1
|
Bakkali-Hassani C, Edera P, Langenbach J, Poutrel QA, Norvez S, Gresil M, Tournilhac F. Epoxy Vitrimer Materials by Lipase-Catalyzed Network Formation and Exchange Reactions. ACS Macro Lett 2023; 12:338-343. [PMID: 36802496 DOI: 10.1021/acsmacrolett.2c00715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The preparation and reprocessing of an epoxy vitrimer material is performed in a fully biocatalyzed process wherein network formation and exchange reactions are promoted by a lipase enzyme. Binary phase diagrams are introduced to select suitable diacid/diepoxide monomer compositions overcoming the limitations (phase separation/sedimentation) imposed by curing temperature inferior than 100 °C, to protect the enzyme. The ability of lipase TL, embedded in the chemical network, to catalyze efficiently exchange reactions (transesterification) is demonstrated by combining multiple stress relaxation experiments at 70-100 °C and complete recovery of mechanical strength after several reprocessing assays (up to 3 times). Complete stress relaxation ability disappears after heating at 150 °C, due to enzyme denaturation. Transesterification vitrimers thus designed are complementary to those involving classical catalysis (e.g., using the organocatalyst triazabicyclodecene) for which complete stress relaxation is possible only at high temperature.
Collapse
Affiliation(s)
- Camille Bakkali-Hassani
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Paolo Edera
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Jakob Langenbach
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Quentin-Arthur Poutrel
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Sophie Norvez
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Matthieu Gresil
- i-Composites Lab, Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, Australia
| | - François Tournilhac
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| |
Collapse
|
2
|
Chen G, Khan IM, He W, Li Y, Jin P, Campanella OH, Zhang H, Huo Y, Chen Y, Yang H, Miao M. Rebuilding the lid region from conformational and dynamic features to engineering applications of lipase in foods: Current status and future prospects. Compr Rev Food Sci Food Saf 2022; 21:2688-2714. [PMID: 35470946 DOI: 10.1111/1541-4337.12965] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
The applications of lipases in esterification, amidation, and transesterification have broadened their potential in the production of fine compounds with high cumulative values. Mostly, the catalytic triad of lipases is covered by either one or two mobile peptides called the "lid" that control the substrate channel to the catalytic center. The lid holds unique conformational allostery via interfacial activation to regulate the dynamics and catalytic functions of lipases, thereby highlighting its importance in redesigning these enzymes for industrial applications. The structural characteristic of lipase, the dynamics of lids, and the roles of lid in lipase catalysis were summarized, providing opportunities for rebuilding lid region by biotechniques (e.g., metagenomic technology and protein engineering) and enzyme immobilization. The review focused on the advantages and disadvantages of strategies rebuilding the lid region. The main shortcomings of biotechnologies on lid rebuilding were discussed such as negative effects on lipase (e.g., a decrease of activity). Additionally, the main shortcomings (e.g., enzyme desorption at high temperatre) in immobilization on hydrophobic supports via interfacial action were presented. Solutions to the mentioned problems were proposed by combinations of computational design with biotechnologies, and improvements of lipase immobilization (e.g., immobilization protocols and support design). Finally, the review provides future perspectives about designing hyperfunctional lipases as biocatalysts in the food industry based on lid conformation and dynamics.
Collapse
Affiliation(s)
- Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wensen He
- School of Food Science and Technology, Jiangsu University, Zhenjiang, China
| | - Yongxin Li
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Food Science and Technology, Ohio State University, Columbus, Ohio, USA
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yanrong Huo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Enzymatic Synthesis and Molecular Modelling Studies of Rhamnose Esters Using Lipase from Pseudomonas stutzeri. Int J Mol Sci 2022; 23:ijms23042239. [PMID: 35216354 PMCID: PMC8876684 DOI: 10.3390/ijms23042239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Rhamnolipids are becoming an important class of glycolipid biosurfactants. Herein, we describe for the first time the enzymatic synthesis of rhamnose fatty acid esters by the transesterification of rhamnose with fatty acid vinyl esters, using lipase from Pseudomonas stutzeri as a biocatalyst. The use of this lipase allows excellent catalytic activity in the synthesis of 4-O-acylrhamnose (99% conversion and full regioselectivity) after 3 h of reaction using tetrahydrofuran (THF) as the reaction media and an excess of vinyl laurate as the acyl donor. The role of reaction conditions, such as temperature, the substrates molar ratio, organic reaction medium and acyl donor chain-length, was studied. Optimum conditions were found using 35 °C, a molar ratio of 1:3 (rhamnose:acyldonor), solvents with a low logP value, and fatty acids with chain lengths from C4 to C18 as acyl donors. In hydrophilic solvents such as THF and acetone, conversions of up to 99–92% were achieved after 3 h of reaction. In a more sustainable solvent such as 2-methyl-THF (2-MeTHF), high conversions were also obtained (86%). Short and medium chain acyl donors (C4–C10) allowed maximum conversions after 3 h, and long chain acyl donors (C12–C18) required longer reactions (5 h) to get 99% conversions. Furthermore, scaled up reactions are feasible without losing catalytic action and regioselectivity. In order to explain enzyme regioselectivity and its ability to accommodate ester chains of different lengths, homology modelling, docking studies and molecular dynamic simulations were performed to explain the behaviour observed.
Collapse
|
4
|
Bakkali-Hassani C, Poutrel QA, Langenbach J, Chappuis S, Blaker JJ, Gresil M, Tournilhac F. Lipase-Catalyzed Epoxy-Acid Addition and Transesterification: from Model Molecule Studies to Network Build-Up. Biomacromolecules 2021; 22:4544-4551. [PMID: 34618426 DOI: 10.1021/acs.biomac.1c00820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Commercially available lipase from Pseudomonas stutzeri (lipase TL) is investigated as a biocatalyst for the formation of an acid-epoxy chemical network. Molecular model reactions are performed by reacting 2-phenyl glycidyl ether and hexanoic acid in bulk, varying two parameters: temperature and water content. Characterizations of the formed products by 1H NMR spectroscopy and gas chromatography-mass spectrometry combined with enzymatic assays confirm that lipase TL is able to simultaneously promote acid-epoxy addition and transesterification reactions below 100 °C and solely the acid-epoxy addition after denaturation at T > 100 °C. A prototype bio-based chemical network with β-hydroxyester links was obtained using resorcinol diglycidyl ether and sebacic acid as monomers with lipase TL as catalyst. Differential scanning calorimetry, attenuated total reflection, and swelling analysis confirm gelation of the network.
Collapse
Affiliation(s)
- Camille Bakkali-Hassani
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Quentin-Arthur Poutrel
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Jakob Langenbach
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Sélène Chappuis
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Jonny J Blaker
- Bio-Active Materials Group, Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Matthieu Gresil
- i-Composites Lab, Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, Australia
| | - François Tournilhac
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| |
Collapse
|
5
|
Guajardo N, Ahumada K, Domínguez de María P. Immobilization of Pseudomonas stutzeri lipase through Cross-linking Aggregates (CLEA) for reactions in Deep Eutectic Solvents. J Biotechnol 2021; 337:18-23. [PMID: 34171440 DOI: 10.1016/j.jbiotec.2021.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
The use of deep eutectic solvents (DES) with buffer as cosolvent (up to 10 % v/v) leads to low-viscous media in which lipases can perform synthetic reactions, instead of hydrolysis. This paper explores the immobilization of Pseudomonas stutzeri lipase (TL) in cross-linking aggregates (CLEA) to deliver robust derivatives that are active in media like choline chloride - glycerol DES with buffer as cosolvent. While the free TL enzyme was markedly inactive in these media, TL-CLEA derivatives perform esterifications and can be reused several times. Overall, results are consistent with previous experiments reported for other lipases in these DES-water media and confirm that CLEA immobilization turns out a very useful and straightforward alternative for generating active (bio)catalysts for DES-aqueous media systems. Immobilized systems open the possibility of performing continuous processes in low-viscous DES-buffer media.
Collapse
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| | | | - Pablo Domínguez de María
- Sustainable Momentum, SL. Av. Ansite 3, 4-6, 35011, Las Palmas de Gran Canaria, Canary Is, Spain
| |
Collapse
|
6
|
Biocatalysis at Extreme Temperatures: Enantioselective Synthesis of both Enantiomers of Mandelic Acid by Transesterification Catalyzed by a Thermophilic Lipase in Ionic Liquids at 120 °C. Catalysts 2020. [DOI: 10.3390/catal10091055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The use of biocatalysts in organic chemistry for catalyzing chemo-, regio- and stereoselective transformations has become an usual tool in the last years, both at lab and industrial scale. This is not only because of their exquisite precision, but also due to the inherent increase in the process sustainability. Nevertheless, most of the interesting industrial reactions involve water-insoluble substrates, so the use of (generally not green) organic solvents is generally required. Although lipases are capable of maintaining their catalytic precision working in those solvents, reactions are usually very slow and consequently not very appropriate for industrial purposes. Increasing reaction temperature would accelerate the reaction rate, but this should require the use of lipases from thermophiles, which tend to be more enantioselective at lower temperatures, as they are more rigid than those from mesophiles. Therefore, the ideal scenario would require a thermophilic lipase capable of retaining high enantioselectivity at high temperatures. In this paper, we describe the use of lipase from Geobacillus thermocatenolatus as catalyst in the ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic to furnish both enantiomers of mandelic acid, an useful intermediate in the synthesis of many drugs and active products. The catalytic performance at high temperature in a conventional organic solvent (isooctane) and four imidazolium-based ionic liquids was assessed. The best results were obtained using 1-ethyl-3-methyl imidazolium tetrafluoroborate (EMIMBF4) and 1-ethyl-3-methyl imidazolium hexafluorophosphate (EMIMPF6) at temperatures as high as 120 °C, observing in both cases very fast and enantioselective kinetic resolutions, respectively leading exclusively to the (S) or to the (R)-enantiomer of mandelic acid, depending on the anion component of the ionic liquid.
Collapse
|
7
|
Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnol Adv 2020; 42:107581. [DOI: 10.1016/j.biotechadv.2020.107581] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
|
8
|
Paggiola G, Derrien N, Moseley JD, Green A, Flitsch SL, Clark JH, McElroy CR, Hunt AJ. Application of bio-based solvents for biocatalysed synthesis of amides with Pseudomonas stutzeri lipase (PSL). PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-0808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBio-based solvents were investigated for the biocatalysed amidation reactions of various ester-amine combinations by Pseudomonas stutzeri lipase (PSL). Reactions were undertaken in a range of green and potentially bio-based solvents including terpinolene, p-cymene, limonene, 2-methyl THF, ɣ-valerolactone, propylene carbonate, dimethyl isosorbide, glycerol triacetate and water. Solvent screenings demonstrated the importance and potential of using non-polar bio-based solvents for favouring aminolysis over hydrolysis; whilst substrate screenings highlighted the unfavourable impact of reactants bearing bulky para- or 4-substituents. Renewable terpene-based solvents (terpinolene, p-cymene, D-limonene) were demonstrated to be suitable bio-based media for PSL amidation reactions. Such solvents could provide a greener and more sustainable alternative to traditional petrochemical derived non-polar solvents. Importantly, once the enzyme (either PSL or CALB) binds with a bulky para-substituted substrate, only small reagents are able to access the active site. This therefore limits the possibility for aminolysis to take place, thereby promoting the hydrolysis. This mechanism of binding supports the widely accepted ‘Ping Pong – Bi Bi’ mechanism used to describe enzyme kinetics. The work highlights the need to further investigate enzyme activity in relation to para- or 4-substituted substrates. A priority in PSL chemistry remains a methodology to tackle the competing hydrolysis reaction.
Collapse
Affiliation(s)
- Giulia Paggiola
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, North Yorkshire YO10 5DD, UK
| | - Nolwenn Derrien
- CatSci Ltd, CBTC2 Capital Business Park, Wentloog, Cardiff, CF3 2PX, UK
| | | | - Anthony Green
- Manchester Institute of Biotechnology & School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology & School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - James H. Clark
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, North Yorkshire YO10 5DD, UK
| | - Con Robert McElroy
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, North Yorkshire YO10 5DD, UK
| | - Andrew J. Hunt
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
9
|
Petrenz‐Beck A, Kühn J, Zuhse R, Ansorge‐Schumacher MB. Chemo‐Enzymatic Dynamic Kinetic Resolution of Symmetric and Non‐Symmetric α‐Hydroxy Ketones for Industrial Application. ChemistrySelect 2019. [DOI: 10.1002/slct.201900740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Annika Petrenz‐Beck
- Chair of Molecular BiotechnologyTechnische Universität Dresden 01062 Dresden Germany
| | - Jasmin Kühn
- Chiracon GmbH Im Biotechnologiepark 9 14943 Luckenwalde Germany
| | - Ralf Zuhse
- Chiracon GmbH Im Biotechnologiepark 9 14943 Luckenwalde Germany
| | | |
Collapse
|
10
|
Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol 2018; 201:1-16. [PMID: 30478730 DOI: 10.1007/s00203-018-1602-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/04/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
Abstract
Microorganisms have evolved themselves to thrive under various extreme environmental conditions such as extremely high or low temperature, alkalinity, and salinity. These microorganisms adapted several metabolic processes to survive and reproduce efficiently under such extreme environments. As the major proportion of earth is covered with the cold environment and is exploited by human beings, these sites are not pristine anymore. Human interventions are a great reason for disturbing the natural biogeochemical cycles in these regions. The survival strategies of these organisms have shown great potential for helping us to restore these pristine sites and the use of isolated cold-adapted enzymes from these organisms has also revolutionized various industrial products. This review gives you the insight of psychrophilic enzyme adaptations and their industrial applications.
Collapse
|
11
|
Song R, Shi QQ, Gninguue A, Wei RB, Luo HY. Purification and identification of a novel peptide derived from by-products fermentation of spiny head croaker ( Collichthys lucidus ) with antifungal effects on phytopathogens. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Affiliation(s)
- M. Kavitha
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
13
|
Cai X, Chen S, Yang H, Wang W, Lin L, Shen Y, Wei W, Wei DZ. Biodegradation of waste greases and biochemical properties of a novel lipase from Pseudomonas synxantha PS1. Can J Microbiol 2016; 62:588-99. [DOI: 10.1139/cjm-2015-0641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A lipase-producing bacterial strain was isolated from oil-well-produced water in Shengli oilfield (Shandong province, China) and was identified as Pseudomonas synxantha by 16S rDNA sequence analysis (named Pseudomonas synxantha PS1). Strain PS1 showed a maximum lipase activity of 10.8 U/mL after culturing for 48 h at 30 °C, with lactose (4 g/L) as carbon source, tryptone (8 g/L) as nitrogen source, olive oil (0.5%, v/v) as inductor, and the initial pH 8.0. Meanwhile, the lipase gene from P. synxantha PS1 was cloned and expressed in Escherichia coli BL21 with the vector pET28a. The novel gene (lipPS1) has an open reading frame of 1425 bp and encodes a 474 aa lipase (LipPS1) sharing the most identity (87%) with the lipase in Pseudomonas fluorescens. LipPS1 preferably acted on substrates with a long chain (C10–C18) of fatty acids. The optimum pH and temperature of the recombinant enzyme were 8.0 and 40 °C, respectively, towards the optimum substrate p-nitrophenyl palmitate. The LipPS1 showed remarkable stability under alkaline conditions and was stable at pH 7.0–10.0 (retaining more than 60% activity). From the organic solvents tests, the lipase was activated by 15% (v/v) methanol (112%), 15% ethanol (127%), and 15% n-butyl alcohol (116%). LipPS1 presented strong biodegradability of waste grease; 93% of waste grease was hydrolyzed into fatty acid after 12 h at 30 °C. This is the first report of the lipase activity and lipase gene obtained from P. synxantha (including wild strain and recombinant strain) and of the recombinant LipPS1 with the detailed enzymatic properties. Also a preliminary study of the biodegradability of waste greases shows the potential value in industry applications.
Collapse
Affiliation(s)
- Xianghai Cai
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Siqi Chen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Hong Yang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Lin Lin
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai 200241, People’s Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Dong-zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
14
|
Pizzilli A, Zoppi R, Hoyos P, Gómez S, Gatti F, Hernáiz M, Alcántara A. First stereoselective acylation of a primary diol possessing a prochiral quaternary center mediated by lipase TL from Pseudomonas stutzeri. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Vici AC, da Cruz AF, Facchini FDA, de Carvalho CC, Pereira MG, Fonseca-Maldonado R, Ward RJ, Pessela BC, Fernandez-Lorente G, Torres FAG, Jorge JA, Polizeli MLTM. Beauveria bassiana Lipase A expressed in Komagataella (Pichia) pastoris with potential for biodiesel catalysis. Front Microbiol 2015; 6:1083. [PMID: 26500628 PMCID: PMC4595793 DOI: 10.3389/fmicb.2015.01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Lipases (EC 3.1.1.3) comprise a biotechnologically important group of enzymes because they are able to catalyze both hydrolysis and synthesis reactions, depending on the amount of water in the system. One of the most interesting applications of lipase is in the biofuel industry for biodiesel production by oil and ethanol (or methanol) transesterification. Entomopathogenic fungi, which are potential source of lipases, are still poorly explored in biotechnological processes. The present work reports the heterologous expression and biochemical characterization of a novel Beauveria bassiana lipase with potential for biodiesel production. The His-tagged B. bassiana lipase A (BbLA) was produced in Komagataella pastoris in buffered methanol medium (BMM) induced with 1% methanol at 30°C. Purified BbLA was activated with 0.05% Triton X-100 and presented optimum activity at pH 6.0 and 50°C. N-glycosylation of the recombinant BbLA accounts for 31.5% of its molecular weight. Circular dichroism and molecular modeling confirmed a structure composed of α-helix and β-sheet, similar to α/β hydrolases. Immobilized BbLA was able to promote transesterification reactions in fish oil, demonstrating potential for biodiesel production. BbLA was successfully produced in K. pastoris and shows potential use for biodiesel production by the ethanolysis reaction.
Collapse
Affiliation(s)
- Ana C Vici
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Andrezza F da Cruz
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Fernanda D A Facchini
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Caio C de Carvalho
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Marita G Pereira
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Raquel Fonseca-Maldonado
- Departamento de Química, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Richard J Ward
- Departamento de Química, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Benevides C Pessela
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de los Alimentos, Consejo Superior de Investigaciones Cientificas, Madrid España
| | - Gloria Fernandez-Lorente
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de los Alimentos, Consejo Superior de Investigaciones Cientificas, Madrid España
| | - Fernando A G Torres
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília Brazil
| | - João A Jorge
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Maria L T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| |
Collapse
|
16
|
Asymmetric hydrolysis of dimethyl-3-phenylglutarate in sequential batch reactor operation catalyzed by immobilized Geobacillus thermocatenulatus lipase. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.12.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Bernal C, Illanes A, Wilson L. Improvement of efficiency in the enzymatic synthesis of lactulose palmitate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3716-3724. [PMID: 25797166 DOI: 10.1021/jf505222x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sugar esters are considered as surfactants due to its amphiphilic balance that can lower the surface tension in oil/water mixtures. Enzymatic syntheses of these compounds are interesting both from economic and environmental considerations. A study was carried out to evaluate the effect of four solvents, temperature, substrate molar ratio, biocatalyst source, and immobilization methodology on the yield and specific productivity of lactulose palmitate monoester synthesis. Lipases from Pseudomonas stutzeri (PsL) and Alcaligenes sp. (AsL), immobilized in porous silica functionalized with octyl groups (adsorption immobilization, OS) and with glyoxyl-octyl groups (both adsorption and covalent immobilization, OGS), were used. The highest lactulose palmitate yields were obtained at 47 °C in acetone, for all biocatalysts, while the best lactulose:palmitic acid molar ratio differed according to the immobilization methodology, being 1:1 for AsL-OGS biocatalyst (20.7 ± 3%) and 1:3 for the others (30-50%).
Collapse
Affiliation(s)
- Claudia Bernal
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, P.O. Box 4059, Valparaíso, Chile
| | - Andres Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, P.O. Box 4059, Valparaíso, Chile
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, P.O. Box 4059, Valparaíso, Chile
| |
Collapse
|
18
|
Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 2014; 19:235-47. [PMID: 25472009 DOI: 10.1007/s00792-014-0710-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
Abstract
Psychrophilic microorganisms are cold-adapted with distinct properties from other thermal classes thriving in cold conditions in large areas of the earth's cold environment. Maintenance of functional membranes, evolving cold-adapted enzymes and synthesizing a range of structural features are basic adaptive strategies of psychrophiles. Among the cold-evolved enzymes are the cold-active lipases, a group of microbial lipases with inherent stability-activity-flexibility property that have engaged the interest of researchers over the years. Current knowledge regarding these cold-evolved enzymes in psychrophilic bacteria proves a display of high catalytic efficiency with low thermal stability, which is a differentiating feature with that of their mesophilic and thermophilic counterparts. Improvement strategies of their adaptive structural features have significantly benefited the enzyme industry. Based on their homogeneity and purity, molecular characterizations of these enzymes have been successful and their properties make them unique biocatalysts for various industrial and biotechnological applications. Although, strong association of lipopolysaccharides from Antarctic microorganisms with lipid hydrolases pose a challenge in their purification, heterologous expression of the cold-adapted lipases with affinity tags simplifies purification with higher yield. The review discusses these cold-evolved lipases from bacteria and their peculiar properties, in addition to their potential biotechnological and industrial applications.
Collapse
|
19
|
Shao H, Xu L, Yan Y. Biochemical characterization of a carboxylesterase from the archaeon Pyrobaculum sp. 1860 and a rational explanation of its substrate specificity and thermostability. Int J Mol Sci 2014; 15:16885-910. [PMID: 25250909 PMCID: PMC4200780 DOI: 10.3390/ijms150916885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/20/2014] [Accepted: 09/11/2014] [Indexed: 11/16/2022] Open
Abstract
In this work, genome mining was used to identify esterase/lipase genes in the archaeon Pyrobaculum sp. 1860. A gene was cloned and functionally expressed in Escherichia coli as His-tagged protein. The recombinant enzyme (rP186_1588) was verified by western blotting and peptide mass fingerprinting. Biochemical characterization revealed that rP186_1588 exhibited optimum activity at pH 9.0 and 80 °C towards p-nitrophenyl acetate (K(m): 0.35 mM, k(cat): 11.65 s⁻¹). Interestingly, the purified rP186_1588 exhibited high thermostability retaining 70% relative activity after incubation at 90 °C for 6 h. Circular dichroism results indicated that rP186_1588 showed slight structure alteration from 60 to 90 °C. Structural modeling showed P186_1588 possessed a typical α/β hydrolase's fold with the catalytic triad consisting of Ser97, Asp147 and His172, and was further confirmed by site-directed mutagenesis. Comparative molecular simulations at different temperatures (300, 353, 373 and 473 K) revealed that its thermostability was associated with its conformational rigidity. The binding free energy analysis by MM-PBSA method revealed that the van der Waals interaction played a major role in p-NP ester binding for P186_1588. Our data provide insights into the molecular structures of this archaeal esterase, and may help to its further protein engineering for industrial applications.
Collapse
Affiliation(s)
- Hua Shao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
20
|
Agrawal S, Martínez-Castro E, Marcos R, Martín-Matute B. Readily Available Ruthenium Complex for Efficient Dynamic Kinetic Resolution of Aromatic α-Hydroxy Ketones. Org Lett 2014; 16:2256-9. [DOI: 10.1021/ol500764q] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santosh Agrawal
- Department of Organic Chemistry,
The Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elisa Martínez-Castro
- Department of Organic Chemistry,
The Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Rocío Marcos
- Department of Organic Chemistry,
The Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Belén Martín-Matute
- Department of Organic Chemistry,
The Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Sandoval M, Hoyos P, Cortés A, Bavaro T, Terreni M, Hernáiz MJ. Development of regioselective deacylation of peracetylated β-d-monosaccharides using lipase from Pseudomonas stutzeri under sustainable conditions. RSC Adv 2014. [DOI: 10.1039/c4ra10401c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient deacylation of peracetylated pyranosides has been developed in different biosolvents, catalyzed by Pseudomonas stutzeri lipase, which displayed regiospecific activity towards the anomeric position.
Collapse
Affiliation(s)
- M. Sandoval
- Department of Pharmaceutical and Organic Chemistry
- Faculty of Pharmacy
- Complutense University of Madrid
- 30100 Madrid, Spain
| | - P. Hoyos
- Department of Pharmaceutical and Organic Chemistry
- Faculty of Pharmacy
- Complutense University of Madrid
- 30100 Madrid, Spain
| | - A. Cortés
- Unidad de Bioinformática. Centro de Biología Molecular “Severo Ochoa” (CBMSO)
- CSIC
- Universidad Autónoma de Madrid (UAM)
- Madrid, Spain
| | - T. Bavaro
- Department of Drug Sciences and Italian Biocatalysis Center
- University of Pavia
- 27100 Pavia, Italy
| | - M. Terreni
- Department of Drug Sciences and Italian Biocatalysis Center
- University of Pavia
- 27100 Pavia, Italy
| | - M. J. Hernáiz
- Department of Pharmaceutical and Organic Chemistry
- Faculty of Pharmacy
- Complutense University of Madrid
- 30100 Madrid, Spain
| |
Collapse
|
22
|
Lehmann SC, Maraite A, Steinhagen M, Ansorge-Schumacher MB. Characterization of a Novel <i>Pseudomonas stutzeri</i> Lipase/Esterase with Potential Application in the Production of Chiral Secondary Alcohols. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.513115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Nieguth R, ten Dam J, Petrenz A, Ramanathan A, Hanefeld U, Ansorge-Schumacher MB. Combined heterogeneous bio- and chemo-catalysis for dynamic kinetic resolution of (rac)-benzoin. RSC Adv 2014. [DOI: 10.1039/c4ra06751g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly efficient system for the enantiopure synthesis of benzoin was developed. The reaction system employed lipase TL from Pseudomonas stutzeri immobilized on Accurel MP1001 (Acc-LipTL) and Zr-TUD-1 (Si/Zr = 25), an acidic mesoporous silicate, for dynamic kinetic resolution of racemic benzoin in one pot.
Collapse
Affiliation(s)
- R. Nieguth
- Lehrstuhl für Technische Chemie/Enzymtechnologie
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin, Germany
| | - J. ten Dam
- Gebouw voor Scheikunde
- Biokatalyse
- Afdeling Biotechnologie
- Technische Universiteit Delft
- Delft, The Netherlands
| | - A. Petrenz
- Professur für Molekulare Biotechnologie
- Institut für Mikrobiologie
- Technische Universität Dresden
- 01062 Dresden, Germany
| | - A. Ramanathan
- Gebouw voor Scheikunde
- Biokatalyse
- Afdeling Biotechnologie
- Technische Universiteit Delft
- Delft, The Netherlands
| | - U. Hanefeld
- Gebouw voor Scheikunde
- Biokatalyse
- Afdeling Biotechnologie
- Technische Universiteit Delft
- Delft, The Netherlands
| | - M. B. Ansorge-Schumacher
- Lehrstuhl für Technische Chemie/Enzymtechnologie
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin, Germany
- Professur für Molekulare Biotechnologie
| |
Collapse
|
24
|
|