1
|
Sharma R, Kataria A, Sharma S, Singh B. Structural characterisation, biological activities and pharmacological potential of glycosaminoglycans and oligosaccharides: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rajan Sharma
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| | - Ankita Kataria
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| | - Savita Sharma
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| | - Baljit Singh
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| |
Collapse
|
2
|
Cai J, Chen XL, Fan JX, Huang XM, Li R, Sun XD, Li QQ, Li DY. Cloning and Heterologous Expression of a Novel Xylanase Gene TAX1 from Trichoderma atroviride and Its Application in the Deconstruction of Corn Stover. Appl Biochem Biotechnol 2021; 193:3029-3044. [PMID: 33970424 DOI: 10.1007/s12010-021-03582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Xylanase plays a vital role in the efficient utilization of xylan, which accounts for up to 30% of plant dry matter. However, the production cost of xylanase remains high, and the enzymatic characteristics of xylanases of most microorganisms are not suitable for industrial production. Therefore, it is of great significance to discover and develop new and efficient xylanases. In this study, the xylanase gene TAX1 (672 bp cDNA) was cloned from Trichoderma atroviride 3.3013 and expressed in Pichia pastoris. The TAX1 gene encoded a 223-amino acid protein (TAX1) with a molecular weight of 24.2 kDa which showed high similarity to glycoside hydrolase family 11. Enzyme activity assay verified that the recombinant xylanase TAX1 had optimal activity (215.3 IU/mL) at 50°C and pH 6.0. Stable working conditions were measured as pH 4.0-7.0 and 40-60°C. By adding Zn2+, the relative enzymatic activity of recombinant TAX1 was enhanced by 26%. The recombinant xylanase showed high activity toward birchwood xylan and corn stover. The Km and Kcat for xylan and corn stover were 0.36 mg/mL and 0.204 S-1 and 0.48 mg/mL and 0.149 S-1, respectively. The enzymatic activity of the TAX1 produced by P. pastoris was about 2.4-4 times higher that directly isolated from T. atroviride, so engineered P. pastoris for xylanase production could be an ideal candidate for industrial enzyme production.
Collapse
Affiliation(s)
- Jin Cai
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, 154007, People's Republic of China
| | - Xiu-Ling Chen
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jin-Xia Fan
- Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- The College of Engineering, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xiao-Mei Huang
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, 154007, People's Republic of China.
| | - Rui Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu-Dong Sun
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qing-Qing Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dong-Yu Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
3
|
Production of prebiotic xylooligosaccharides from arabino- and glucuronoxylan using a two-domain Jonesia denitrificans xylanase from GH10 family. Enzyme Microb Technol 2021; 144:109743. [PMID: 33541577 DOI: 10.1016/j.enzmictec.2021.109743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
Abstract
Development of a more environmentally sustainable society is based on the maximum use of renewable carbon sources and their valorization of environmentally-friendly green technologies. This includes a thorough use of plant biomass and agricultural residues for the production of value-added bioproducts. Xylan is the second most abundant biopolymer in nature which can be sustainable converted into pentoses and xylooligosaccharides, that have wide applications in the food, feed, pharmaceutical, and cosmetic industry. Within the scope of present study, we biochemically characterized two-domain GH10 xylanase from Jonesia denitrificans (JdXyn10A) and evaluated its applicability for production of xylooligosaccharides (XOS). JdXyn10A has a specific activity of 84 ± 2 U/mg and 65 ± 5 U/mg when acting on beechwood glucuronoxylan and rye arabinoxylan, respectively. The enzyme is stable in a wide pH range and is tolerant to high concentrations of NaCl and ethanol. Interestingly, the profile of products released by the enzyme is predominant in xylobiose and xylotriose, with a very low fraction of xylose which is desirable for XOS production. The efficiencies of enzymatic conversion of beechwood glucuronoxylan and rye arabinoxylan are 47.67 % and 26.01 %, respectively, after 6 h of enzymatic hydrolysis only. Structural comparison between the JdXyn10A homology model and the structure from its homologous that while the glycone region of its active site is well preserved, the aglycone region presents structural differences in the +2 subsite that may explain why JdXyn10A does not release xylose.
Collapse
|
4
|
Si D, Shang T, Liu X, Zheng Z, Hu Q, Hu C, Zhang R. Production and characterization of functional wheat bran hydrolysate rich in reducing sugars, xylooligosaccharides and phenolic acids. ACTA ACUST UNITED AC 2020; 27:e00511. [PMID: 32775234 PMCID: PMC7397401 DOI: 10.1016/j.btre.2020.e00511] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/01/2022]
Abstract
The aim was to enhance production of functional hydrolysate from wheat bran (WB). WB was hydrolyzed with 3000 U/mL ɑ-amylase and 1200 U/mL alkaline protease to prepare WB insoluble dietary fibre (WBIDF). Functional hydrolysate production from the extract containing crude xylan of WBIDF by xylanase was optimized by Taguchi method. The optimal condition for xylan degradation and functional substances production was 78.50 U/mL xylanase, pH 10.0, 50 °C, and reaction time 6 h. The maximum yield of reducing sugars was 614.0 μg/mL, xylobiose increased from 12.9 μg/mL to 213.3 μg/mL, xylotriose increased from 34.9 μg/mL to 174.0 μg/mL, ferulic acid 13.1 μg/mL made up 57.5 % of the total identifiable phenolic pool in the hydrolysate. The total antioxidant activity of hydrolysate was 141.8 mg ascorbic acid equivalents g-1 crude xylan, and the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity reached 92.7 %. The hydrolysate exhibited great potential in agricultural and food industry application.
Collapse
Key Words
- AAE, ascorbic acid equivalents
- ANOVA, analysis of variance
- Antioxidant capacity
- DAD, diode array detector
- DNS, dinitrosalicylic acid
- DP, degree of polymerization
- DPPH, 1,1-diphenyl-2-picrylhydrazyl
- Hydrolysis optimization
- Phenolic acids
- Reducing sugars
- WB, wheat bran
- WBIDF, wheat bran insoluble dietary fibre
- Wheat bran
- X2, xylobiose
- X3, xylotriose
- X4, xylotetraose
- X5, xylopentose
- X6, xylohexose
- XOS, xylooligosaccharides
- Xylooligosaccharides
Collapse
Affiliation(s)
- Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Tingting Shang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China.,Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Key Laboratory for Feed Biotechnology, No. 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
| | - Xuhui Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Zhaojun Zheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Qingyong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Cong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
5
|
An endoxylanase rapidly hydrolyzes xylan into major product xylobiose via transglycosylation of xylose to xylotriose or xylotetraose. Carbohydr Polym 2020; 237:116121. [PMID: 32241400 DOI: 10.1016/j.carbpol.2020.116121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Here, we proposed an effective strategy to enhance a novel endoxylanase (Taxy11) activity and elucidated an efficient catalysis mechanism to produce xylooligosaccharides (XOSs). Codon optimization and recruitment of natural propeptide in Pichia pastoris resulted in achievement of Taxy11 activity to 1405.65 ± 51.24 U/mL. Analysis of action mode reveals that Taxy11 requires at least three xylose (xylotriose) residues for hydrolysis to yield xylobiose. Results of site-directed mutagenesis indicate that residues Glu119, Glu210, and Asp53 of Taxy11 are key catalytic sites, while Asp203 plays an auxiliary role. The novel mechanism whereby Taxy11 catalyzes conversion of xylan or XOSs into major product xylobiose involves transglycosylation of xylose to xylotriose or xylotetraose as substrate, to form xylotetraose or xylopentaose intermediate, respectively. Taxy11 displayed highly hydrolytic activity toward corncob xylan, producing 50.44 % of xylobiose within 0.5 h. This work provides a cost-effective and sustainable way to produce value-added biomolecules XOSs (xylobiose-enriched) from agricultural waste.
Collapse
|
6
|
He J, Tang F, Chen D, Yu B, Luo Y, Zheng P, Mao X, Yu J, Yu F. Design, expression and functional characterization of a thermostable xylanase from Trichoderma reesei. PLoS One 2019; 14:e0210548. [PMID: 30650138 PMCID: PMC6334952 DOI: 10.1371/journal.pone.0210548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/27/2018] [Indexed: 11/19/2022] Open
Abstract
Xylanases isolated from microorganisms such as the Trichoderma reesei have attracted considerable research interest because of their potential in various industrial applications. However, naturally isolated xylanases cannot withstand harsh conditions such as high temperature and basic pH. In this study, we performed structural analysis of the major T. reesei xylanase (Xyn2), and novel flexible regions of the enzyme were identified based on B-factor, a molecular dynamics (MD) parameter. To improve thermostability of the Xyn2, disulfide bonds were introduced into the unstable flexible region by using site-directed mutagenesis and two recombinant xylanases, XM1 (Xyn2Cys12-52) and XM2 (Xyn2Cys59-149) were successfully expressed in Pichia pastoris. Secreted recombinant Xyn2 was estimated by SDS-PAGE to be 24 kDa. Interestingly, the half-lives of XM1 and XM2 at 60°C were 2.5- and 1.8- fold higher, respectively than those of native Xyn2. The XM1 also exhibited improved pH stability and maintained more than 60% activity over pH values ranging from 2.0 to 10.0. However, the specific activity and catalytic efficiency of XM1 was decreased as compared to those of XM2 and native Xyn2. Our results will assist not only in elucidating of the interactions between protein structure and function, but also in rational target selection for improving the thermostability of enzymes.
Collapse
Affiliation(s)
- Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- * E-mail:
| | - Feng Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Feng Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
7
|
Liu MQ, Huo WK, Xu X, Weng XY. Recombinant Bacillus amyloliquefaciens xylanase A expressed in Pichia pastoris and generation of xylooligosaccharides from xylans and wheat bran. Int J Biol Macromol 2017; 105:656-663. [DOI: 10.1016/j.ijbiomac.2017.07.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/08/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
|
8
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Dutta SK, Chakraborty S. Kinetic analysis of two-phase enzymatic hydrolysis of hemicellulose of xylan type. BIORESOURCE TECHNOLOGY 2015; 198:642-650. [PMID: 26433789 DOI: 10.1016/j.biortech.2015.09.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 06/05/2023]
Abstract
We present a coupled experimental and theoretical framework for quantifying the kinetics of two-phase enzymatic hydrolysis of hemicellulose. For xylan loading of 1-5mg/ml, the nature of inhibition by the product xylose (non-competitive), the kinetic constants (Km=3.93 mg/ml, Vmax=0.0252 mg/ml/min) and the xylose inhibition constant (Kx=0.122 mg/ml) are experimentally determined. Our multi-step two-phase kinetic model incorporating enzyme adsorption to the solid substrate and non-competitive product inhibition is simulated using our kinetic data and validated against our experimentally measured temporal dynamics of xylose and reducing sugars. Further experiments show that higher substrate loading reduces the specific adsorption of the endoxylanase to the solid xylan and the enzyme's solid-liquid distribution ratio, which decelerates the solid hydrolysis and accelerates the liquid phase reactions. Thus, the xylose yield increases with substrate loading, which increases product inhibition and decreases reducing sugar yields. An operating cost analysis gives 3mg/ml as the optimal substrate loading.
Collapse
Affiliation(s)
- Sajal Kanti Dutta
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Saikat Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India; School of Energy Science and Engineering, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|
10
|
Production of an alkaline xylanase from recombinant Kluyveromyces lactis (KY1) by submerged fermentation and its application in bio-bleaching. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
An J, Xie Y, Zhang Y, Tian D, Wang S, Yang G, Feng Y. Characterization of a thermostable, specific GH10 xylanase from Caldicellulosiruptor bescii with high catalytic activity. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 2015; 13:1925-65. [PMID: 25854643 PMCID: PMC4413194 DOI: 10.3390/md13041925] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/26/2022] Open
Abstract
The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.
Collapse
|
13
|
Production, Purification, and Characterization of a Cellulase-Free Thermostable Endo-xylanase from Thermoanaerobacterium thermosaccharolyticum DSM 571. Appl Biochem Biotechnol 2014; 174:2392-402. [DOI: 10.1007/s12010-014-1135-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/01/2014] [Indexed: 11/25/2022]
|
14
|
Lama L, Tramice A, Finore I, Anzelmo G, Calandrelli V, Pagnotta E, Tommonaro G, Poli A, Di Donato P, Nicolaus B, Fagnano M, Mori M, Impagliazzo A, Trincone A. Degradative actions of microbial xylanolytic activities on hemicelluloses from rhizome of Arundo donax. AMB Express 2014; 4:55. [PMID: 25024928 PMCID: PMC4086442 DOI: 10.1186/s13568-014-0055-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/14/2014] [Indexed: 01/10/2023] Open
Abstract
Polysaccharidases from extremophiles are remarkable for specific action, resistance to different reaction conditions and other biotechnologically interesting features. In this article the action of crude extracts of thermophilic microorganisms (Thermotoga neapolitana, Geobacillus thermantarcticus and Thermoanaerobacterium thermostercoris) is studied using as substrate hemicellulose from one of the most interesting biomass crops, the giant reed (Arundo donax L.). This biomass can be cultivated without competition and a huge amount of rhizomes remains in the soil at the end of cropping cycle (10–15 years) representing a further source of useful molecules. Optimization of the procedure for preparation of the hemicellulose fraction from rhizomes of Arundo donax, is studied. Polysaccharidases from crude extracts of thermophilic microorganisms revealed to be suitable for total degradative action and/or production of small useful oligosaccharides from hemicelluloses from A. donax. Xylobiose and interesting tetra- and pentasaccharide are obtained by enzymatic action in different conditions. Convenient amount of raw material was processed per mg of crude enzymes. Raw hemicelluloses and pretreated material show antioxidant activity unlike isolated tetra- and pentasaccharide. The body of results suggest that rhizomes represent a useful raw material for the production of valuable industrial products, thus allowing to increase the economic efficiency of A. donax cultivation.
Collapse
|
15
|
Kumar L, Dutt D, Tapas S, Kumar P. Purification, bio-chemical characterization, homology modeling and active site binding mode interactions of thermo-alkali-tolerant β-1,4 endoxylanase from Coprinus cinereus LK-D-NCIM-1369. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2013.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Thermostable and Alkalistable Endoxylanase of the Extremely Thermophilic Bacterium Geobacillus thermodenitrificans TSAA1: Cloning, Expression, Characteristics and Its Applicability in Generating Xylooligosaccharides and Fermentable Sugars. Appl Biochem Biotechnol 2013; 170:119-30. [DOI: 10.1007/s12010-013-0174-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
|
17
|
|
18
|
Peng F, Peng P, Xu F, Sun RC. Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 2012; 30:879-903. [PMID: 22306329 DOI: 10.1016/j.biotechadv.2012.01.018] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Chapla D, Pandit P, Shah A. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. BIORESOURCE TECHNOLOGY 2012; 115:215-221. [PMID: 22100233 DOI: 10.1016/j.biortech.2011.10.083] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 05/31/2023]
Abstract
The selective production of xylooligosaccharides (XOS) was carried out using partially purified xylanase from Aspergillus foetidus MTCC 4898. Corncob xylan was extracted using a mild alkali treatment which yielded 178.73±5.8 g of xylan/kg of corncobs. Partially purified β-xylosidase free xylanase was found efficient in releasing xylooligosaccharides from corncob xylan. Maximum yield of xylooligosaccharides was 6.73±0.23 mg/ml after 8 h of reaction time using 20 U of xylanase at 45°C. Purification of XOS was done using activated charcoal column chromatography. The purified XOS preparation contained mainly xylobiose and xylotriose. XOS mixture was found suitable for food industry looking at its high thermal stability at low pH. Prebiotic effect of XOS was evaluated by in vitro fermentation of XOS using known probiotic strains viz. Bifidobacterium adolescentis, Bifidobacterium bifidum, Lactobacillus fermentum, Lactobacillus acidophilus. The results of this study revealed better growth of Bifidobacterium spp. on XOS than Lactobacillus spp.
Collapse
Affiliation(s)
- Digantkumar Chapla
- BRD School of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India.
| | | | | |
Collapse
|
20
|
High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Li X, Li E, Zhu Y, Teng C, Sun B, Song H, Yang R. A typical endo-xylanase from Streptomyces rameus L2001 and its unique characteristics in xylooligosaccharide production. Carbohydr Res 2012; 359:30-6. [PMID: 22925761 DOI: 10.1016/j.carres.2012.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
The activity of the extracellular xylanase produced by Streptomyces rameus L2001 against different xylans and xylooligosaccharides (XOS) was investigated. The main products of hydrolysis of birchwood xylan and oat-spelt xylan by the S. rameus L2001 xylanase were xylobiose (X2) and xylotriose (X3), suggesting that this is an endo-acting xylanase. This was confirmed by analysis of XOS degradation products. The enzyme hardly hydrolyzed X2 and X3, but hydrolyzed xylotetraose (X4) and xylopentaose (X5) producing mainly X2 and X3 through transglycosylation. Depending on the substrate, different quantities of reducing sugars were produced by the xylanase: 150 mg/g from corncob, 105 mg/g from bean culms, and 133 mg/g from bagasse. With the bagasse substrate, the xylanase yielded 2.36, 2.76, 2.03, and 2.17 mg/mL of X2, X3, X4, and X5, respectively. The structure of xylobiose and xylotriose from the hydrolysis of corncob xylan was identified by MS and NMR. The production of XOS from various agricultural wastes has potential industrial applications. This is the first report of XOS production by S. rameus L2001.
Collapse
Affiliation(s)
- Xiuting Li
- Department of Food Science, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhu Y, Li X, Sun B, Song H, Li E, Song H. Properties of an Alkaline-Tolerant, Thermostable Xylanase from Streptomyces chartreusis L1105, Suitable for Xylooligosaccharide Production. J Food Sci 2012; 77:C506-11. [DOI: 10.1111/j.1750-3841.2012.02671.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Verma D, Satyanarayana T. Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. BIORESOURCE TECHNOLOGY 2012; 107:333-338. [PMID: 22212694 DOI: 10.1016/j.biortech.2011.12.055] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 05/31/2023]
Abstract
A xylanase gene (xyl-gt) of 1.224 kbp was cloned from the extremely thermophilic bacterium Geobacillus thermoleovorans that encodes a protein containing 408 amino acid residues. Eight conserved regions (signature sequences) of GH family 10 xylanases have been found in the xylanase. When the xylanase gene was cloned and expressed in Escherichia coli BL21 (DE3), the recombinant strain produced xylanase titer of 270 U mg(-1) which is 27-fold higher than the wild strain. It is optimally active at 80°C and pH 8.5 with a high thermostability over broad range of pH (6-12) and temperature (40-100°C). The end products of the hydrolysis of birch wood xylan and agro-residues included xylobiose, xylotriose, xylotetraose and xylopentaose. The xylanase of G. thermoleovorans is one of the rare xylanases that exhibits thermo-alkali-stability, and thus, it is a suitable candidate for pre-bleaching of paper pulps and generating xylooligosaccharides from agro-residues for use as prebiotics.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Microbiology, University of Delhi South Campus, New Delhi 110 021, India
| | | |
Collapse
|
24
|
Kinetic and thermodynamic study of cloned thermostable endo-1,4-β-xylanase from Thermotoga petrophila in mesophilic host. Mol Biol Rep 2012; 39:7251-61. [PMID: 22322560 DOI: 10.1007/s11033-012-1555-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
Abstract
The 1,044 bp endo-1,4-β-xylanase gene of a hyperthermophilic Eubacterium, "Thermotoga petrophila RKU 1" (T. petrophila) was amplified, from the genomic DNA of donor bacterium, cloned and expressed in mesophilic host E. coli strain BL21 Codon plus. The extracellular target protein was purified by heat treatment followed by anion and cation exchange column chromatography. The purified enzyme appeared as a single band, corresponding to molecular mass of 40 kDa, upon SDS-PAGE. The pH and temperature profile showed that enzyme was maximally active at 6.0 and 95 °C, respectively against birchwood xylan as a substrate (2,600 U/mg). The enzyme also exhibited marked activity towards beech wood xylan (1,655 U/mg). However minor activity against CMC (61 U/mg) and β-Glucan barley (21 U/mg) was observed. No activity against Avicel, Starch, Laminarin and Whatman filter paper 42 was observed. The K(m), V(max) and K (cat) of the recombinant enzyme were found to be 3.5 mg ml(-1), 2778 μmol mg(-1)min(-1) and 2,137,346.15 s(-1), respectively against birchwood xylan as a substrate. The recombinant enzyme was found very stable and exhibited half life (t(½)) of 54.5 min even at temperature as high as 96 °C, with enthalpy of denaturation (ΔH*(D)), free energy of denaturation (ΔG*(D)) and entropy of denaturation (ΔS*(D)) of 513.23 kJ mol(-1), 104.42 kJ mol(-1) and 1.10 kJ mol(-1)K(-1), respectively at 96 °C. Further the enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) for birchwood xylan hydrolysis by recombinant endo-1,4-β-xylanase were calculated at 95 °C as 62.45 kJ mol(-1), 46.18 kJ mol(-1) and 44.2 J mol(-1) K(-1), respectively.
Collapse
|
25
|
Shrivastava S, Shukla P, Mukhopadhyay K. Purification and preliminary characterization of a xylanase from Thermomyces lanuginosus strain SS-8. 3 Biotech 2011; 1:255-259. [PMID: 22558544 PMCID: PMC3339585 DOI: 10.1007/s13205-011-0032-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/08/2011] [Indexed: 11/30/2022] Open
Abstract
Thermomyces lanuginosus SS-8 was isolated from soil samples that had been collected from near self-heating plant material and its extracellular cellulase-free xylanase purified approximately 160-fold using ion exchange chromatography and continuous elution electrophoresis. This xylanase was thermoactive (optimum temperature 60 °C) at pH 6.0 and had a molecular weight of 23.79 kDa as indicated by SDS-PAGE electrophoresis. The xylanase rapidly hydrolyzed xylan directly to xylose without the production of intermediary xylo-oligosaccharides within 15 min of incubation under optimum conditions. This trait of rapidly degrading xylan to xylose as a sole end-product could have biotechnological potential in degradation of agro-wastes for bioethanol manufacturing industry.
Collapse
Affiliation(s)
- Smriti Shrivastava
- Enzyme Technology Laboratory, Department of Biotechnology, Birla Institute of Technology (Deemed University), Mesra, Ranchi, Jharkhand India
| | - Pratyoosh Shukla
- Enzyme Technology Laboratory, Department of Biotechnology, Birla Institute of Technology (Deemed University), Mesra, Ranchi, Jharkhand India
| | - Kunal Mukhopadhyay
- Enzyme Technology Laboratory, Department of Biotechnology, Birla Institute of Technology (Deemed University), Mesra, Ranchi, Jharkhand India
| |
Collapse
|
26
|
Development and validation of a medium for recombinant endo-β-1,4-xylanase production by Kluyveromyces lactis using a statistical experimental design. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0258-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Vervoort L, der Plancken IV, Grauwet T, Verjans P, Courtin CM, Hendrickx ME, Van Loey A. Xylanase B from the hyperthermophile Thermotoga maritima as an indicator for temperature gradients in high pressure high temperature processing. INNOV FOOD SCI EMERG 2011. [DOI: 10.1016/j.ifset.2011.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Marine biocatalysts: enzymatic features and applications. Mar Drugs 2011; 9:478-499. [PMID: 21731544 PMCID: PMC3124967 DOI: 10.3390/md9040478] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 02/28/2011] [Accepted: 03/23/2011] [Indexed: 11/21/2022] Open
Abstract
In several recent reports related to biocatalysis the enormous pool of biodiversity found in marine ecosystems is considered a profitable natural reservoir for acquiring an inventory of useful biocatalysts. These enzymes are characterized by well-known habitat-related features such as salt tolerance, hyperthermostability, barophilicity and cold adaptivity. In addition, their novel chemical and stereochemical characteristics increase the interest of biocatalysis practitioners both in academia and research industry. In this review, starting from the analysis of these featuring habitat-related properties, important examples of marine enzymes in biocatalysis will be reported. Completion of this report is devoted to the analysis of novel chemical and stereochemical biodiversity offered by marine biocatalysts with particular emphasis on current or potential applications of these enzymes in chemical and pharmaceutical fields. The analysis of literature cited here and the many published patent applications concerning the use of marine enzymes supports the view that these biocatalysts are just waiting to be discovered, reflecting the importance of the marine environment. The potential of this habitat should be thoroughly explored and possibly the way to access useful biocatalysts should avoid destructive large-scale collections of marine biomass for enzyme production. These two aspects are day by day increasing in interest and a future increase in the use of marine enzymes in biocatalysis should be expected.
Collapse
|
29
|
Expression and Characterization of a Thermostable Xylanase Gene xynA from a Themophilic Fungus in Pichia pastoris. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60013-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Purification and properties of a psychrotrophic Trichoderma sp. xylanase and its gene sequence. Appl Biochem Biotechnol 2011; 164:944-56. [PMID: 21302145 DOI: 10.1007/s12010-011-9186-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
Abstract
A psychrotrophic fungus identified as Trichoderma sp. SC9 produced 36.7 U/ml of xylanase when grown on a medium containing corncob xylan at 20 °C for 6 days. The xylanase was purified 37-fold with a recovery yield of 8.2%. The purified xylanase appeared as a single protein band on SDS-PAGE with a molecular mass of approximately 20.5 kDa. The enzyme had an optimal pH of 6.0, and was stable over pH 3.5-9.0. The optimal temperature of the xylanase was 42.5 °C and it was stable up to 35 °C at pH 6.0 for 30 min. The xylanase was thermolabile with a half-life of 23.9 min at 45 °C. The apparent K(m) values of the xylanase for birchwood, beechwood, and oat-spelt xylans were found to be 3, 2.1, and 16 mg/ml respectively. The xylanase hydrolyzed beechwood xylan and birchwood xylan to yield mainly xylobiose as end products. The enzyme-hydrolysed xylotriose, xylotetraose, and xylopentose to produce xylobiose, but it hardly hydrolysed xylobiose. A xylanase gene (xynA) with an open reading frame of 669 nucleotide base pairs (bp), encoding 222 amino acids, from the strain was cloned and sequenced. The deduced amino acid sequence of XynA showed 85% homology with Xyn2 from a mesophilic strain of Trichoderma viride.
Collapse
|
31
|
Aachary AA, Prapulla SG. Xylooligosaccharides (XOS) as an Emerging Prebiotic: Microbial Synthesis, Utilization, Structural Characterization, Bioactive Properties, and Applications. Compr Rev Food Sci Food Saf 2010. [DOI: 10.1111/j.1541-4337.2010.00135.x] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Santos CR, Meza AN, Hoffmam ZB, Silva JC, Alvarez TM, Ruller R, Giesel GM, Verli H, Squina FM, Prade RA, Murakami MT. Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1. Biochem Biophys Res Commun 2010; 403:214-9. [PMID: 21070746 DOI: 10.1016/j.bbrc.2010.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 11/02/2010] [Indexed: 11/16/2022]
Abstract
Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20°C, and exclusively xylobiose at 90°C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.
Collapse
Affiliation(s)
- Camila Ramos Santos
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Microbiome of fungus-growing termites: a new reservoir for lignocellulase genes. Appl Environ Microbiol 2010; 77:48-56. [PMID: 21057022 DOI: 10.1128/aem.01521-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungus-growing termites play an important role in lignocellulose degradation and carbon mineralization in tropical and subtropical regions, but the degradation potentiality of their gut microbiota has long been neglected. The high quality and quantity of intestinal microbial DNA are indispensable for exploring new cellulose genes from termites by function-based screening. Here, using a refined intestinal microbial DNA extraction method followed by multiple-displacement amplification (MDA), a fosmid library was constructed from the total microbial DNA isolated from the gut of a termite growing in fungi. Functional screening for endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase resulted in 12 β-glucosidase-positive clones and one xylanase-positive clone. The sequencing result of the xylanase-positive clone revealed an 1,818-bp open reading frame (ORF) encoding a 64.5-kDa multidomain endo-1,4-β-xylanase, designated Xyl6E7, which consisted of an N-terminal GH11 family catalytic domain, a CBM_4_9 domain, and a Listeria-Bacteroides repeat domain. Xyl6E7 was a highly active, substrate-specific, and endo-acting alkaline xylanase with considerably wide pH tolerance and stability but extremely low thermostability.
Collapse
|
34
|
Optimization of the Trichoderma reesei endo-1,4-beta-xylanase production by recombinant Pichia pastoris. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
|
36
|
Identification and characterization of a novel xylanase derived from a rice straw degrading enrichment culture. Appl Microbiol Biotechnol 2010; 87:2137-46. [DOI: 10.1007/s00253-010-2712-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
|
37
|
Zhu H, Wang F, Huang W, Zheng J, Rayas-Duarte P. Rheofermentometer fermentation and breadmaking characteristics of dough containing xylo-oligosaccharide hydrolyzate from wheat bran. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:1878-1883. [PMID: 20055409 DOI: 10.1021/jf902131r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The sugar composition of a xylo-oligosaccharide enzymolysis solution (XES) hydrolyzed from wheat bran and bread containing XES were studied. The effects of the XES on fermentation properties of dough and on bread crumb and crust color characteristics are reported. The composition of sugars was determined by high performance liquid chromatography (HPLC), and the fermentation properties of dough and bread color were determined by Rheofermentometer F3 and Chroma Meter CR-400, respectively. xylo-Oligosaccharides (XOS) (51.3%) and xylose (39.2%) were the major sugars in the XES. XOS remained in the XES-containing bread after breadmaking processes (xylotriose, xylotetraose, and xylopentaose, 21.1%), with xylopentaose accounting for 14.4%. Maximum dough height (Hm) was significantly increased by XES, while the maximum gaseous release height (Hm') was not affected. XES increased the brownness index of the crumb and crust of bread when compared to the that of control bread. Consumer acceptability scores of control and XES containing breads were similar.
Collapse
Affiliation(s)
- Huiyan Zhu
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Exchange and Cooperation Program, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | | | | | | | | |
Collapse
|
38
|
Brienzo M, Carvalho W, Milagres AMF. Xylooligosaccharides Production from Alkali-Pretreated Sugarcane Bagasse Using Xylanases from Thermoascus aurantiacus. Appl Biochem Biotechnol 2010; 162:1195-205. [DOI: 10.1007/s12010-009-8892-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
|
39
|
Functional characterisation of a recombinant xylanase fromPichia pastorisand effect of the enzyme on nutrient digestibility in weaned pigs. Br J Nutr 2010; 103:1507-13. [DOI: 10.1017/s0007114509993333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thexyn2gene of a filamentous mesophilic fungus,Trichoderma reesei, coding xylanase 2 (Xyn2) was previously expressed inPichia pastoris. In the present study, the recombinant Xyn2 was prepared from a 15 litre fermenter, and subsequently characterised. It has been confirmed to have a molecular mass of 21 kDa, an optimal pH of 6·0 and an optimal temperature of 60°C. When tested using oat-spelt xylan, it showed aKmand catalytic rate constant (kcat) of 1·1 mg/ml and 512·4/s, respectively. Analysis of the products from oat-spelt xylan degradation confirmed that the enzyme was an endoxylanase with xylotriose and xylobiose as the main degradation products. The unprocessed Xyn2 was supplemented to a xylan-containing diet to determine its influences on performance and nutrient digestibilities by weaned pigs. Results showed that the average body-weight gain increased 16·9 % when piglets received Xyn2 at a concentration of 500 U/kg diet. There also was a positive (0·05 < P < 0·10) effect on the digestibility values of crude protein, ash, Ca and acid-detergent fibre with Xyn2 supplementation. The potential benefits of Xyn2 in the nutrition of weaned pigs should make it an alternative applicant for industrial xylanase production.
Collapse
|
40
|
Jun H, Bing Y, Keying Z, Daiwen C. Functional characterization of a recombinant thermostable xylanase from Pichia pastoris: A hybrid enzyme being suitable for xylooligosaccharides production. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Shin JH, Choi JH, Lee OS, Kim YM, Lee DS, Kwak YY, Kim WC, Rhee IK. Thermostable xylanase from Streptomyces thermocyaneoviolaceus for optimal production of xylooligosaccharides. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0220-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Expression of a Trichoderma reesei β-xylanase gene in Escherichia coli and activity of the enzyme on fiber-bound substrates. Protein Expr Purif 2009; 67:1-6. [DOI: 10.1016/j.pep.2008.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/31/2008] [Accepted: 07/31/2008] [Indexed: 11/22/2022]
|
43
|
Maalej-Achouri I, Guerfali M, Gargouri A, Belghith H. Production of xylo-oligosaccharides from agro-industrial residues using immobilized Talaromyces thermophilus xylanase. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
He J, Yu B, Zhang K, Ding X, Chen D. Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol 2009; 9:56. [PMID: 19527524 PMCID: PMC2702311 DOI: 10.1186/1472-6750-9-56] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/16/2009] [Indexed: 11/11/2022] Open
Abstract
Background In recent years, xylanases have attracted considerable research interest because of their potential in various industrial applications. The yeast Pichia pastoris can neither utilize nor degrade xylan, but it possesses many attributes that render it an attractive host for the expression and production of industrial enzymes. Results The Xyn2 gene, which encodes the main Trichoderma reesei Rut C-30 endo-β-1, 4-xylanase was cloned into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strains produced as 4,350 nkat/ml β-xylanase under the control of the methanol inducible alcohol oxidase 1 (AOX1) promoter. The secreted recombinant Xyn2 was estimated by SDS-PAGE to be 21 kDa. The activity of the recombinant Xyn2 was highest at 60°C and it was active over a broad range of pH (3.0–8.0) with maximal activity at pH 6.0. The enzyme was quite stable at 50°C and retained more than 94% of its activity after 30 mins incubation at this temperature. Using Birchwood xylan, the determined apparent Km and kcat values were 2.1 mg/ml and 219.2 S-1, respectively. The enzyme was highly specific towards xylan and analysis of xylan hydrolysis products confirmed as expected that the enzyme functions as endo-xylanase with xylotriose as the main hydrolysis products. The produced xylanase was practically free of cellulolytic activity. Conclusion The P. pastoris expression system allows a high level expression of xylanases. Xylanase was the main protein species in the culture supernatant, and the functional tests indicated that even the non-purified enzyme shows highly specific xylanase activity that is free of cellulolytic side acitivities. Therefore, P pastoris is a very useful expression system when the goal is highly specific and large scale production of glycosyl hydrolases.
Collapse
Affiliation(s)
- Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China.
| | | | | | | | | |
Collapse
|
45
|
Properties of a xylanase from Streptomyces matensis being suitable for xylooligosaccharides production. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.11.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Thermostable carbohydrate binding module increases the thermostability and substrate-binding capacity of Trichoderma reesei xylanase 2. N Biotechnol 2009; 26:53-9. [PMID: 19426845 DOI: 10.1016/j.nbt.2009.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/03/2009] [Accepted: 04/28/2009] [Indexed: 11/21/2022]
Abstract
To improve the thermostability of Trichoderma reesei xylanase 2 (Xyn2), the thermostabilizing domain (A2) from Thermotoga maritima XynA were engineered into the N-terminal region of the Xyn2 protein. The xyn2 and hybrid genes were successfully expressed in Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from S. cerevisiae (alpha-factor). The transformants expressed the hybrid gene produced clearly increased both the thermostability and substrate-binding capacity compared to the corresponding strains expressed the native Xyn2 gene. The activity of the hybrid enzyme was highest at 65 degrees C that was 10 degrees C higher than the native Xyn2. The hybrid enzyme was stable at 60 degrees C and retained more than 85% of its activity after 30-min incubation at this temperature. The hybrid enzyme was highly specific toward xylan and analysis of the products from birchwood xylan degradation confirmed that the enzyme was an endo-xylanase with xylobiose and xylotriose as the main degradation products. These attributes should make it an attractive applicant for various applications. Our results also suggested that the N-terminal domain A2 is responsible for both the thermostability and substrate-binding capacity of T. maritima XynA.
Collapse
|
47
|
Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, Zhou Z, Yao B. A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Appl Microbiol Biotechnol 2009; 83:99-107. [PMID: 19107475 DOI: 10.1007/s00253-008-1810-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/27/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
48
|
Aachary AA, Prapulla SG. Value addition to corncob: production and characterization of xylooligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. BIORESOURCE TECHNOLOGY 2009; 100:991-995. [PMID: 18703333 DOI: 10.1016/j.biortech.2008.06.050] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 05/26/2023]
Abstract
Comparison of various pretreatments such as mild alkali/acid treatments and pressure cooking of corncob to expose its lignin-saccharide complex has been carried out to enhance enzymatic hydrolysis of xylan to xylooligosaccharides (XOS). Scanning electron micrographs of lignin-saccharide complex of native and pretreated corncob powder showed that the complex was greatly altered during alkali pretreatment. Hydrolysis of alkali pretreated corncob powder using a commercial endoxylanase produced 81+/-1.5% of XOS in the hydrolyzate equivalent to 5.8+/-0.14 mg ml(-1) of XOS. Reaction parameters for the production of XOS from corncob using endoxylanase from Aspergillus oryzae MTCC 5154 were optimized and an XOS yield of 10.2+/-0.14 mg ml(-1) corresponding to 81+/-3.9% with 73.5% xylobiose was obtained. HPLC/RID and ESI/MS analysis of XOS mixture and purified fractions showed that XOS was a mixture of neutral oligosaccharides of DP, 2-7.
Collapse
Affiliation(s)
- Ayyappan Appukuttan Aachary
- Fermentation Technology and Bioengineering Department, Central Food Technological Research Institute, Mysore 570 020, Karnataka, India
| | | |
Collapse
|
49
|
Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, Zhou Z, Yao B. Cloning, expression, and characterization of a new Streptomyces sp. S27 xylanase for which xylobiose is the main hydrolysis product. Appl Biochem Biotechnol 2008; 159:521-31. [PMID: 19002659 DOI: 10.1007/s12010-008-8411-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/23/2008] [Indexed: 11/26/2022]
Abstract
A xylanase gene, xynBS27, was cloned from Streptomyces sp. S27 and consisted of 693 bp encoding a 230-residue protein, including a putative 41-residue signal peptide. Belonging to the glycoside hydrolase family 11, XynBS27 exhibits the maximum identity (75.9%) to the xylanase from Streptomyces sp. zxy19. Recombinant XynBS27 was overexpressed in Pichia pastoris, and the xylanase activity was 7624.0 U/ml after high-cell-density fermentation in 3.7-L fermenter. The purified recombinant XynBS27 had a high specific activity of 3272.0 U/mg. The optimum temperature and pH for XynBS27 activity was 65 degrees C and pH 6.5, respectively. XynBS27 showed good pH stability and retained more than 80% of the maximum activity after incubation in buffers with pH ranging between 4.0 and 12.0 at 37 degrees C for 1 h. The main hydrolysis product of xylan by XynBS27 was xylobiose (>75%), which was good for human health derived from its ability to modulate the intestinal function. The attractive biochemical characteristics of XynBS27 suggest that it may be a good candidate in a variety of industrial applications.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sun JY, Liu MQ, Weng XY. Hydrolytic Properties of a Hybrid Xylanase and Its Parents. Appl Biochem Biotechnol 2008; 152:428-39. [DOI: 10.1007/s12010-008-8316-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
|