (OP) in the arcuate nucleus strongly reduces food intake. Up to now, the relevance of extrahypothalamic targets for endozepine signaling-mediated anorexia has been largely ignored. We focused our study on the dorsal vagal complex located in the caudal brainstem. This structure is strongly involved in the homeostatic control of food intake and comprises structural similarities with the hypothalamus. In particular, a circumventricular organ, the area postrema (AP) and a tanycyte-like cells forming barrier between the AP and the adjacent nucleus tractus solitarius (NTS) are present. We show here that DBI is highly expressed by ependymocytes lining the fourth ventricle, tanycytes-like cells, as well as by proteoplasmic astrocytes located in the vicinity of AP/NTS interface. ODN staining observed at the electron microscopic level reveals that ODN-expressing tanycyte-like cells and protoplasmic astrocytes are sometimes found in close apposition to neuronal elements such as dendritic profiles or axon terminals. Intracerebroventricular injection of ODN or OP in the fourth ventricle triggers c-Fos activation in the dorsal vagal complex and strongly reduces food intake. We also show that, similarly to leptin, ODN inhibits the swallowing reflex when microinjected into the swallowing pattern generator located in the NTS. In conclusion, we hypothesized that ODN expressing cells located at the AP/NTS interface could release ODN and modify excitability of NTS neurocircuitries involved in food intake control.
Collapse
Affiliation(s)
- Florent Guillebaud
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Clémence Girardet
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Anne Abysique
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Stéphanie Gaigé
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Rym Barbouche
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Jérémy Verneuil
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - André Jean
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine, University of Rouen NormadieMont-Saint-Aignan, France
| | - Marie-Christine Tonon
- Institut National de la Santé et de la Recherche Médicale U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine, University of Rouen NormadieMont-Saint-Aignan, France
| | - Michel Dallaporta
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Bruno Lebrun
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Jean-Denis Troadec
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| |
Collapse
|
4
|
Antidepressant-Like Effects of Fractions Prepared from Danzhi-Xiaoyao-San Decoction in Rats with Chronic Unpredictable Mild Stress: Effects on Hypothalamic-Pituitary-Adrenal Axis, Arginine Vasopressin, and Neurotransmitters. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6784689. [PMID: 27413389 PMCID: PMC4931053 DOI: 10.1155/2016/6784689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023]
Abstract
The aim of the present study was to investigate the antidepressant-like effects of two fractions, including petroleum ether soluble fraction (Fraction A, FA) and water-EtOH soluble fraction (Fraction B, FB) prepared from the Danzhi-xiaoyao-san (DZXYS) by using chronic unpredictable mild stress-induced depressive rat model. The results indicated that DZXYS could ameliorate the depression-like behavior in chronic stress model of rats. The inhibition of hyperactivity of HPA axis and the modulation of monoamine and amino acid neurotransmitters in the hippocampus may be the important mechanisms underlying the action of DZXYS antidepressant-like effect in chronically stressed rats.
Collapse
|
5
|
Detection, characterization and biological activities of [bisphospho-thr3,9]ODN, an endogenous molecular form of ODN released by astrocytes. Neuroscience 2015; 290:472-84. [PMID: 25639232 DOI: 10.1016/j.neuroscience.2015.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 11/23/2022]
Abstract
Astrocytes synthesize and release endozepines, a family of regulatory neuropeptides, including diazepam-binding inhibitor (DBI) and its processing fragments such as the octadecaneuropeptide (ODN). At the molecular level, ODN interacts with two types of receptors, i.e. it acts as an inverse agonist of the central-type benzodiazepine receptor (CBR), and as an agonist of a G protein-coupled receptor (GPCR). ODN exerts a wide range of biological effects mediated through these two receptors and, in particular, it regulates astrocyte activity through an autocrine/paracrine mechanism involving the metabotropic receptor. More recently, it has been shown that Müller glial cells secrete phosphorylated DBI and that bisphosphorylated ODN ([bisphospho-Thr(3,9)]ODN, bpODN) has a stronger affinity for CBR than ODN. The aim of the present study was thus to investigate whether bpODN is released by mouse cortical astrocytes and to compare its potency to ODN. Using a radioimmunoassay and mass spectrometry analysis we have shown that bpODN as well as ODN were released in cultured astrocyte supernatants. Both bpODN and ODN increased astrocyte calcium event frequency but in a very different range of concentration. Indeed, ODN stimulatory effect decreased at concentrations over 10(-10)M whereas bpODN increased the calcium event frequency at similar doses. In vivo effects of bpODN and ODN were analyzed in two behavioral paradigms involving either the metabotropic receptor (anorexia) or the CBR (anxiety). As previously described, ODN (100ng, icv) induced a significant reduction of food intake. Similar effect was achieved with bpODN but at a 10 times higher dose (1000 ng, icv). Similarly, and contrasting with our hypothesis, bpODN was also 10 times less potent than ODN to induce anxiety-related behavior in the elevated zero maze test. Thus, the present data do not support that phosphorylation of ODN is involved in receptor selectivity but indicate that it rather weakens ODN activity.
Collapse
|
6
|
Kaddour H, Hamdi Y, Vaudry D, Basille M, Desrues L, Leprince J, Castel H, Vaudry H, Tonon MC, Amri M, Masmoudi-Kouki O. The octadecaneuropeptide ODN prevents 6-hydroxydopamine-induced apoptosis of cerebellar granule neurons through a PKC-MAPK-dependent pathway. J Neurochem 2013; 125:620-33. [PMID: 23286644 DOI: 10.1111/jnc.12140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/31/2012] [Accepted: 01/02/2013] [Indexed: 12/27/2022]
Abstract
Oxidative stress, induced by various neurodegenerative diseases, initiates a cascade of events leading to apoptosis, and thus plays a critical role in neuronal injury. In this study, we have investigated the potential neuroprotective effect of the octadecaneuropeptide (ODN) on 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis in cerebellar granule neurons (CGN). ODN, which is produced by astrocytes, is an endogenous ligand for both central-type benzodiazepine receptors (CBR) and a metabotropic receptor. Incubation of neurons with subnanomolar concentrations of ODN (10⁻¹⁸ to 10⁻¹² M) inhibited 6-OHDA-evoked cell death in a concentration-dependent manner. The effect of ODN on neuronal survival was abrogated by the metabotropic receptor antagonist, cyclo₁₋₈ [DLeu⁵]OP, but not by a CBR antagonist. ODN stimulated polyphosphoinositide turnover and ERK phosphorylation in CGN. The protective effect of ODN against 6-OHDA toxicity involved the phospholipase C/ERK MAPK transduction cascade. 6-OHDA treatment induced an accumulation of reactive oxygen species, an increase of the expression of the pro-apoptotic gene Bax, a drop of the mitochondrial membrane potential and a stimulation of caspase-3 activity. Exposure of 6-OHDA-treated cells to ODN blocked all the deleterious effects of the toxin. Taken together, these data demonstrate for the first time that ODN is a neuroprotective agent that prevents 6-OHDA-induced oxidative stress and apoptotic cell death.
Collapse
Affiliation(s)
- Hadhemi Kaddour
- Laboratory of Functional Neurophysiology and Pathology, Research Unit, UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hamdi Y, Masmoudi-Kouki O, Kaddour H, Belhadj F, Gandolfo P, Vaudry D, Mokni M, Leprince J, Hachem R, Vaudry H, Tonon MC, Amri M. Protective effect of the octadecaneuropeptide on hydrogen peroxide-induced oxidative stress and cell death in cultured rat astrocytes. J Neurochem 2011; 118:416-28. [DOI: 10.1111/j.1471-4159.2011.07315.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
The Anorexigenic Action of the Octadecaneuropeptide (ODN) in Goldfish is Mediated Through the MC4R- and Subsequently the CRH Receptor-Signaling Pathways. J Mol Neurosci 2010; 42:74-9. [DOI: 10.1007/s12031-010-9346-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
|
9
|
Matsuda K, Wada K, Miura T, Maruyama K, Shimakura S, Uchiyama M, Leprince J, Tonon M, Vaudry H. Effect of the diazepam-binding inhibitor-derived peptide, octadecaneuropeptide, on food intake in goldfish. Neuroscience 2007; 150:425-32. [DOI: 10.1016/j.neuroscience.2007.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/02/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
10
|
Masmoudi-Kouki O, Gandolfo P, Castel H, Leprince J, Fournier A, Dejda A, Vaudry H, Tonon MC. Role of PACAP and VIP in astroglial functions. Peptides 2007; 28:1753-60. [PMID: 17655978 DOI: 10.1016/j.peptides.2007.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 11/30/2022]
Abstract
Astrocytes represent at least 50% of the volume of the human brain. Besides their roles in various supportive functions, astrocytes are involved in the regulation of stem cell proliferation, synaptic plasticity and neuroprotection. Astrocytes also influence neuronal physiology by responding to neurotransmitters and neuropeptides and by releasing regulatory factors termed gliotransmitters. In particular, astrocytes express the PACAP-specific receptor PAC1-R and the PACAP/VIP mutual receptors VPAC1-R and VPAC2-R during development and/or in the adult. There is now clear evidence that PACAP and VIP modulate a number of astrocyte activities such as proliferation, plasticity, glycogen production, and biosynthesis of neurotrophic factors and gliotransmitters.
Collapse
Affiliation(s)
- Olfa Masmoudi-Kouki
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
do Rego JC, Orta MH, Leprince J, Tonon MC, Vaudry H, Costentin J. Pharmacological characterization of the receptor mediating the anorexigenic action of the octadecaneuropeptide: evidence for an endozepinergic tone regulating food intake. Neuropsychopharmacology 2007; 32:1641-8. [PMID: 17151595 DOI: 10.1038/sj.npp.1301280] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptides of the endozepine family, including diazepam-binding inhibitor, the triakontatetraneuropeptide, and the octadecaneuropeptide (ODN), act through three types of receptors, that is, central-type benzodiazepine receptors (CBR), peripheral-type (mitochondrial) benzodiazepine receptors (PBR) and a metabotropic receptor positively coupled to phospholipase C via a pertussis toxin-sensitive G protein. We have previously reported that ODN exerts a potent anorexigenic effect in rat and we have found that the action of ODN is not affected by the mixed CBR/PBR agonist diazepam. In the present report, we have tested the possible involvement of the metabotropic receptor in the anorexigenic activity of ODN. Intracerebroventricular administration of the C-terminal octapeptide (OP) and its head-to-tail cyclic analog cyclo(1-8)OP (cOP) at a dose of 100 ng mimicked the inhibitory effect of ODN on food intake in food-deprived mice. The specific CBR antagonist flumazenil and the PBR antagonist PK11195 did not prevent the effect of ODN, OP, and cOP on food consumption. In contrast, the selective metabotropic endozepine receptor antagonist cyclo(1-8)[DLeu(5)]OP (100-1000 ng; cDLOP) suppressed the anorexigenic effect of ODN, OP, and cOP. At the highest concentration tested (1000 ng), cDLOP provoked by itself a significant increase in food intake. Taken together, the present results indicate that the anorexigenic effect of ODN and OP is mediated through activation of the metabotropic receptor recently characterized in astrocytes. The data also suggest that endogenous ODN, acting via this receptor, exerts an inhibitory tone on feeding behavior.
Collapse
Affiliation(s)
- Jean-Claude do Rego
- CNRS FRE 2735, Laboratory of Experimental Neuropsychopharmacology, European Institute for Peptide Research IFRMP 23, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France.
| | | | | | | | | | | |
Collapse
|
12
|
Pelletier G, Luu-The V, Li S, Bujold G, Labrie F. Localization and glucocorticoid regulation of 11β-hydroxysteroid dehydrogenase type 1 mRNA in the male mouse forebrain. Neuroscience 2007; 145:110-5. [PMID: 17207581 DOI: 10.1016/j.neuroscience.2006.11.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/20/2006] [Accepted: 11/20/2006] [Indexed: 11/28/2022]
Abstract
The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts the inactive 11-dehydrocorticosterone into the active glucocorticoid corticosterone. There is accumulating evidence indicating widespread expression of 11beta-HSD1 in the brain. However, there is little information about regulation of 11beta-HSD1 expression in this tissue. Using in situ hybridization involving use of 35S-labeled cRNA probe, we have studied the distribution of cells expressing 11beta-HSD1 mRNA in the male mouse forebrain as well as the effects of adrenalectomy (ADX) and acute administration of corticosterone (3 and 24 h) on 11beta-HSD1 mRNA levels. Cells expressing 11beta-HSD1 mRNA were mostly detected in the cerebral cortex, hippocampus, amygdala and medial preoptic area, with the highest expression in the cerebral cortex (retrosplenial granular area) and hippocampus (CA3 and granular layer of the gyrus dentatus). Seven days following ADX, 11beta-HSD mRNA levels were increased by 50% in the gyrus dentatus, by 100% in the CA3 area, and 105% in the cerebral cortex. Administration of corticosterone to ADX mice induced a significant decrease in mRNA, in both the hippocampus and cerebral cortex so that, at the 24 h time interval, the levels were similar to those observed in intact mice. These results clearly indicate that circulating corticosterone is downregulating the expression of 11beta-HSD1 mRNA in the two forebrain areas studied. This downregulation might contribute to maintain low intracellular corticosterone levels in central regions and then prevent the deleterious effects induced by high glucocorticoid levels.
Collapse
Affiliation(s)
- G Pelletier
- Oncology and Molecular Endocrinology Research Center, Centre de recherche du Centre Hospitalier de l'Université Laval, 2705 Laurier Boulevard, Québec, Québec, Canada G1V 4G2.
| | | | | | | | | |
Collapse
|
13
|
Compère V, Ouellet J, Luu-The V, Dureuil B, Tonon MC, Vaudry H, Labrie F, Pelletier G. Role of androgens and glucocorticoids in the regulation of diazepam-binding inhibitor mRNA levels in male mouse hypothalamus. Brain Res 2006; 1119:50-7. [PMID: 16963002 DOI: 10.1016/j.brainres.2006.08.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/11/2006] [Accepted: 08/12/2006] [Indexed: 10/24/2022]
Abstract
In peripheral organs, gonadal and adrenal steroids regulate diazepam-binding inhibitor (DBI) mRNA expression. In order to further investigate the involvement of peripheral steroid hormones in the modulation of brain DBI mRNA expression, we studied by semiquantitative in situ hybridization the effect of adrenalectomy (ADX) and castration (CX) and short-term replacement therapy on DBI mRNA levels in the male mouse hypothalamus. Cells expressing DBI mRNA were mostly observed in the arcuate nucleus, the median eminence and the ependyma bordering the third ventricle. In the median eminence and the ependyma bordering the third ventricule, the DBI gene expression was decreased in ADX rats and a single injection of corticosterone to ADX rats induced a significant increase in DBI gene expression at 3 and 12 h time intervals without completely restoring the basal DBI mRNA expression observed in intact mice. In the arcuate nucleus, ADX and corticosterone administration did not modify DBI mRNA expression. CX down-regulated DBI gene expression in the ependyma bordering the third ventricle. The administration of dihydrotestosterone (3-24 h) completely reversed the inhibitory effect of CX. In the median eminence and arcuate nucleus, neither CX or dihydrotestosterone administration modified DBI mRNA levels. These results suggest that the effects of glucocorticoids on the hypothalamo-pituitary-adrenocortical axis and androgens on the hypothalamo-pituitary-gonadal axis are mediated by DBI.
Collapse
Affiliation(s)
- V Compère
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U413, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|