1
|
Nigro M, Sánchez-Moreno I, Benito-Arenas R, Valino AL, Iribarren AM, Veiga N, García-Junceda E, Lewkowicz ES. Synthesis of Chiral Acyclic Pyrimidine Nucleoside Analogues from DHAP-Dependent Aldolases. Biomolecules 2024; 14:750. [PMID: 39062466 PMCID: PMC11274987 DOI: 10.3390/biom14070750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, the chirality of the aliphatic chain, which mimics the open pentose residue, is crucial for activity. In this work, three DHAP-dependent aldolases: fructose-1,6-biphosphate aldolase from rabbit muscle, rhanmulose-1-phosphate aldolase from Thermotoga maritima, and fuculose-1-phosphate aldolase from Escherichia coli, were used as biocatalysts. Aldehyde derivatives of thymine and cytosine were used as acceptor substrates, generating new acyclic nucleoside analogues containing two new stereocenters with conversion yields between 70% and 90%. Moreover, structural analyses by molecular docking were carried out to gain insights into the diasteromeric excess observed.
Collapse
Affiliation(s)
- Mariano Nigro
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| | - Israél Sánchez-Moreno
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (I.S.-M.); (R.B.-A.)
| | - Raúl Benito-Arenas
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (I.S.-M.); (R.B.-A.)
| | - Ana L. Valino
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| | - Nicolás Veiga
- Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo 11800, Uruguay;
| | - Eduardo García-Junceda
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (I.S.-M.); (R.B.-A.)
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| |
Collapse
|
2
|
Jeong YJ, Seo PW, Seo MJ, Ju SB, Kim JS, Yeom SJ. One-Pot Biosynthesis of 2-Keto-4-hydroxybutyrate from Cheap C1 Compounds Using Rationally Designed Pyruvate Aldolase and Methanol Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4328-4336. [PMID: 36856566 PMCID: PMC10022506 DOI: 10.1021/acs.jafc.2c09108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
One-carbon chemicals (C 1s) are potential building blocks as they are cheap, sustainable, and abiotic components. Methanol-derived formaldehyde can be another versatile building block for the production of 2-keto-4-hydroxyacid derivatives that can be used for amino acids, hydroxy carboxylic acids, and chiral aldehydes. To produce 2-keto-4-hydroxybutyrate from C 1s in an environment-friendly way, we characterized an aldolase from Pseudomonas aeruginosa PAO1 (PaADL), which showed much higher catalytic activity in condensing formaldehyde and pyruvate than the reported aldolases. By applying a structure-based rational approach, we found a variant (PaADLV121A/L241A) that exhibited better catalytic activities than the wild-type enzyme. Next, we constructed a one-pot cascade biocatalyst system by combining PaADL and a methanol dehydrogenase (MDH) and, for the first time, effectively produced 2-keto-4-hydroxybutyrate as the main product from pyruvate and methanol via an enzymatic reaction. This simple process applied here will help design a green process for the production of 2-keto-4-hydroxyacid derivatives.
Collapse
Affiliation(s)
- Yeon-Ju Jeong
- School
of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Pil-Won Seo
- Department
of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Min-Ju Seo
- School
of Biological Sciences and Technology, Chonnam
National University, Gwangju 61186, Republic
of Korea
| | - Su-Bin Ju
- School
of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Sun Kim
- Department
of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soo-Jin Yeom
- School
of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
- School
of Biological Sciences and Technology, Chonnam
National University, Gwangju 61186, Republic
of Korea
| |
Collapse
|
3
|
Lee SH, Yeom SJ, Kim SE, Oh DK. Development of aldolase-based catalysts for the synthesis of organic chemicals. Trends Biotechnol 2021; 40:306-319. [PMID: 34462144 DOI: 10.1016/j.tibtech.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Aldol chemicals are synthesized by condensation reactions between the carbon units of ketones and aldehydes using aldolases. The efficient synthesis of diverse organic chemicals requires intrinsic modification of aldolases via engineering and design, as well as extrinsic modification through immobilization or combination with other catalysts. This review describes the development of aldolases, including their engineering and design, and the selection of desired aldolases using high-throughput screening, to enhance their catalytic properties and perform novel reactions. Aldolase-containing catalysts, which catalyze the aldol reaction combined with other enzymatic and/or chemical reactions, can efficiently synthesize diverse complex organic chemicals using inexpensive and simple materials as substrates. We also discuss the current challenges and emerging solutions for aldolase-based catalysts.
Collapse
Affiliation(s)
- Seon-Hwa Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Building Up Quaternary Stereocenters Through Biocatalyzed Direct Insertion of Carbon Nucleophiles on Ketones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Horáková E, Valtr J, Dostálová K, Drabina P, Váňa J, Růžička A, Hanusek J. A Kinetic Study of the Intramolecular Nitroaldol (Henry) Reaction Giving 2‐Nitroindan‐1‐ols. ChemistrySelect 2019. [DOI: 10.1002/slct.201900481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eva Horáková
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| | - Jakub Valtr
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| | - Kamila Dostálová
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| | - Pavel Drabina
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic ChemistryFaculty of Chemical Technology, University of Pardubice Studentská 573 CZ-532 10 Pardubice The Czech Republic
| | - Jiří Hanusek
- Institute of Organic Chemistry and TechnologyFaculty of Chemical TechnologyUniversity of Pardubice Studentská 573, CZ-532 10 Pardubice The Czech Republic
| |
Collapse
|
6
|
Wiesinger T, Bayer T, Milker S, Mihovilovic MD, Rudroff F. Cell Factory Design and Optimization for the Stereoselective Synthesis of Polyhydroxylated Compounds. Chembiochem 2018; 19:361-368. [PMID: 28980776 DOI: 10.1002/cbic.201700464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 11/06/2022]
Abstract
A synthetic cascade for the transformation of primary alcohols into polyhydroxylated compounds in Escherichia coli, through the in situ preparation of cytotoxic aldehyde intermediates and subsequent aldolase-mediated C-C bond formation, has been investigated. An enzymatic toolbox consisting of alcohol dehydrogenase AlkJ from Pseudomonas putida and the dihydroxyacetone-/hydroxyacetone-accepting aldolase variant Fsa1-A129S was applied. Pathway optimization was performed at the genetic and process levels. Three different arrangements of the alkJ and fsa1-A129S genes in operon, monocistronic, and pseudo-operon configuration were tested. The last of these proved to be most beneficial with regard to bacterial growth and protein expression levels. The optimized whole-cell catalyst, combined with a refined solid-phase extraction downstream purification protocol, provides diastereomerically pure carbohydrate derivatives that can be isolated in up to 91 % yield over two reaction steps.
Collapse
Affiliation(s)
- Thomas Wiesinger
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Thomas Bayer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Sofia Milker
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| |
Collapse
|
7
|
Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem Rev 2017; 118:270-348. [DOI: 10.1021/acs.chemrev.7b00033] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joerg H. Schrittwieser
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan Velikogne
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Mélanie Hall
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| |
Collapse
|
8
|
Schmidt NG, Eger E, Kroutil W. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products. ACS Catal 2016; 6:4286-4311. [PMID: 27398261 PMCID: PMC4936090 DOI: 10.1021/acscatal.6b00758] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Indexed: 12/12/2022]
Abstract
Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.
Collapse
Affiliation(s)
- Nina G. Schmidt
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Elisabeth Eger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
9
|
Wen L, Zang L, Huang K, Li S, Wang R, Wang PG. Efficient enzymatic synthesis of L-rhamnulose and L-fuculose. Bioorg Med Chem Lett 2016; 26:969-972. [PMID: 26778148 PMCID: PMC5984655 DOI: 10.1016/j.bmcl.2015.12.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/23/2022]
Abstract
L-Rhamnulose (6-deoxy-L-arabino-2-hexulose) and L-fuculose (6-deoxy-L-lyxo-2-hexulose) were prepared from L-rhamnose and L-fucose by a two-step strategy. In the first reaction step, isomerization of L-rhamnose to L-rhamnulose, or L-fucose to L-fuculose was combined with a targeted phosphorylation reaction catalyzed by L-rhamnulose kinase (RhaB). The by-products (ATP and ADP) were selectively removed by silver nitrate precipitation method. In the second step, the phosphate group was hydrolyzed to produce L-rhamnulose or L-fuculose with purity exceeding 99% in more than 80% yield (gram scale).
Collapse
Affiliation(s)
- Liuqing Wen
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303, USA
| | - Lanlan Zang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Kenneth Huang
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303, USA
| | - Shanshan Li
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303, USA
| | - Runling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Peng George Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
10
|
Sánchez-Moreno I, Bordes I, Castillo R, Ruiz-Pernía JJ, Moliner V, García-Junceda E. Tuning the Phosphoryl Donor Specificity of Dihydroxyacetone Kinase from ATP to Inorganic Polyphosphate. An Insight from Computational Studies. Int J Mol Sci 2015; 16:27835-49. [PMID: 26610480 PMCID: PMC4661931 DOI: 10.3390/ijms161126073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 11/23/2022] Open
Abstract
Dihydroxyacetone (DHA) kinase from Citrobacter freundii provides an easy entry for the preparation of DHA phosphate; a very important C3 building block in nature. To modify the phosphoryl donor specificity of this enzyme from ATP to inorganic polyphosphate (poly-P); a directed evolution program has been initiated. In the first cycle of evolution, the native enzyme was subjected to one round of error-prone PCR (EP-PCR) followed directly (without selection) by a round of DNA shuffling. Although the wild-type DHAK did not show activity with poly-P, after screening, sixteen mutant clones showed an activity with poly-phosphate as phosphoryl donor statistically significant. The most active mutant presented a single mutation (Glu526Lys) located in a flexible loop near of the active center. Interestingly, our theoretical studies, based on molecular dynamics simulations and hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) optimizations, suggest that this mutation has an effect on the binding of the poly-P favoring a more adequate position in the active center for the reaction to take place.
Collapse
Affiliation(s)
- Israel Sánchez-Moreno
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General, CSIC. Juan de la Cierva 3, Madrid 28006, Spain.
| | - Isabel Bordes
- Departament de Química Física i Analítica, Universitat Jaume I. Castellón 12071, Spain.
| | - Raquel Castillo
- Departament de Química Física i Analítica, Universitat Jaume I. Castellón 12071, Spain.
| | | | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I. Castellón 12071, Spain.
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General, CSIC. Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
11
|
Design of Artificial Metabolisms in Layered Nanomaterials for the Enzymatic Synthesis of Phosphorylated Sugars. ChemCatChem 2015. [DOI: 10.1002/cctc.201500606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Oroz-Guinea I, Hernández K, Camps Bres F, Guérard-Hélaine C, Lemaire M, Clapés P, García-Junceda E. L
-Rhamnulose-1-phosphate Aldolase from Thermotoga maritima
in Organic Synthesis: One-Pot Multistep Reactions for the Preparation of Imino- and Nitrocyclitols. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
|