1
|
Naspolini NF, Natividade AP, Asmus CIF, Moreira JC, Dominguez-Bello MG, Meyer A. Early-life gut microbiome is associated with behavioral disorders in the Rio birth cohort. Sci Rep 2025; 15:8674. [PMID: 40082490 PMCID: PMC11906608 DOI: 10.1038/s41598-024-81774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/28/2024] [Indexed: 03/16/2025] Open
Abstract
Emerging evidence has been linking changes in the early-life gut microbiome and neurodevelopmental outcomes. The founder bacteria that first colonize the infant's gut determine the microbial succession that signals host tissues and impact development including the brain. Here we investigated the association between the meconium microbiome and neurobehavior. To this end, we surveyed the 16S rRNA gene on meconium samples and assessed behavioral outcomes at six-months of age by the Denver Developmental Screening Test II (DDST-II). Among the four behavioral domains investigated, the personal-social domain was associated with significant differences in meconium bacterial beta diversity (unweighted UniFrac; R2 0.078, p = 0.021) and reduced alpha diversity (β = -2.290, 95% CI = -4.212; CI = -0.368), after adjustment for gestational antibiotics, preterm delivery, and delivery mode. Besides, this altered neurobehavior (failing to meet the milestone) was associated with overrepresented Ruminococcaceae, Christensenellaceae, and Eubacterium, Treponema, Senegalimassilia, Ruminiclostridium, Roseburia, Romboutsia, Prevotella, and Veillonella seminalis. Predicted functional genes showed reduced abundance in association with altered neurobehavior (all q < 0.15). Fine and gross motor skills presented no associations with the microbiome. This pilot study shows associations between the first gut microbiome and behavioral outcomes that deserve further studies in different neonate populations.
Collapse
Affiliation(s)
- Nathalia Ferrazzo Naspolini
- Oswaldo Cruz Foundation, National School of Public Health Sergio Arouca, Rio de Janeiro, Brazil.
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo, 03828-000, Brazil.
| | - Ana Paula Natividade
- Oswaldo Cruz Foundation, National School of Public Health Sergio Arouca, Rio de Janeiro, Brazil
| | | | - Josino Costa Moreira
- Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | - Armando Meyer
- Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Ren H, Kong X, Zhang Y, Deng F, Li J, Zhao F, Li P, Pei K, Tan J, Cheng Y, Wang Y, Zhang L, Wang Y, Hao X. The therapeutic potential of Ziziphi Spinosae Semen and Polygalae Radix in insomnia management: Insights from gut microbiota and serum metabolomics techniques. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118255. [PMID: 38670402 DOI: 10.1016/j.jep.2024.118255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ziziphi Spinosae Semen and Polygalae Radix (ZSS-PR) constitute a traditional Chinese herbal combination with notable applications in clinical and experimental settings due to their evident sedative and calming effects. Aligned with traditional Chinese medicine principles, Ziziphi Spinosae Semen supports cardiovascular health, nourishes the liver, and induces mental tranquillity. Simultaneously, Polygalae Radix elicits calming effects, fosters clear thinking, and reinstates proper coordination between the heart and kidneys. ZSS-PR is commonly employed as a therapeutic intervention for various insomnia types, demonstrating distinct clinical efficacy. Our previous study findings provide evidence that ZSS-PR administration significantly reduces sleep onset latency, increases overall sleep duration, and improves abnormal neurotransmitter levels in a murine insomnia model. AIM OF STUDY This investigation aimed to scrutinize the intrinsic regulatory mechanism of ZSS-PR in managing insomnia using gut microbiota and serum metabolomics techniques. MATERIALS AND METHODS Mice were given DL-4-Chlorophenylalanine to induce insomnia and then treated with ZSS-PR. The open-field test assessed the animals' spontaneous activity. Concentrations of neurotransmitters, endocrine hormones, and cytokines in the duodenum were measured using enzyme linked immunosorbent assay, and brain histopathology was evaluated with H&E staining. The impact of ZSS-PR on the metabolic profile was examined by liquid chromatography couped to high resolution mass spectrometry, and 16S rDNA sequencing was used to study the influence of ZSS-PR on the gut microbiota. Additionally, the content of short-chain fatty acids (SCFAs) was analyzed by GC-MS. Finally, correlation analysis investigated relationships between biochemical markers, metabolites, SCFAs, and gut microbiota. RESULTS ZSS-PR treatment significantly increased movement time and distance in mice with insomnia and improved pathological impairments in the cerebral cortex and hippocampus. It also restored abnormal levels of biochemical markers in the gut of insomnia-afflicted mice, including 5-hydroxytryptamine, dopamine, gastrin, melatonin, tumour necrosis factor-α, and interleukin-1β. Metabolomics findings showed that ZSS-PR had a significant restorative effect on 15 endogenous metabolites in mice with insomnia. Furthermore, ZSS-PR primarily influenced five metabolic pathways, such as phenylalanine, tyrosine, and tryptophan biosynthesis, glutamine, and glutamate metabolism. Additionally, gut microbiota analysis revealed notable alterations in both diversity and microbial composition after ZSS-PR treatment. These changes were primarily attributed to the relative abundances of microbiota, including Firmicutes, Bacteroidota, Fusobacteriota, Muribaculaceae_unclassified, and Ligilactobacillus. The results of SCFAs analysis demonstrated that ZSS-PR effectively restored abnormal levels of acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric acid, and valeric acid in insomniac mice. Subsequent correlation analysis revealed that microbiota show obvious correlations with both biochemical markers and metabolites. CONCLUSIONS The results provide compelling evidence that ZSS-PR effectively mitigates abnormal activity, reduces cerebral pathological changes, and restores abnormal levels of neurotransmitters, endocrine hormones, and cytokines in mice with insomnia. The underlying mechanism is intricately linked to the modulation of gut microbiota and endogenous metabolic pathways.
Collapse
Affiliation(s)
- Haiqin Ren
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Xiangpeng Kong
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Yue Zhang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Fanying Deng
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Jianli Li
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Fuxia Zhao
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Pei Li
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Ke Pei
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Jinyan Tan
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Yangang Cheng
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Yan Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Lu Zhang
- Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, No. 75, section 1, Jinci Road, WanBailin District, Taiyuan, 030024, China
| | - Yingli Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Xuliang Hao
- Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, No. 75, section 1, Jinci Road, WanBailin District, Taiyuan, 030024, China.
| |
Collapse
|
3
|
Dicks LMT. How important are fatty acids in human health and can they be used in treating diseases? Gut Microbes 2024; 16:2420765. [PMID: 39462280 PMCID: PMC11520540 DOI: 10.1080/19490976.2024.2420765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
Most of the short-chain fatty acids (SCFAs) are produced by Bifidobacterium, Lactobacillus, Lachnospiraceae, Blautia, Coprococcus, Roseburia, Facealibacterium and Oscillospira. Butyrate (C4H7O2-) supplies 70% of energy to intestinal epithelial cells (IECs), supports tight-junction protein formation, induces the production of inflammatory cytokines, and inhibits histone deacetylase (HDAC). Butyrate is also associated with the recovery of brain trauma, improvement of dementia, the alleviation of autoimmune encephalitis, and several intestinal disorders. Low levels of SCFAs are associated with hypertension, cardiovascular disease (CVD), strokes, obesity, and diabetes mellitus. Cis-palmitoleic acid (C16H30O2), a mono-unsaturated fatty acid (MUFA), increases insulin sensitivity and reduces the risk of developing CVD. Lipokine palmitoleic acid reduces the expression of pro-inflammatory cytokines IL-1β (pro-IL1β), tumor necrosis factor α (TNF-α), and isoleucine 6 (IL-6). Polyunsaturated fatty acids (PUFAs), such as omega-3 and omega-6, are supplied through the diet. The conversion of PUFAs by cyclooxygenases (COX) and lipoxygenases (LOX) leads to the production of anti-inflammatory prostaglandins and leukotrienes. Oxidation of linoleic acid (LA, C18H32O2), an omega-6 essential fatty acid, leads to the formation of 13-hydroperoxy octadecadienoic acid (13-HPODE, C18H32O4), which induces pro-inflammatory cytokines. Omega-3 PUFAs, such as eicosapentaenoic acid (EPA, C20H30O2) and docosahexaenoic acid (DHA, C22H32O2), lower triglyceride levels, lower the risk of developing some sort of cancers, Alzheimer's disease and dementia. In this review, the importance of SCFAs, MUFAs, PUFAs, and saturated fatty acids (SFAs) on human health is discussed. The use of fatty acids in the treatment of diseases is investigated.
Collapse
Affiliation(s)
- Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
4
|
Bahmani M, Mehrtabar S, Jafarizadeh A, Zoghi S, Heravi FS, Abbasi A, Sanaie S, Rahnemayan S, Leylabadlo HE. The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies. Curr Pharm Biotechnol 2024; 25:2089-2107. [PMID: 38288791 DOI: 10.2174/0113892010281892240116081031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Abbasi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
6
|
Fan L, Liu L, Rao X, Wang X, Luo H, Gan J. The 100 most-cited manuscripts in epilepsy epigenetics: a bibliometric analysis. Childs Nerv Syst 2023; 39:3111-3122. [PMID: 37340273 PMCID: PMC10643235 DOI: 10.1007/s00381-023-06032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE The top citation article reflects the developmental milestone of a given field. The purpose of this bibliometric analysis was to identify and assess the 100 most-cited (T100) articles on the epigenetics mechanism of epilepsy. METHODS The Web of Science Core Collection (WoSCC) database was used to investigate, and search terms related to epilepsy epigenetics were compiled. Results were ranked according to citation number. The publication year, citation density, authorship, journal, country, institution, manuscript type, theme, and clinical topics were further evaluated. RESULTS The Web of Science search returned a total of 1231 manuscripts. The number of citations for a manuscript ranges from 739 to 75. The greatest number of manuscripts in the top 100 was published in the Human Molecular Genetics and Neurobiology of Disease (n = 4). The journal with the highest 2021 impact factor was Nature Medicine (IF = 87.244). The most-cited paper by Aid et al. reported a new nomenclature for mouse and rat BDNF gene and its expression profiles. Most manuscripts were original articles (n = 69), of which 52 (75.4%) report findings of basic scientific work. The most prevalent theme was microRNA (n = 29), and the most popular clinical topic was temporal lobe epilepsy (n = 13). CONCLUSIONS The research on the epigenetics mechanism of epilepsy was in its infancy but full of potential. The developmental history and current achievements of hot themes, including microRNA, DNA methylation, and temporal lobe epilepsy, were overviewed. This bibliometric analysis provides useful information and insight for researchers when launching new projects.
Collapse
Affiliation(s)
- Lijuan Fan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Lu Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- West China School of Public Health, Sichuan University, Chengdu, Sichuan Province, China
| | - Xueyi Rao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaoqian Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Huan Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Epigenetic Aberrations in Major Psychiatric Diseases Related to Diet and Gut Microbiome Alterations. Genes (Basel) 2023; 14:1506. [PMID: 37510410 PMCID: PMC10379841 DOI: 10.3390/genes14071506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Nutrition and metabolism modify epigenetic signatures like histone acetylation and DNA methylation. Histone acetylation and DNA methylation in the central nervous system (CNS) can be altered by bioactive nutrients and gut microbiome via the gut-brain axis, which in turn modulate neuronal activity and behavior. Notably, the gut microbiome, with more than 1000 bacterial species, collectively contains almost three million functional genes whose products interact with millions of human epigenetic marks and 30,000 genes in a dynamic manner. However, genetic makeup shapes gut microbiome composition, food/nutrient metabolism, and epigenetic landscape, as well. Here, we first discuss the effect of changes in the microbial structure and composition in shaping specific epigenetic alterations in the brain and their role in the onset and progression of major mental disorders. Afterward, potential interactions among maternal diet/environmental factors, nutrition, and gastrointestinal microbiome, and their roles in accelerating or delaying the onset of severe mental illnesses via epigenetic changes will be discussed. We also provide an overview of the association between the gut microbiome, oxidative stress, and inflammation through epigenetic mechanisms. Finally, we present some underlying mechanisms involved in mediating the influence of the gut microbiome and probiotics on mental health via epigenetic modifications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02218, USA
| |
Collapse
|
8
|
Gerace E, Baldi S, Salimova M, Di Gloria L, Curini L, Cimino V, Nannini G, Russo E, Pallecchi M, Ramazzotti M, Bartolucci G, Occupati B, Lanzi C, Scarpino M, Lanzo G, Grippo A, Lolli F, Mannaioni G, Amedei A. Oral and fecal microbiota perturbance in cocaine users: Can rTMS-induced cocaine abstinence support eubiosis restoration? iScience 2023; 26:106627. [PMID: 37250301 PMCID: PMC10214473 DOI: 10.1016/j.isci.2023.106627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The effects of cocaine on microbiota have been scarcely explored. Here, we investigated the gut (GM) and oral (OM) microbiota composition of cocaine use disorder (CUD) patients and the effects of repetitive transcranial magnetic stimulation (rTMS). 16S rRNA sequencing was used to characterize GM and OM, whereas PICRUST2 assessed functional changes in microbial communities, and gas-chromatography was used to evaluate fecal short and medium chain fatty acids. CUD patients reported a significant decrease in alpha diversity and modification of the abundances of several taxa in both GM and OM. Furthermore, many predicted metabolic pathways were differentially expressed in CUD patients' stool and saliva samples, as well as reduced levels of butyric acid that appear restored to normal amounts after rTMS treatment. In conclusion, CUD patients showed a profound dysbiotic fecal and oral microbiota composition and function and rTMS-induced cocaine abstinence determined the restoration of eubiotic microbiota.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maya Salimova
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Virginia Cimino
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Brunella Occupati
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Cecilia Lanzi
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Maenia Scarpino
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Giovanni Lanzo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Antonello Grippo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
9
|
Dargenio VN, Dargenio C, Castellaneta S, De Giacomo A, Laguardia M, Schettini F, Francavilla R, Cristofori F. Intestinal Barrier Dysfunction and Microbiota-Gut-Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients 2023; 15:1620. [PMID: 37049461 PMCID: PMC10096948 DOI: 10.3390/nu15071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with multifactorial etiology, characterized by impairment in two main functional areas: (1) communication and social interactions, and (2) skills, interests and activities. ASD patients often suffer from gastrointestinal symptoms associated with dysbiotic states and a "leaky gut." A key role in the pathogenesis of ASD has been attributed to the gut microbiota, as it influences central nervous system development and neuropsychological and gastrointestinal homeostasis through the microbiota-gut-brain axis. A state of dysbiosis with a reduction in the Bacteroidetes/Firmicutes ratio and Bacteroidetes level and other imbalances is common in ASD. In recent decades, many authors have tried to study and identify the microbial signature of ASD through in vivo and ex vivo studies. In this regard, the advent of metabolomics has also been of great help. Based on these data, several therapeutic strategies, primarily the use of probiotics, are investigated to improve the symptoms of ASD through the modulation of the microbiota. However, although the results are promising, the heterogeneity of the studies precludes concrete evidence. The aim of this review is to explore the role of intestinal barrier dysfunction, the gut-brain axis and microbiota alterations in ASD and the possible role of probiotic supplementation in these patients.
Collapse
Affiliation(s)
- Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Costantino Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Stefania Castellaneta
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Andrea De Giacomo
- Child Neuropsychiatry Unit, Department of Translational Biomedicine and Neuroscience, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Marianna Laguardia
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Federico Schettini
- Neonatology and Neonatal Intensive Care Unit (NICU), University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
10
|
Yang LL, Stiernborg M, Skott E, Xu J, Wu Y, Landberg R, Arefin S, Kublickiene K, Millischer V, Nilsson IAK, Schalling M, Giacobini M, Lavebratt C. Effects of a Synbiotic on Plasma Immune Activity Markers and Short-Chain Fatty Acids in Children and Adults with ADHD-A Randomized Controlled Trial. Nutrients 2023; 15:1293. [PMID: 36904292 PMCID: PMC10004766 DOI: 10.3390/nu15051293] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Synbiotic 2000, a pre + probiotic, reduced comorbid autistic traits and emotion dysregulation in attention deficit hyperactivity disorder (ADHD) patients. Immune activity and bacteria-derived short-chain fatty acids (SCFAs) are microbiota-gut-brain axis mediators. The aim was to investigate Synbiotic 2000 effects on plasma levels of immune activity markers and SCFAs in children and adults with ADHD. ADHD patients (n = 182) completed the 9-week intervention with Synbiotic 2000 or placebo and 156 provided blood samples. Healthy adult controls (n = 57) provided baseline samples. At baseline, adults with ADHD had higher pro-inflammatory sICAM-1 and sVCAM-1 and lower SCFA levels than controls. Children with ADHD had higher baseline sICAM-1, sVCAM-1, IL-12/IL-23p40, IL-2Rα, and lower formic, acetic, and propionic acid levels than adults with ADHD. sICAM-1, sVCAM-1, and propionic acid levels were more abnormal in children on medication. Synbiotic 2000, compared to placebo, reduced IL-12/IL-23p40 and sICAM-1 and increased propionic acid levels in children on medication. SCFAs correlated negatively with sICAM-1 and sVCAM-1. Preliminary human aortic smooth-muscle-cell experiments indicated that SCFAs protected against IL-1β-induced ICAM-1 expression. These findings suggest that treatment with Synbiotic 2000 reduces IL12/IL-23p40 and sICAM-1 and increases propionic acid levels in children with ADHD. Propionic acid, together with formic and acetic acid, may contribute to the lowering of the higher-than-normal sICAM-1 levels.
Collapse
Affiliation(s)
- Liu L. Yang
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miranda Stiernborg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Elin Skott
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
- PRIMA Child and Adult Psychiatry Stockholm AB, 163 74 Rinkeby, Sweden
| | - Jingjing Xu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Yujiao Wu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ida A. K. Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - MaiBritt Giacobini
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
- PRIMA Child and Adult Psychiatry Stockholm AB, 163 74 Rinkeby, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| |
Collapse
|
11
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
12
|
Salim S, Ahmad F, Banu A, Mohammad F. Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. J Adv Res 2022:S2090-1232(22)00242-9. [PMID: 36332796 PMCID: PMC10403695 DOI: 10.1016/j.jare.2022.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a disease of ⍺-synuclein aggregation-mediated dopaminergic neuronal loss in the substantia nigra pars compacta, which leads to motor and non-motor symptoms. Through the last two decades of research, there has been growing consensus that inflammation-mediated oxidative stress, mitochondrial dysfunction, and cytokine-induced toxicity are mainly involved in neuronal damage and loss associated with PD. However, it remains unclear how these mechanisms relate to sporadic PD, a more common form of PD. Both enteric and central nervous systems have been implicated in the pathogenesis of sporadic PD, thus highlighting the crosstalk between the gut and brain. AIM of Review: In this review, we summarize how alterations in the gut microbiome can affect PD pathogenesis. We highlight various mechanisms increasing/decreasing the risk of PD development. Based on the previous supporting evidence, we suggest how early interventions could protect against PD development and how controlling specific factors, including our diet, could modify our perspective on disease mechanisms and therapeutics. We explain the strong relationship between the gut microbiota and the brain in PD subjects, by delineating the multiple mechanisms involved inneuroinflammation and oxidative stress. We conclude that the neurodetrimental effects of western diet (WD) and the neuroprotective effects of Mediterranean diets should be further exploredin humans through clinical trials. Key Scientific Concepts of Review: Alterations in the gut microbiome and associated metabolites may contribute to pathogenesis in PD. In some studies, probiotics have been shown to exert anti-oxidative effects in PD via improved mitochondrial dynamics and homeostasis, thus reducing PD-related consequences. However, there is a significant unmet need for randomized clinical trials to investigate the effectiveness of microbial products, probiotic-based supplementation, and dietary intervention in reversing gut microbial dysbiosis in PD.
Collapse
|
13
|
Berger PK, Bansal R, Sawardekar S, Yonemitsu C, Furst A, Hampson HE, Schmidt KA, Alderete TL, Bode L, Goran MI, Peterson BS. Associations of Human Milk Oligosaccharides with Infant Brain Tissue Organization and Regional Blood Flow at 1 Month of Age. Nutrients 2022; 14:nu14183820. [PMID: 36145194 PMCID: PMC9501015 DOI: 10.3390/nu14183820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Animal studies have shown that human milk oligosaccharides (HMOs) are important in early brain development, yet their roles have not been assessed in humans. The purpose of this study was to determine the associations of HMOs with MRI indices of tissue microstructure and regional cerebral blood flow (rCBF) in infants. Mother–infant pairs (N = 20) were recruited at 1 month postpartum. Milk was assayed for the concentrations of the HMOs 2′-fucosyllactose (2′FL), 3-fucosyllactose (3FL), 3′-sialyllactose (3′SL), and 6′-sialyllactose (6′SL). Diffusion and arterial spin labeling measures were acquired using a 3.0-Tesla MRI scanner. Multiple linear regression was used to assess the voxel-wise associations of HMOs with fractional anisotropy (FA), mean diffusivity (MD), and rCBF values across the brain. After adjusting for pre-pregnancy BMI, sex, birthweight, and postmenstrual age at time of scan, a higher 2′FL concentration was associated with reduced FA, increased MD, and reduced rCBF in similar locations within the cortical mantle. Higher 3FL and 3′SL concentrations were associated with increased FA, reduced MD, and increased rCBF in similar regions within the developing white matter. The concentration of 6′SL was not associated with MRI indices. Our data reveal that fucosylated and sialylated HMOs differentially associate with indices of tissue microstructure and rCBF, suggesting specific roles for 2′FL, 3FL, and 3′SL in early brain maturation.
Collapse
Affiliation(s)
- Paige K. Berger
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ravi Bansal
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Siddhant Sawardekar
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Chloe Yonemitsu
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, CA 92093, USA
| | - Annalee Furst
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, CA 92093, USA
| | - Hailey E. Hampson
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Kelsey A. Schmidt
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, CA 92093, USA
| | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Bradley S. Peterson
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Correspondence: ; Tel.: +1-323-361-3654
| |
Collapse
|
14
|
Dicks LMT. Gut Bacteria and Neurotransmitters. Microorganisms 2022; 10:1838. [PMID: 36144440 PMCID: PMC9504309 DOI: 10.3390/microorganisms10091838] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gut bacteria play an important role in the digestion of food, immune activation, and regulation of entero-endocrine signaling pathways, but also communicate with the central nervous system (CNS) through the production of specific metabolic compounds, e.g., bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT) and histamine. Afferent vagus nerve (VN) fibers that transport signals from the gastro-intestinal tract (GIT) and gut microbiota to the brain are also linked to receptors in the esophagus, liver, and pancreas. In response to these stimuli, the brain sends signals back to entero-epithelial cells via efferent VN fibers. Fibers of the VN are not in direct contact with the gut wall or intestinal microbiota. Instead, signals reach the gut microbiota via 100 to 500 million neurons from the enteric nervous system (ENS) in the submucosa and myenteric plexus of the gut wall. The modulation, development, and renewal of ENS neurons are controlled by gut microbiota, especially those with the ability to produce and metabolize hormones. Signals generated by the hypothalamus reach the pituitary and adrenal glands and communicate with entero-epithelial cells via the hypothalamic pituitary adrenal axis (HPA). SCFAs produced by gut bacteria adhere to free fatty acid receptors (FFARs) on the surface of intestinal epithelial cells (IECs) and interact with neurons or enter the circulatory system. Gut bacteria alter the synthesis and degradation of neurotransmitters. This review focuses on the effect that gut bacteria have on the production of neurotransmitters and vice versa.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
15
|
Ashraf H, Solla P, Sechi LA. Current Advancement of Immunomodulatory Drugs as Potential Pharmacotherapies for Autoimmunity Based Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15091077. [PMID: 36145298 PMCID: PMC9504155 DOI: 10.3390/ph15091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dramatic advancement has been made in recent decades to understand the basis of autoimmunity-mediated neurological diseases. These diseases create a strong influence on the central nervous system (CNS) and the peripheral nervous system (PNS), leading to various clinical manifestations and numerous symptoms. Multiple sclerosis (MS) is the most prevalent autoimmune neurological disease while NMO spectrum disorder (NMOSD) is less common. Furthermore, evidence supports the presence of autoimmune mechanisms contributing to the pathogenesis of amyotrophic lateral sclerosis (ALS), which is a neurodegenerative disorder characterized by the progressive death of motor neurons. Additionally, autoimmunity is believed to be involved in the basis of Alzheimer’s and Parkinson’s diseases. In recent years, the prevalence of autoimmune-based neurological disorders has been elevated and current findings strongly suggest the role of pharmacotherapies in controlling the progression of autoimmune diseases. Therefore, this review focused on the current advancement of immunomodulatory drugs as novel approaches in the management of autoimmune neurological diseases and their future outlook.
Collapse
Affiliation(s)
- Hajra Ashraf
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Leonardo Atonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Complex Structure of Microbology and Virology, AOU Sassari, 07100 Sassari, Italy
- Correspondence:
| |
Collapse
|
16
|
Chen G, Shi F, Yin W, Guo Y, Liu A, Shuai J, Sun J. Gut microbiota dysbiosis: The potential mechanisms by which alcohol disrupts gut and brain functions. Front Microbiol 2022; 13:916765. [PMID: 35966709 PMCID: PMC9372561 DOI: 10.3389/fmicb.2022.916765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Alcohol use disorder (AUD) is a high-risk psychiatric disorder and a key cause of death and disability in individuals. In the development of AUD, there is a connection known as the microbiota-gut-brain axis, where alcohol use disrupts the gut barrier, resulting in changes in intestinal permeability as well as the gut microbiota composition, which in turn impairs brain function and worsens the patient’s mental status and gut activity. Potential mechanisms are explored by which alcohol alters gut and brain function through the effects of the gut microbiota and their metabolites on immune and inflammatory pathways. Alcohol and microbiota dysregulation regulating neurotransmitter release, including DA, 5-HT, and GABA, are also discussed. Thus, based on the above discussion, it is possible to speculate on the gut microbiota as an underlying target for the treatment of diseases associated with alcohol addiction. This review will focus more on how alcohol and gut microbiota affect the structure and function of the gut and brain, specific changes in the composition of the gut microbiota, and some measures to mitigate the changes caused by alcohol exposure. This leads to a potential intervention for alcohol addiction through fecal microbiota transplantation, which could normalize the disruption of gut microbiota after AUD.
Collapse
Affiliation(s)
- Ganggang Chen
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Fenglei Shi
- Department of Othopaedics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Yin
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Yao Guo
- Shandong Provincial Mental Health Center, Jinan, China
| | - Anru Liu
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Jiacheng Shuai
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Jinhao Sun
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
- *Correspondence: Jinhao Sun,
| |
Collapse
|
17
|
Lu J, Hou W, Gao S, Zhang Y, Zong Y. The Role of Gut Microbiota—Gut—Brain Axis in Perioperative Neurocognitive Dysfunction. Front Pharmacol 2022; 13:879745. [PMID: 35774608 PMCID: PMC9237434 DOI: 10.3389/fphar.2022.879745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
With the aging of the world population and advances in medical and health technology, more and more elderly patients are undergoing anesthesia and surgery, and perioperative neurocognitive dysfunction (PND) is receiving increasing attention. The latest definition of PND, published simultaneously in November 2018 in 6 leading journals in the field of anesthesiology, clarifies that PND includes preoperatively cognitive impairment, postoperative delirium, delayed neurocognitive recovery, and postoperative cognitive dysfunction and meets the diagnostic criteria for neurocognitive impairment in the Diagnostic and Statistical Manual of Mental Disorders -fifth edition (DSM-5). The time frame for PND includes preoperatively and within 12 months postoperatively. Recent studies have shown that gut microbiota regulates central nervous function and behavior through the gut microbiota - gut - brain axis, but the role of the axis in the pathogenesis of PND remains unclear. Therefore, this article reviews the mechanism of the role of gut microbiota-gut-brain axis in PND, so as to help explore reasonable early treatment strategies.
Collapse
Affiliation(s)
- Jian Lu
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenlong Hou
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
| | - Sunan Gao
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Youming Zong
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
- *Correspondence: Youming Zong,
| |
Collapse
|
18
|
Özkul B, Urfalı FE, Sever İH, Bozkurt MF, Söğüt İ, Elgörmüş ÇS, Erdogan MA, Erbaş O. Demonstration of Ameliorating Effect of Vardenafil Through Its Anti-Inflammatory and Neuroprotective Properties in Autism Spectrum Disorder Induced by Propionic Acid on Rat Model. Int J Neurosci 2022; 132:1150-1164. [PMID: 35584252 DOI: 10.1080/00207454.2022.2079507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology. In this study, we aimed to determine the ameliorating effects of vardenafil in the ASD rat model induced by propionic acid (PPA) in terms of neurobehavioral changes and also support these effects with histopathological changes, brain biochemical analysis and magnetic resonance spectroscopy (MRS) findings.Materials and Methods: Twenty-one male rats were randomly assigned into 3 groups. Group 1 (control, 7 rats) did not receive treatment. Rats in groups 2 and 3 were given PPA at the dose of 250 mg/kg/day intraperitoneally for 5 days. After PPA administration, animals in group 2 (PPAS, 7 rats) were given saline and animals in group 3 (PPAV, 7 rats) were given vardenafil. Behavioral tests were performed between the 20th and 24th days of the study. The rats were taken for MRS on the 25th day. At the end of the study, brain levels of interleukin-2 (IL-2), IL-17, tumor necrosis factor-α, nerve growth factor, cGMP and lactate levels were measured. In the cerebellum and the CA1 and CA3 regions of the hippocampus, counts of neurons and Purkinje cells and glial fibrillary acidic protein (associated with gliosis) were evaluated histologically.Results: Three chamber sociability and passive avoiding test, histopathological results, lactate levels derived from MRS, and biochemical biomarkers revealed significant differences among the PPAV and PPAS groups.Conclusion: We concluded that vardenafil improves memory and social behaviors and prevent loss of neuronal and Purkinje cell through its anti-inflammatory and neuroprotective effect.
Collapse
Affiliation(s)
- Bahattin Özkul
- Faculty of Medicine, Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Furkan Ertürk Urfalı
- Department of Radiology, Faculty of Medicine, Kutahya Saglık Bilimleri, Kutahya, Turkey
| | - İbrahim Halil Sever
- Department of Radiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Mehmet Fatih Bozkurt
- Department of Pathology, Faculty of Veterinary, Afyon Kocatepe University, Afyon, Turkey
| | - İbrahim Söğüt
- Department of Biochemistry, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Çağrı Serdar Elgörmüş
- Department of Emergency, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Oytun Erbaş
- Department of Physiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
19
|
Rahi S, Mehan S. Understanding Abnormal SMO-SHH Signaling in Autism Spectrum Disorder: Potential Drug Target and Therapeutic Goals. Cell Mol Neurobiol 2022; 42:931-953. [PMID: 33206287 PMCID: PMC11441210 DOI: 10.1007/s10571-020-01010-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Autism is a multifactorial neurodevelopmental condition; it demonstrates some main characteristics, such as impaired social relationships and increased repetitive behavior. The initiation of autism spectrum disorder is mostly triggered during brain development by the deregulation of signaling pathways. Sonic hedgehog (SHH) signaling is one such mechanism that influences neurogenesis and neural processes during the development of the central nervous system. SMO-SHH signaling is also an important part of a broad variety of neurological processes, including neuronal cell differentiation, proliferation, and survival. Dysregulation of SMO-SHH signaling leads to many physiological changes that lead to neurological disorders such as ASD and contribute to cognitive decline. The aberrant downregulation of SMO-SHH signals contributes to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which increases oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis by suppressing target gene expression. We outlined in this review that SMO-SHH deregulation plays a crucial role in the pathogenesis of autism and addresses the current status of SMO-SHH pathway modulators. Additionally, a greater understanding of the SHH signaling pathway is an effort to improve successful treatment for autism and other neurological disorders.
Collapse
Affiliation(s)
- Saloni Rahi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
20
|
Egerton S, Donoso F, Fitzgerald P, Gite S, Fouhy F, Whooley J, Dinan TG, Cryan JF, Culloty SC, Ross RP, Stanton C. Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutr Neurosci 2022; 25:356-378. [PMID: 32734823 DOI: 10.1080/1028415x.2020.1753322] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: Early life stress is a key predisposing factor for depression and anxiety disorders. Selective serotonin re-uptake inhibitors (SSRI) are frequently used as the first line of pharmacology treatment for depression but have several negative qualities, i.e. a delay or absence of effectiveness and negative side-effects. Therefore, there is a growing need for new nutraceutical-based strategies to blunt the effects of adverse-life events.Objectives: This study aimed to use the maternal separation model in rats to test the efficacy of fish oil dietary supplementation, on its own and in conjunction with the SSRI anti-depressant fluoxetine, as a treatment for depressive and anxiety-like symptoms associated with early life stress.Methods: Behavioural tests (open field test, elevated plus maze test and forced swim test) and biochemical markers (corticosterone, BDNF, brain fatty acids and short chain fatty acids) were used to analyse the effects of the dietary treatments. Gut microbial communities and relating metabolites (SCFA) were analysed to investigate possible changes in the microbiota-gut-brain axis.Results: Maternally separated rats showed depressive-like behaviours in the forced swim and open field tests. These behaviours were prevented significantly by fluoxetine administration and in part by fish oil supplementation. Associated biochemical changes reported include altered brain fatty acids, significantly lower plasma corticosterone levels (AUC) and reduced brain stem serotonin turnover, compared to untreated, maternally separated (MS) rats. Untreated MS animals had significantly lower ratios of SCFA producers such as Caldicoprobacteraceae, Streptococcaceae, Rothia, Lachnospiraceae_NC2004_group, and Ruminococcus_2, along with significantly reduced levels of total SCFA compared to non-separated animals. Compared to untreated MS animals, animals fed fish oil had significantly higher Bacteroidetes and Prevotellaceae and reduced levels of butyrate, while fluoxetine treatment resulted in significantly higher levels of Neochlamydia, Lachnoclostridium, Acetitomaculum and Stenotrophomonas and, acetate and propionate.Conclusion: Despite the limitations in extrapolating from animal behavioural data and the notable differences in pharmacokinetics between rodents and humans, the results of this study provide a further advancement into the understanding of some of the complex systems within which nutraceuticals and pharmaceuticals effect the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Sian Egerton
- School of Microbiology, University College Cork, Cork, Ireland
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Francisco Donoso
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | | | - Snehal Gite
- APC Microbiome Ireland, Cork, Ireland
- Biomarine Ingredients Ireland Ltd., Monaghan, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Jason Whooley
- Biomarine Ingredients Ireland Ltd., Monaghan, Ireland
| | - Ted G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
21
|
OUP accepted manuscript. Nutr Rev 2022; 80:2002-2016. [DOI: 10.1093/nutrit/nuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Shah F, Dwivedi M. Pathophysiological Role of Gut Microbiota Affecting Gut–Brain Axis and Intervention of Probiotics and Prebiotics in Autism Spectrum Disorder. PROBIOTIC RESEARCH IN THERAPEUTICS 2022:69-115. [DOI: 10.1007/978-981-16-6760-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance. Foods 2021; 10:foods10123075. [PMID: 34945630 PMCID: PMC8700881 DOI: 10.3390/foods10123075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a complex heterogeneous microbial community modulated by endogenous and exogenous factors. Among the external causes, nutrition as well as physical activity appear to be potential drivers of microbial diversity, both at the taxonomic and functional level, likely also influencing endocrine system, and acting as endocrine organ itself. To date, clear-cut data regarding which microbial populations are modified, and by which mechanisms are lacking. Moreover, the relationship between the microbial shifts and the metabolic practical potential of the gut microbiota is still unclear. Further research by longitudinal and well-designed studies is needed to investigate whether microbiome manipulation may be an effective tool for improving human health and, also, performance in athletes, and whether these effects may be then extended to the overall health promotion of general populations. In this review, we evaluate and summarize the current knowledge regarding the interaction and cross-talks among hormonal modifications, physical performance, and microbiota content and function.
Collapse
|
24
|
Ben Bacha A, Al‐Orf N, Alonazi M, Bhat RS, El‐Ansary A. The anti-inflammatory and antiapoptotic effects of probiotic on induced neurotoxicity in juvenile hamsters. Food Sci Nutr 2021; 9:4874-4882. [PMID: 34531999 PMCID: PMC8441441 DOI: 10.1002/fsn3.2435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Brain inflammation and apoptosis play crucial roles in the pathogenesis of various neurodevelopmental disorders. Probiotics have been shown to confer protection against many stresses, including apoptosis and inflammation, by modulating the gut function. The short-chain fatty acid, propionic acid (PPA), plays an important intermediate of cellular metabolism. Although PPA exhibits numerous beneficial biological effects, its accumulation is neurotoxic. This study focused on the therapeutic potency of probiotics against PPA-induced apoptosis and neuroinflammation in hamsters. Five groups of male golden Syrian hamsters were treated as follows: Group I as control; Group II as PPA-treated with three doses of 250 mg PPA/kg/day; Group III as clindamycin-treated with a single dose of 30 mg clindamycin/kg; Group IV as PPA-probiotic; and Group V as clindamycin-probiotic were two therapeutic groups which were treated with the same doses of PPA and clindamycin, respectively, followed by treatment with 0.2 g kg-1 d-1 of probiotic (ProtexinR, Probiotics International Limited) for three weeks. Proapoptotic markers, such as caspases 3 and 7; neuroinflammation markers, such as interleukins 1β and 8; and heat shock protein 70 were measured in the brain. Significant increase of all measured markers (p ˂ .001) was observed in PPA and clindamycin-treated hamsters compared with controls. Probiotics significantly reduced the damages and ameliorated all the test markers in both therapeutic groups compared with the control. Our results confirmed that probiotics can be utilized as a feasible strategy for managing apoptotic and inflammation-related stresses in brain disorders by retaining the gut function.
Collapse
Affiliation(s)
- Abir Ben Bacha
- Biochemistry DepartmentScience CollegeKing Saud UniversityRiyadhSaudi Arabia
- Laboratory of Plant Biotechnology Applied to Crop ImprovementFaculty of Science of SfaxUniversity of SfaxSfaxTunisia
| | - Norah Al‐Orf
- Biochemistry DepartmentScience CollegeKing Saud UniversityRiyadhSaudi Arabia
| | - Mona Alonazi
- Biochemistry DepartmentScience CollegeKing Saud UniversityRiyadhSaudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry DepartmentScience CollegeKing Saud UniversityRiyadhSaudi Arabia
| | - Afaf El‐Ansary
- Central LaboratoryKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
25
|
Müller B, Rasmusson AJ, Just D, Jayarathna S, Moazzami A, Novicic ZK, Cunningham JL. Fecal Short-Chain Fatty Acid Ratios as Related to Gastrointestinal and Depressive Symptoms in Young Adults. Psychosom Med 2021; 83:693-699. [PMID: 34267089 PMCID: PMC8428857 DOI: 10.1097/psy.0000000000000965] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 04/14/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Short-chain fatty acids (SCFAs) are produced by the gut microbiota and may reflect health. Gut symptoms are common in individuals with depressive disorders, and recent data indicate relationships between gut microbiota and psychiatric health. We aimed to investigate potential associations between SCFAs and self-reported depressive and gut symptoms in young adults. METHODS Fecal samples from 164 individuals (125 were patients with psychiatric disorders: mean [standard deviation] age = 21.9 [2.6] years, 14% men; 39 nonpsychiatric controls: age = 28.5 [9.5] years, 38% men) were analyzed for the SCFA acetate, butyrate, and propionate by nuclear magnetic resonance spectroscopy. We then compared SCFA ratios with dimensional measures of self-reported depressive and gut symptoms. RESULTS Depressive symptoms showed a positive association with acetate levels (ρ = 0.235, p = .003) and negative associations with both butyrate (ρ = -0.195, p = .014) and propionate levels (ρ = -0.201, p = .009) in relation to total SCFA levels. Furthermore, symptoms of diarrhea showed positive associations with acetate (ρ = 0.217, p = .010) and negative associations with propionate in relation to total SCFA levels (ρ = 0.229, p = 0-007). Cluster analysis revealed a heterogeneous pattern where shifts in SCFA ratios were observed in individuals with elevated levels of depressive symptoms, elevated levels of gut symptoms, or both. CONCLUSIONS Shifts in SCFAs are associated with both depressive symptoms and gut symptoms in young adults and may have of relevance for treatment.
Collapse
|
26
|
LaGamma EF, Hu F, Pena Cruz F, Bouchev P, Nankova BB. Bacteria - derived short chain fatty acids restore sympathoadrenal responsiveness to hypoglycemia after antibiotic-induced gut microbiota depletion. Neurobiol Stress 2021; 15:100376. [PMID: 34401412 PMCID: PMC8358200 DOI: 10.1016/j.ynstr.2021.100376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiome co-evolved with their mammalian host over thousands of years. This commensal relationship serves a pivotal role in various metabolic, physiological, and immunological processes. Recently we discovered impaired adrenal catecholamine stress responses in germ-free mice suggesting developmental modification of the reflex arc or absence of an ongoing microbiome signal. To determine whether maturational arrest or an absent bacteria-derived metabolite was the cause, we tested whether depleting gut microbiome in young adult animals could also alter the peripheral stress responses to insulin-induced hypoglycemia. Groups of C57Bl6 male mice were given regular water (control) or a cocktail of non-absorbable broad-spectrum antibiotics (Abx) in the drinking water for two weeks before injection with insulin or saline. Abx mice displayed a profound decrease in microbial diversity and abundance of Bacteroidetes and Firmicutes, plus a markedly enlarged caecum and no detectable by-products of bacterial fermentation (sp. short chain fatty acids, SCFA). Tonic and stress-induced epinephrine levels were attenuated. Recolonization (Abx + R) restored bacterial diversity, but not the sympathoadrenal system responsiveness or caecal acetate, propionate and butyrate levels. In contrast, corticosterone (HPA) and glucagon (parasympathetic) resting values and responses to hypoglycemia remained similar across all conditions. Oral supplementation with SCFA improved epinephrine responses to hypoglycaemia. Whole genome shotgun sequence profiling of fecal samples from control, Abx and Abx + R cohorts identified nine microbes (SCFA producers) absent from both Abx and Abx + R groups. These results implicate gut microbiome depletion plus its attendant reduction in SCFA signalling in adversely affecting the release of epinephrine in response to hypoglycemia. We speculate that regardless of postnatal age, a mutable microbiome messaging system exists throughout life. Unravelling these mechanisms could lead to new therapeutic possibilities through controlled manipulation of the gut microbiota and its ability to alter systemic neurotransmitter responsiveness. Gut microbiome depletion affects sympathoadrenal medullary stress axis. Recolonization restores bacterial diversity, but not the epinephrine response to hypoglycaemia. SCFA supplement during antibiotic treatment improves tonic and stress-induced epinephrine release. Delayed recovery of several SCFA producers after recolonization modulates peripheral catecholaminergic pathways.
Collapse
Affiliation(s)
- Edmund F. LaGamma
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Furong Hu
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
| | - Fernando Pena Cruz
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Philip Bouchev
- Ridgefield High School, Junior, Ridgefield, CT, 06877, USA
| | - Bistra B. Nankova
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- Corresponding author. Department of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
27
|
Trzeciak P, Herbet M. Role of the Intestinal Microbiome, Intestinal Barrier and Psychobiotics in Depression. Nutrients 2021; 13:927. [PMID: 33809367 PMCID: PMC8000572 DOI: 10.3390/nu13030927] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The intestinal microbiota plays an important role in the pathophysiology of depression. As determined, the microbiota influences the shaping and modulation of the functioning of the gut-brain axis. The intestinal microbiota has a significant impact on processes related to neurotransmitter synthesis, the myelination of neurons in the prefrontal cortex, and is also involved in the development of the amygdala and hippocampus. Intestinal bacteria are also a source of vitamins, the deficiency of which is believed to be related to the response to antidepressant therapy and may lead to exacerbation of depressive symptoms. Additionally, it is known that, in periods of excessive activation of stress reactions, the immune system also plays an important role, negatively affecting the tightness of the intestinal barrier and intestinal microflora. In this review, we have summarized the role of the gut microbiota, its metabolites, and diet in susceptibility to depression. We also describe abnormalities in the functioning of the intestinal barrier caused by increased activity of the immune system in response to stressors. Moreover, the presented study discusses the role of psychobiotics in the prevention and treatment of depression through their influence on the intestinal barrier, immune processes, and functioning of the nervous system.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland;
| |
Collapse
|
28
|
Mepham JR, MacFabe DF, Boon FH, Foley KA, Cain DP, Ossenkopp KP. Examining the non-spatial pretraining effect on a water maze spatial learning task in rats treated with multiple intracerebroventricular (ICV) infusions of propionic acid: Contributions to a rodent model of ASD. Behav Brain Res 2021; 403:113140. [PMID: 33508348 DOI: 10.1016/j.bbr.2021.113140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
Propionic acid (PPA) is produced by enteric gut bacteria and is a dietary short chain fatty acid. Intracerebroventricular (ICV) infusions of PPA in rodents have been shown to produce behavioural changes, including adverse effects on cognition, similar to those seen in autism spectrum disorders (ASD). Previous research has shown that repeated ICV infusions of PPA result in impaired spatial learning in a Morris water maze (MWM) as evidenced by increased search latencies, fewer direct and circle swims, and more time spent in the periphery of the maze than control rats. In the current study rats were first given non-spatial pretraining (NSP) in the water maze in order to familiarize the animals with the general requirements of the non-spatial aspects of the task before spatial training was begun. Then the effects of ICV infusions of PPA on acquisition of spatial learning were examined. PPA treated rats failed to show the positive effects of the non-spatial pretraining procedure, relative to controls, as evidenced by increased search latencies, longer distances travelled, fewer direct and circle swims, and more time spent in the periphery of the maze than PBS controls. Thus, PPA treatment blocked the effects of the pretraining procedure, likely by impairing sensorimotor components or memory of the pretraining.
Collapse
Affiliation(s)
- Jennifer R Mepham
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Derrick F MacFabe
- Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Francis H Boon
- Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Kelly A Foley
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Donald P Cain
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada.
| |
Collapse
|
29
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Puricelli C, Rolla R, Gigliotti L, Boggio E, Beltrami E, Dianzani U, Keller R. The Gut-Brain-Immune Axis in Autism Spectrum Disorders: A State-of-Art Report. Front Psychiatry 2021; 12:755171. [PMID: 35185631 PMCID: PMC8850385 DOI: 10.3389/fpsyt.2021.755171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
The interest elicited by the large microbial population colonizing the human gut has ancient origins and has gone through a long evolution during history. However, it is only in the last decades that the introduction of high-throughput technologies has allowed to broaden this research field and to disentangle the numerous implications that gut microbiota has in health and disease. This comprehensive ecosystem, constituted mainly by bacteria but also by fungi, parasites, and viruses, is proven to be involved in several physiological and pathological processes that transcend the intestinal homeostasis and are deeply intertwined with apparently unrelated body systems, such as the immune and the nervous ones. In this regard, a novel speculation is the relationship between the intestinal microbial flora and the pathogenesis of some neurological and neurodevelopmental disorders, including the clinical entities defined under the umbrella term of autism spectrum disorders. The bidirectional interplay has led researchers to coin the term gut-brain-immune system axis, subverting the theory of the brain as an immune-privileged site and underscoring the importance of this reciprocal influence already from fetal life and especially during the pre- and post-natal neurodevelopmental process. This revolutionary theory has also unveiled the possibility to modify the gut microbiota as a way to treat and even to prevent different kinds of pathologies. In this sense, some attempts have been made, ranging from probiotic administration to fecal microbiota transplantation, with promising results that need further elaboration. This state-of-art report will describe the main aspects regarding the human gut microbiome and its specific role in the pathogenesis of autism and its related disorders, with a final discussion on the therapeutic and preventive strategies aiming at creating a healthy intestinal microbial environment, as well as their safety and ethical implications.
Collapse
Affiliation(s)
- Chiara Puricelli
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.,Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.,Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eleonora Beltrami
- Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.,Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Roberto Keller
- Mental Health Department, Adult Autism Center, ASL Città di Torino, Turin, Italy
| |
Collapse
|
31
|
Li X, Fan X, Yuan X, Pang L, Hu S, Wang Y, Huang X, Song X. The Role of Butyric Acid in Treatment Response in Drug-Naïve First Episode Schizophrenia. Front Psychiatry 2021; 12:724664. [PMID: 34497548 PMCID: PMC8421030 DOI: 10.3389/fpsyt.2021.724664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Butyric acid, a major short-chain fatty acid (SCFA), has an important role in the microbiota-gut-brain axis and brain function. This study investigated the role of butyric acid in treatment response in drug-naïve first episode schizophrenia. Methods: The study recruited 56 Chinese Han schizophrenia inpatients with normal body weight and 35 healthy controls. Serum levels of butyric acid were measured using Gas Chromatography-Mass Spectrometer (GC-MS) analysis at baseline (for all participants) and 24 weeks after risperidone treatment (for patients). Clinical symptoms were measured using the Positive and Negative Syndrome Scale (PANSS) for patients at both time points. Results: At baseline, there was no significant difference in serum levels of butyric acid between patients and healthy controls (p = 0.206). However, there was a significant increase in serum levels of butyric acid in schizophrenia patients after 24-week risperidone treatment (p = 0.030). The PANSS total and subscale scores were decreased significantly after 24-week risperidone treatment (p's < 0.001). There were positive associations between baseline serum levels of butyric acid and the reduction ratio of the PANSS total and subscale scores after controlling for age, sex, education, and duration of illness (p's < 0.05). Further, there was a positive association between the increase in serum levels of butyric acid and the reduction of the PANSS positive symptoms subscale scores (r = 0.38, p = 0.019) after controlling for potential confounding factors. Conclusions: Increased serum levels of butyric acid might be associated with a favorable treatment response in drug-naïve, first episode schizophrenia. The clinical implications of our findings were discussed.
Collapse
Affiliation(s)
- Xue Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoduo Fan
- Psychotic Disorders Program, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Lijuan Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Shaohua Hu
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Yunpeng Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Centre for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Xufeng Huang
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Scassellati C, Marizzoni M, Cattane N, Lopizzo N, Mombelli E, Riva MA, Cattaneo A. The Complex Molecular Picture of Gut and Oral Microbiota-Brain-Depression System: What We Know and What We Need to Know. Front Psychiatry 2021; 12:722335. [PMID: 34819883 PMCID: PMC8607517 DOI: 10.3389/fpsyt.2021.722335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a complex mental disorder where the neurochemical, neuroendocrine, immune, and metabolic systems are impaired. The microbiota-gut-brain axis is a bidirectional network where the central and enteric nervous systems are linked through the same endocrine, immune, neural, and metabolic routes dysregulated in MDD. Thus, gut-brain axis abnormalities in MDD patients may, at least in part, account for the symptomatic features associated with MDD. Recent investigations have suggested that the oral microbiome also plays a key role in this complex molecular picture of relationships. As on one hand there is a lot of what we know and on the other hand little of what we still need to know, we structured this review focusing, in the first place, on putting all pieces of this complex puzzle together, underlying the endocrine, immune, oxidative stress, neural, microbial neurotransmitters, and metabolites molecular interactions and systems lying at the base of gut microbiota (GM)-brain-depression interphase. Then, we focused on promising but still under-explored areas of research strictly linked to the GM and potentially involved in MDD development: (i) the interconnection of GM with oral microbiome that can influence the neuroinflammation-related processes and (ii) gut phageome (bacteria-infecting viruses). As conclusions and future directions, we discussed potentiality but also pitfalls, roadblocks, and the gaps to be bridged in this exciting field of research. By the development of a broader knowledge of the biology associated with MDD, with the inclusion of the gut/oral microbiome, we can accelerate the growth toward a better global health based on precision medicine.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Moira Marizzoni
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Laboratory of Alzheimer's Neuroimaging and Epidemiology, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Lopizzo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Mombelli
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. Int J Mol Sci 2020; 21:ijms21239234. [PMID: 33287416 PMCID: PMC7730936 DOI: 10.3390/ijms21239234] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a global threat to mental health that affects around 264 million people worldwide. Despite the considerable evolution in our understanding of the pathophysiology of depression, no reliable biomarkers that have contributed to objective diagnoses and clinical therapy currently exist. The discovery of the microbiota-gut-brain axis induced scientists to study the role of gut microbiota (GM) in the pathogenesis of depression. Over the last decade, many of studies were conducted in this field. The productions of metabolites and compounds with neuroactive and immunomodulatory properties among mechanisms such as the mediating effects of the GM on the brain, have been identified. This comprehensive review was focused on low molecular weight compounds implicated in depression as potential products of the GM. The other possible mechanisms of GM involvement in depression were presented, as well as changes in the composition of the microbiota of patients with depression. In conclusion, the therapeutic potential of functional foods and psychobiotics in relieving depression were considered. The described biomarkers associated with GM could potentially enhance the diagnostic criteria for depressive disorders in clinical practice and represent a potential future diagnostic tool based on metagenomic technologies for assessing the development of depressive disorders.
Collapse
|
34
|
Aliashrafi M, Nasehi M, Zarrindast MR, Joghataei MT, Zali H, Siadat SD. Association of microbiota-derived propionic acid and Alzheimer's disease; bioinformatics analysis. J Diabetes Metab Disord 2020; 19:783-804. [PMID: 33553012 PMCID: PMC7843825 DOI: 10.1007/s40200-020-00564-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Microbiota-derived metabolites could alter the brain tissue toward the neurodegeneration disease. This study aims to select the genes associated with Propionic acid (PPA) and compromise Alzheimer's disease (AD) to find the possible roles of PPA in AD pathogenesis. METHODS Microbiota-derived metabolites could alter the brain tissue toward the neurodegeneration disease. This study aims to select the genes associated with Propionic acid (PPA) and compromise Alzheimer's disease (AD) to find the possible roles of PPA in AD pathogenesis. RESULTS Amongst all genes associated with PPA and AD, 284 genes to be shared by searching databases and were subjected to further analysis. AD-PPA genes mainly involved in cancer, bacterial and virus infection, and neurological and non-neurological diseases. Gene Ontology and pathway analysis covered the most AD hallmark, such as amyloid formation, apoptosis, proliferation, inflammation, and immune system. Network analysis revealed hub and bottleneck genes. MCODE analysis also indicated the seed genes represented in the significant subnetworks. ICAM1 and CCND1 were the hub, bottleneck, and seed genes. CONCLUSIONS PPA interacted genes implicated in AD act through pathways initiate neuronal cell death. In sum up, AD-PPA shared genes exhibited evidence that supports the idea PPA secreted from bacteria could alter brain physiology toward the emerging AD signs. This idea needs to confirm by more future investigation in animal models.
Collapse
Affiliation(s)
- Morteza Aliashrafi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran
- Shahid Beheshti University, Tehran, Iran
| | - Mohammad Nasehi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran
- Cognitive and Neuroscience Research Center, Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Molecular and Cellular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Al-Khafaji AH, Jepsen SD, Christensen KR, Vigsnæs LK. The potential of human milk oligosaccharides to impact the microbiota-gut-brain axis through modulation of the gut microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
36
|
Wang G, Zhu Z, Xu D, Sun L. Advances in Understanding CREB Signaling-Mediated Regulation of the Pathogenesis and Progression of Epilepsy. Clin Neurol Neurosurg 2020; 196:106018. [PMID: 32574967 DOI: 10.1016/j.clineuro.2020.106018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 11/22/2022]
Abstract
Recent studies have indicated that the transcription factor cyclic adenosine monophosphate response element binding protein (CREB) is involved in the etiology of epilepsy. With regard to its transcriptional regulation, CREB phosphorylation is critical for the transmission of multiple extracellular signals, which implicates the activation of downstream target genes in the pathogenesis and progression of epilepsy. This review mainly focuses on recent discoveries of associations between the molecular and structural characteristics of CREB as well as the related CREB signaling pathway and epilepsy.
Collapse
Affiliation(s)
- Guangming Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Zhanpeng Zhu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Dahai Xu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Lichao Sun
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
37
|
Perioperative neurocognitive dysfunction: thinking from the gut? Aging (Albany NY) 2020; 12:15797-15817. [PMID: 32805716 PMCID: PMC7467368 DOI: 10.18632/aging.103738] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
With the aging of the world population, and improvements in medical and health technologies, there are increasing numbers of elderly patients undergoing anaesthesia and surgery. Perioperative neurocognitive dysfunction has gradually attracted increasing attention from academics. Very recently, 6 well-known journals jointly recommended that the term perioperative neurocognitive dysfunction (defined according to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition) should be adopted to improve the quality and consistency of academic communications. Perioperative neurocognitive dysfunction currently includes preoperatively diagnosed cognitive decline, postoperative delirium, delayed neurocognitive recovery, and postoperative cognitive dysfunction. Increasing evidence shows that the gut microbiota plays a pivotal role in neuropsychiatric diseases, and in central nervous system functions via the microbiota-gut-brain axis. We recently reported that abnormalities in the composition of the gut microbiota might underlie the mechanisms of postoperative cognitive dysfunction and postoperative delirium, suggesting a critical role for the gut microbiota in perioperative neurocognitive dysfunction. This article therefore reviewed recent findings on the linkage between the gut microbiota and the underlying mechanisms of perioperative neurocognitive dysfunction.
Collapse
|
38
|
The Effects of a Ketogenic Diet on Sensorimotor Function in a Thoracolumbar Mouse Spinal Cord Injury Model. eNeuro 2020; 7:ENEURO.0178-20.2020. [PMID: 32680835 PMCID: PMC7433893 DOI: 10.1523/eneuro.0178-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 01/26/2023] Open
Abstract
Spinal cord injury and peripheral nerve injuries are traumatic events that greatly impact quality of life. One factor that is being explored throughout patient care is the idea of diet and the role it has on patient outcomes. But the effects of diet following neurotrauma need to be carefully explored in animal models to ensure that they have beneficial effects. The ketogenic diet provides sufficient daily caloric requirements while being potentially neuroprotective and analgesic. In this study, animals were fed a high-fat, low-carbohydrate diet that led to a high concentration of blood ketone that was sustained for as long as the animals were on the diet. Mice fed a ketogenic diet had significantly lower levels of tyrosine and tryptophan, but the levels of other monoamines within the spinal cord remained similar to those of control mice. Mice were fed a standard or ketogenic diet for 7 d before and 28 d following the injury. Our results show that mice hemisected over the T10–T11 vertebrae showed no beneficial effects of being on a ketogenic diet over a 28 d recovery period. Similarly, ligation of the common peroneal and tibial nerve showed no differences between mice fed normal or ketogenic diets. Tests included von Frey, open field, and ladder-rung crossing. We add to existing literature showing protective effects of the ketogenic diet in forelimb injuries by focusing on neurotrauma in the hindlimbs. The results suggest that ketogenic diets need to be assessed based on the type and location of neurotrauma.
Collapse
|
39
|
O'Connor KM, Lucking EF, Cryan JF, O'Halloran KD. Bugs, breathing and blood pressure: microbiota-gut-brain axis signalling in cardiorespiratory control in health and disease. J Physiol 2020; 598:4159-4179. [PMID: 32652603 DOI: 10.1113/jp280279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
There is clear evidence of physiological effects of the gut microbiota on whole-body function in health and disease. Microbiota-gut-brain axis signalling is recognised as a key player in behavioural disorders such as depression and anxiety. Recent evidence suggests that the gut microbiota affects neurocontrol networks responsible for homeostatic functions that are essential for life. We consider the evidence suggesting the potential for the gut microbiota to shape cardiorespiratory homeostasis. In various animal models of disease, there is an association between cardiorespiratory morbidity and perturbed gut microbiota, with strong evidence in support of a role of the gut microbiota in the control of blood pressure. Interventions that target the gut microbiota or manipulate the gut-brain axis, such as short-chain fatty acid supplementation, prevent hypertension in models of obstructive sleep apnoea. Emerging evidence points to a role for the microbiota-gut-brain axis in the control of breathing and ventilatory responsiveness, relevant to cardiorespiratory disease. There is also evidence for an association between the gut microbiota and disease severity in people with asthma and cystic fibrosis. There are many gaps in the knowledge base and an urgent need to better understand the mechanisms by which gut health and dysbiosis contribute to cardiorespiratory control. Nevertheless, there is a growing consensus that manipulation of the gut microbiota could prove an efficacious adjunctive strategy in the treatment of common cardiorespiratory diseases, which are the leading causes of morbidity and mortality.
Collapse
Affiliation(s)
- Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Flavonoid-Rich Orange Juice Intake and Altered Gut Microbiome in Young Adults with Depressive Symptom: A Randomized Controlled Study. Nutrients 2020; 12:nu12061815. [PMID: 32570775 PMCID: PMC7353347 DOI: 10.3390/nu12061815] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
Depression is not just a general mental health problem but a serious medical illness that can worsen without treatment. The gut microbiome plays a major role in the two-way communication system between the intestines and brain. The current study examined the effects of flavonoids on depression by observing the changes in the gut microbiome and depressive symptoms of young participants consuming flavonoid-rich orange juice. The depressive symptom was assessed using the Center for Epidemiological Studies Depression Scale (CES-D), a psychiatric screening tool used to detect preexisting mental disorders. The study population was randomly divided into two groups: the flavonoid-rich orange juice (FR) and an equicaloric flavonoid-low orange cordial (FL) group. For 8 weeks, participants consumed FR (serving a daily 380 mL, 600 ± 5.4 mg flavonoids) or FL (serving a daily 380 mL, 108 ± 2.6 mg flavonoids). In total, 80 fecal samples from 40 participants (mean age, 21.83 years) were sequenced. Regarding depression, we observed positive correlations between brain-derived neurotrophic factor (BDNF) and the Lachnospiraceae family (Lachnospiraceae_uc and Murimonas) before flavonoid orange juice treatment. Most notably, the abundance of the Lachnospiraceae family (Lachnospiraceae_uc, Eubacterium_g4, Roseburia_uc, Coprococcus_g2_uc, Agathobacter_uc) increased after FR treatment compared to that after FL treatment. We also validated the presence of unclassified Lachnospiraceae through sensitive real-time quantitative polymerase chain reaction using stool samples from participants before and after flavonoid treatment. Our results provide novel interventional evidence that alteration in the microbiome due to flavonoid treatment is related to a potential improvement in depression in young adults.
Collapse
|
41
|
Dietary Phytochemicals as Neurotherapeutics for Autism Spectrum Disorder: Plausible Mechanism and Evidence. ADVANCES IN NEUROBIOLOGY 2020; 24:615-646. [DOI: 10.1007/978-3-030-30402-7_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Yang J, Fu X, Liao X, Li Y. Nrf2 Activators as Dietary Phytochemicals Against Oxidative Stress, Inflammation, and Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review. Front Psychiatry 2020; 11:561998. [PMID: 33329102 PMCID: PMC7714765 DOI: 10.3389/fpsyt.2020.561998] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder with limited available treatments and diverse causes. In ASD patients, numerous researches demonstrated various alterations in inflammation/immune, oxidative stress, and mitochondrial dysfunction, and these alterations could be regulated by Nrf2. Hence, we aimed to systematically review the current evidence about the effects of Nrf2 activator supplementation on ASD objects from in vitro studies, animal studies, and clinical studies. Relevant articles were retrieved through searching for the Cochrane Library, PubMed, Web of Science, Scope, Embase, and CNKI databases (through September 23, 2020). Ultimately, we identified 22 preclinical studies, one cell culture study, and seven clinical studies, covering a total of five Nrf2 activators. For each Nrf2 activator, we focused on its definition, potential therapeutic mechanisms, latest research progress, research limitations, and future development directions. Our systematic review provided suggestive evidence that Nrf2 activators have a potentially beneficial role in improving autism-like behaviors and abnormal molecular alterations through oxidant stress, inflammation, and mitochondrial dysfunction. These dietary phytochemicals are considered to be relatively safer and effective for ASD treatment. However, there are few clinical studies to support the Nrf2 activators as dietary phytochemicals in ASD, even though several preclinical studies. Therefore, caution should be warranted in attempting to extrapolate their effects in human studies, and better design and more rigorous research are required before they can be determined as a therapeutic option.
Collapse
Affiliation(s)
- Jiaxin Yang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| | - Xi Fu
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| | - Xiaoli Liao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| |
Collapse
|
43
|
Yang LL, Millischer V, Rodin S, MacFabe DF, Villaescusa JC, Lavebratt C. Enteric short-chain fatty acids promote proliferation of human neural progenitor cells. J Neurochem 2019; 154:635-646. [PMID: 31784978 DOI: 10.1111/jnc.14928] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/02/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Short-chain fatty acids (SCFAs) are a group of fatty acids predominantly produced during the fermentation of dietary fibers by the gut anaerobic microbiota. SCFAs affect many host processes in health and disease. SCFAs play an important role in the 'gut-brain axis', regulating central nervous system processes, for example, cell-cell interaction, neurotransmitter synthesis and release, microglia activation, mitochondrial function, and gene expression. SCFAs also promote the growth of neurospheres from human neural stem cells and the differentiation of embryonic stem cells into neural cells. It is plausible that maternally derived SCFAs may pass the placenta and expose the fetus at key developmental periods. However, it is unclear how SCFA exposure at physiological levels influence the early-stage neural cells. In this study, we explored the effect of SCFAs on the growth rate of human neural progenitor cells (hNPCs), generated from human embryonic stem cell line (HS980), with IncuCyte live-cell analysis system and immunofluorescence. We found that physiologically relevant levels (µM) of SCFAs (acetate, propionate, butyrate) increased the growth rate of hNPCs significantly and induced more cells to undergo mitosis, while high levels (mM) of SCFAs had toxic effects on hNPCs. Moreover, no effect on apoptosis was observed in physiological-dose SCFA treatments. In support, data from q-RT PCR showed that SCFA treatments influenced the expression of the neurogenesis, proliferation, and apoptosis-related genes ATR, BCL2, BID, CASP8, CDK2, E2F1, FAS, NDN, and VEGFA. To conclude, our results propose that SCFAs regulates early neural system development. This might be relevant for a putative 'maternal gut-fetal brain-axis'. Cover Image for this issue: doi: 10.1111/jnc.14761.
Collapse
Affiliation(s)
- Liu L Yang
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Derrick F MacFabe
- The Kilee Patchell-Evans Autism Research Group, London, Canada.,Center for Healthy Eating and Food Innovation, Faculty of Medicine, Maastricht University, Maastricht, Netherlands
| | - Juan C Villaescusa
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
44
|
Neuroactive compounds in foods: Occurrence, mechanism and potential health effects. Food Res Int 2019; 128:108744. [PMID: 31955786 DOI: 10.1016/j.foodres.2019.108744] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
Neuroactive compounds are synthesized by certain plants and microorganisms by undertaking different tasks, especially as a stress response. Most common neuroactive compounds in foods are gamma-aminobutyric acid (GABA), serotonin, melatonin, kynurenine, kynurenic acid, dopamine, norepinephrine, histamine, tryptamine, tyramine and β-phenylethylamine. Fermented foods contain some of these compounds, which can affect human health and mood. Moreover, food processing such as roasting and malting alter amount and profile of neuroactive compounds in foods. In addition to plant-origin and microbially-formed neuroactive compounds in foods, these substances are also formed by gut microbiota, which is the most attractive subject to assess the interaction between gut microbiota and mental health. The discovery of microbiota-gut-brain axis calls for the investigation of the effects of diet on the formation of neuroactive compounds in the gut. Furthermore, probiotics and prebiotics are indispensable elements for the understanding of the food-mood relationship. The focus of this comprehensive review is to investigate the neuroactive compounds found naturally in foods or formed during fermentation. Their formation pathways in humans, plants and microorganisms, potential health effects, effects of diet on the formation of microbial metabolites including neuroactive compounds in the gut are discussed throughout this review. Furthermore, the importance of gut-brain axis, probiotics and prebiotics are discussed.
Collapse
|
45
|
A cellular automaton model to find the risk of developing autism through gut-mediated effects. Comput Biol Med 2019; 110:207-217. [DOI: 10.1016/j.compbiomed.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022]
|
46
|
Impaired Spatial Cognition in Adult Rats Treated with Multiple Intracerebroventricular (ICV) Infusions of the Enteric Bacterial Metabolite, Propionic Acid, and Return to Baseline After 1 Week of No Treatment: Contribution to a Rodent Model of ASD. Neurotox Res 2019; 35:823-837. [DOI: 10.1007/s12640-019-0002-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
|
47
|
Ma B, Liang J, Dai M, Wang J, Luo J, Zhang Z, Jing J. Altered Gut Microbiota in Chinese Children With Autism Spectrum Disorders. Front Cell Infect Microbiol 2019; 9:40. [PMID: 30895172 PMCID: PMC6414714 DOI: 10.3389/fcimb.2019.00040] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/07/2019] [Indexed: 12/27/2022] Open
Abstract
The link between gut microbes and autism spectrum disorders (ASD) has been already observed in some studies, but some bacterial families/species were found to be inconsistently up or down regulated. This issue has been rarely explored in the Chinese population. In this study, we assessed whether or not gut microbiota dysbiosis was associated with children with ASD in China. We enrolled 45 children with ASD (6-9 years of age; 39 boys and 6 girls) and 45 sex- and age-matched neurotypical children. Dietary and other socio-demographic information was obtained via questionnaires. We characterized the composition of the fecal microbiota using bacterial 16S ribosomal RNA (16S rRNA) gene sequencing. The ASD group showed less diversity and richness of gut microbiota than the neurotypical group, as estimated by the abundance-based coverage estimator index and the phylogenetic diversity index. The analysis of beta diversity showed an altered microbial community structure in the ASD group. After adjustment for confounders and multiple testing corrections, no significant group difference was found in the relative abundance of microbiota on the level of the phylum. At the family level, children with ASD had a lower relative abundance of Acidaminococcaceae than the healthy controls. Moreover, a decrease in the relative abundance of genera Lachnoclostridium, Tyzzerella subgroup 4, Flavonifractor, and unidentified Lachnospiraceae was observed in ASD group. This study provides further evidence of intestinal microbial dysbiosis in ASD and sheds light on the characteristics of the gut microbiome of autistic children in China.
Collapse
Affiliation(s)
- Bingjie Ma
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Meixia Dai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jue Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingyin Luo
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zheqing Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Fattorusso A, Di Genova L, Dell'Isola GB, Mencaroni E, Esposito S. Autism Spectrum Disorders and the Gut Microbiota. Nutrients 2019; 11:521. [PMID: 30823414 PMCID: PMC6471505 DOI: 10.3390/nu11030521] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
In recent years, there has been an emerging interest in the possible role of the gut microbiota as a co-factor in the development of autism spectrum disorders (ASDs), as many studies have highlighted the bidirectional communication between the gut and brain (the so-called "gut-brain axis"). Accumulating evidence has shown a link between alterations in the composition of the gut microbiota and both gastrointestinal and neurobehavioural symptoms in children with ASD. The aim of this narrative review was to analyse the current knowledge about dysbiosis and gastrointestinal (GI) disorders in ASD and assess the current evidence for the role of probiotics and other non-pharmacological approaches in the treatment of children with ASD. Analysis of the literature showed that gut dysbiosis in ASD has been widely demonstrated; however, there is no single distinctive profile of the composition of the microbiota in people with ASD. Gut dysbiosis could contribute to the low-grade systemic inflammatory state reported in patients with GI comorbidities. The administration of probiotics (mostly a mixture of Bifidobacteria, Streptococci and Lactobacilli) is the most promising treatment for neurobehavioural symptoms and bowel dysfunction, but clinical trials are still limited and heterogeneous. Well-designed, randomized, placebo-controlled clinical trials are required to validate the effectiveness of probiotics in the treatment of ASD and to identify the appropriate strains, dose, and timing of treatment.
Collapse
Affiliation(s)
- Antonella Fattorusso
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Lorenza Di Genova
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Giovanni Battista Dell'Isola
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Elisabetta Mencaroni
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| |
Collapse
|
49
|
Cheung SG, Goldenthal AR, Uhlemann AC, Mann JJ, Miller JM, Sublette ME. Systematic Review of Gut Microbiota and Major Depression. Front Psychiatry 2019; 10:34. [PMID: 30804820 PMCID: PMC6378305 DOI: 10.3389/fpsyt.2019.00034] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/21/2019] [Indexed: 11/17/2022] Open
Abstract
Background: Recently discovered relationships between the gastrointestinal microbiome and the brain have implications for psychiatric disorders, including major depressive disorder (MDD). Bacterial transplantation from MDD patients to rodents produces depression-like behaviors. In humans, case-control studies have examined the gut microbiome in healthy and affected individuals. We systematically reviewed existing studies comparing gut microbial composition in MDD and healthy volunteers. Methods: A PubMed literature search combined the terms "depression," "depressive disorder," "stool," "fecal," "gut," and "microbiome" to identify human case-control studies that investigated relationships between MDD and microbiota quantified from stool. We evaluated the resulting studies, focusing on bacterial taxa that were different between MDD and healthy controls. Results: Six eligible studies were found in which 50 taxa exhibited differences (p < 0.05) between patients with MDD and controls. Patient characteristics and methodologies varied widely between studies. Five phyla-Bacteroidetes, Firmicutes, Actinobacteria, Fusobacteria, and Protobacteria-were represented; however, divergent results occurred across studies for all phyla. The largest number of differentiating taxa were within phylum Firmicutes, in which nine families and 12 genera differentiated the diagnostic groups. The majority of these families and genera were found to be statistically different between the two groups in two identified studies. Family Lachnospiraceae differentiated the diagnostic groups in four studies (with an even split in directionality). Across all five phyla, nine genera were higher in MDD (Anaerostipes, Blautia, Clostridium, Klebsiella, Lachnospiraceae incertae sedis, Parabacteroides, Parasutterella, Phascolarctobacterium, and Streptococcus), six were lower (Bifidobacterium, Dialister, Escherichia/Shigella, Faecalibacterium, and Ruminococcus), and six were divergent (Alistipes, Bacteroides, Megamonas, Oscillibacter, Prevotella, and Roseburia). We highlight mechanisms and products of bacterial metabolism as they may relate to the etiology of depression. Conclusions: No consensus has emerged from existing human studies of depression and gut microbiome concerning which bacterial taxa are most relevant to depression. This may in part be due to differences in study design. Given that bacterial functions are conserved across taxonomic groups, we propose that studying microbial functioning may be more productive than a purely taxonomic approach to understanding the gut microbiome in depression.
Collapse
Affiliation(s)
- Stephanie G. Cheung
- Division of Consultation-Liaison Psychiatry, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Ariel R. Goldenthal
- Department of Psychiatry, Columbia University, New York, NY, United States
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY, United States
- Microbiome & Pathogen Genomics Core, Columbia University, New York, NY, United States
| | - J. John Mann
- Department of Psychiatry, Columbia University, New York, NY, United States
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, United States
- Department of Radiology, Columbia University, New York, NY, United States
| | - Jeffrey M. Miller
- Department of Psychiatry, Columbia University, New York, NY, United States
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, United States
| | - M. Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, United States
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
50
|
Lyte JM. Eating for 3.8 × 10 13: Examining the Impact of Diet and Nutrition on the Microbiota-Gut-Brain Axis Through the Lens of Microbial Endocrinology. Front Endocrinol (Lausanne) 2019; 9:796. [PMID: 30761092 PMCID: PMC6361751 DOI: 10.3389/fendo.2018.00796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022] Open
Abstract
The study of host-microbe neuroendocrine crosstalk, termed microbial endocrinology, suggests the impact of diet on host health and microbial viability is, in part, reliant upon nutritional modulation of shared host-microbe neuroendocrine axes. In the 1990's it was first recognized that neuroendocrine pathways are major components of the microbiota-gut-brain axis, and that diet-induced changes in the gut microbiota were correlated with changes in host behavior and cognition. A causative link, however, between nutritional-induced shifts in microbiota composition and change in host behavior has yet to be fully elucidated. Substrates found in food which are utilized by bacteria in the production of microbial-derived neurochemicals, which are structurally identical to those made by the host, likely represent a microbial endocrinology-based route by which the microbiota causally influence the host and microbial community dynamics via diet. For example, food safety is strongly impacted by the microbial production of biogenic amines. While microbial-produced tyramine found in cheese can elicit hypertensive crises, microorganisms which are common inhabitants of the human intestinal tract can convert L-histidine found in common foodstuffs to histamine and thereby precipitate allergic reactions. Hence, there is substantial evidence suggesting a microbial endocrinology-based role by which the gastrointestinal microbiota can utilize host dietary components to produce neuroactive molecules that causally impact the host. Conversely, little is known regarding the reverse scenario whereby nutrition-mediated changes in host neuroendocrine production affect microbial viability, composition, and/or function. Mechanisms in the direction of brain-to-gut, such as how host production of catecholamines drives diverse changes in microbial growth and functionality within the gut, require greater examination considering well-known nutritional effects on host stress physiology. As dietary intake mediates changes in host stress, such as the effects of caffeine on the hypothalamic-pituitary-adrenal axis, it is likely that nutrition can impact host neuroendocrine production to affect the microbiota. Likewise, the plasticity of the microbiota to changes in host diet has been hypothesized to drive microbial regulation of host food preference via a host-microbe feedback loop. This review will focus on food as concerns microbial endocrinology with emphasis given to nutrition as a mediator of host-microbe bi-directional neuroendocrine crosstalk and its impact on microbial viability and host health.
Collapse
Affiliation(s)
- Joshua M. Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| |
Collapse
|