1
|
Pedro KCNR, da Silva JVV, Cipolatti EP, Manoel EA, Campisano ISP, Henriques CA, Langone MAP. Adsorption of lipases on porous silica-based materials for esterification in a solvent-free system. 3 Biotech 2023; 13:380. [PMID: 37900269 PMCID: PMC10600090 DOI: 10.1007/s13205-023-03801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
This study deals with lipase immobilization on micro- and mesoporous silica-based materials. The effects of the type of support (silica MCM-41, zeolite HZSM-5 (SAR 25), zeolite HZSM-5 (SAR 280), and the silica-aluminas Siral 10, Siral 20, and Siral 40) were investigated on the immobilization of lipase B from Candida antarctica (CALB) and lipase from Rhizomucor miehei (RML). The supports that allowed the highest immobilization efficiencies for the CALB were Siral 40 (91.4%), HZSM-5 (SAR 280) (90.6%), and MCM-41 (89.4%). Siral 20 allowed the highest immobilization efficiency for RML (97.6%), followed by HZSM-5 (SAR 25) (77.1%) and HZSM-5 (SAR 280) (62.7%). The effect of protein concentration on lipase immobilization was investigated, and the results adjusted well on the Langmuir isotherm model (R2 > 0.9). The maximum protein adsorption capacity of the support determined by the Langmuir model was equal to 10.64 and 20.97 mgprotein gsupport-1 for CALB and RML, respectively. The effects of pH (pH 7.0 and pH 11.0) and phosphate buffer solution concentration (5 and 100 mmol L-1) were also investigated on lipase immobilization. The immobilization efficiency for both lipases was similar for the different pH values. The use of 100 mmol L-1 phosphate buffer decreased the lipase immobilization efficiency. The biocatalysts (CALB-Siral 40 and RML-Siral 20) were tested in the ethyl oleate synthesis. The conversion of 61.7% was obtained at 60 °C in the reaction catalyzed by CALB-Siral 40. Both heterogeneous biocatalysts showed increased thermal stability compared with their free form. Finally, the reuse of the biocatalysts was studied. CALB-Siral 40 and RML-Siral 20 maintained about 30% of the initial conversion after 3 batches of ethyl oleate synthesis. Silica-aluminas (Siral 20 and 40) proved to be a support that allowed a high efficiency of immobilization of lipases and activity for esterification reaction.
Collapse
Affiliation(s)
- Kelly C. N. R. Pedro
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - João V. V. da Silva
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Eliane P. Cipolatti
- Departamento de Engenharia Química, Instituto de Tecnologia, Universidade Federal Rural Do Rio de Janeiro, Rodovia BR 465, Km 07- Zona Rural, 23890-000 Seropédica, RJ Brasil
| | - Evelin A. Manoel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro (UFRJ), 21941-170 Rio de Janeiro, RJ Brasil
| | - Ivone S. P. Campisano
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Cristiane A. Henriques
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Marta A. P. Langone
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
- Instituto Federal de Educação, Ciência e Tecnologia Do Rio de Janeiro, Rua Senador Furtado, 121, 20260-100 Rio de Janeiro, RJ Brasil
| |
Collapse
|
2
|
Jang WY, Sohn JH, Chang JH. Thermally Stable and Reusable Silica and Nano-Fructosome Encapsulated CalB Enzyme Particles for Rapid Enzymatic Hydrolysis and Acylation. Int J Mol Sci 2023; 24:9838. [PMID: 37372985 DOI: 10.3390/ijms24129838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports the preparation of silica-coated and nano-fructosome encapsulated Candida antarctica lipase B particles (CalB@NF@SiO2) and a demonstration of their enzymatic hydrolysis and acylation. CalB@NF@SiO2 particles were prepared as a function of TEOS concentration (3-100 mM). Their mean particle size was 185 nm by TEM. Enzymatic hydrolysis was performed to compare catalytic efficiencies of CalB@NF and CalB@NF@SiO2. The catalytic constants (Km, Vmax, and Kcat) of CalB@NF and CalB@NF@SiO2 were calculated using the Michaelis-Menten equation and Lineweaver-Burk plot. Optimal stability of CalB@NF@SiO2 was found at pH 8 and a temperature of 35 °C. Moreover, CalB@NF@SiO2 particles were reused for seven cycles to evaluate their reusability. In addition, enzymatic synthesis of benzyl benzoate was demonstrated via an acylation reaction with benzoic anhydride. The efficiency of CalB@NF@SiO2 for converting benzoic anhydride to benzyl benzoate by the acylation reaction was 97%, indicating that benzoic anhydride was almost completely converted to benzyl benzoate. Consequently, CalB@NF@SiO2 particles are better than CalB@NF particles for enzymatic synthesis. In addition, they are reusable with high stability at optimal pH and temperature.
Collapse
Affiliation(s)
- Woo Young Jang
- Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
- Department of Materials Science & Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung Hoon Sohn
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeong Ho Chang
- Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
| |
Collapse
|
3
|
Harini T, Muddagoni J, Sheelu G, Rode HB, Kumaraguru T. Polymer supported cross-linked enzyme aggregates (CLEAs) of lipase B from Candida antarctica: An efficient and recyclable biocatalyst for reactions in both aqueous and organic media. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1885381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tirunagari Harini
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jayashree Muddagoni
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Gurrala Sheelu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Haridas B. Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Thenkrishnan Kumaraguru
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Zhang H, Li X, Bai W, Liang Y. P(GMA‐HEMA)/SiO
2
Nanofilm Constructed Macroporous Monolith for Immobilization of Pseudomonas Fluorescens Lipase. ChemistrySelect 2020. [DOI: 10.1002/slct.202000246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Zhang
- Department of Chemistry, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 PR China
| | - Xiaoying Li
- Department of Chemistry, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 PR China
| | - Wenjing Bai
- Department of Chemistry, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 PR China
| | - Yunxiao Liang
- Department of Chemistry, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 PR China
| |
Collapse
|
5
|
Nian B, Cao C, Liu Y. Activation and stabilization of Candida antarctica lipase B in choline chloride-glycerol-water binary system via tailoring the hydrogen-bonding interaction. Int J Biol Macromol 2019; 136:1086-1095. [DOI: 10.1016/j.ijbiomac.2019.06.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 11/25/2022]
|
6
|
Immobilization of a Novel ESTBAS Esterase from Bacillus altitudinis onto an Epoxy Resin: Characterization and Regioselective Synthesis of Chloramphenicol Palmitate. Catalysts 2019. [DOI: 10.3390/catal9070620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Novel gene estBAS from Bacillus altitudinis, encoding a 216-amino acid esterase (EstBAS) with a signal peptide (SP), was expressed in Escherichia coli. EstBASΔSP showed the highest activity toward p-nitrophenyl hexanoate at 50 °C and pH 8.0 and had a half-life (T1/2) of 6 h at 50 °C. EstBASΔSP was immobilized onto a novel epoxy resin (Lx-105s) with a high loading of 96 mg/g. Fourier transform infrared (FTIR) spectroscopy showed that EstBASΔSP was successfully immobilized onto Lx-105s. In addition, immobilization improved its enzymatic performance by widening the tolerable ranges of pH and temperature. The optimum temperature of immobilized EstBASΔSP (Lx-EstBASΔSP) was higher, 60 °C, and overall thermostability improved. T1/2 of Lx-EstBASΔSP and free EstBASΔSP at 60 °C was 105 and 28 min, respectively. Lx-EstBASΔSP was used as a biocatalyst to synthesize chloramphenicol palmitate by regioselective modification at the primary hydroxyl group. Conversion efficiency reached 94.7% at 0.15 M substrate concentration after 24 h. Lx-EstBASΔSP was stable and could be reused for seven cycles, after which it retained over 80% of the original activity.
Collapse
|
7
|
Enzyme shielding by mesoporous organosilica shell on Fe3O4@silica yolk-shell nanospheres. Int J Biol Macromol 2018; 117:673-682. [DOI: 10.1016/j.ijbiomac.2018.05.227] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022]
|
8
|
Onoja E, Chandren S, Razak FIA, Wahab RA. Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Abstract
The continuous flow synthesis of active pharmaceutical ingredients, value-added chemicals, and materials has grown tremendously over the past ten years. This revolution in chemical manufacturing has resulted from innovations in both new methodology and technology. This field, however, has been predominantly focused on synthetic organic chemistry, and the use of biocatalysts in continuous flow systems is only now becoming popular. Although immobilized enzymes and whole cells in batch systems are common, their continuous flow counterparts have grown rapidly over the past two years. With continuous flow systems offering improved mixing, mass transfer, thermal control, pressurized processing, decreased variation, automation, process analytical technology, and in-line purification, the combination of biocatalysis and flow chemistry opens powerful new process windows. This Review explores continuous flow biocatalysts with emphasis on new technology, enzymes, whole cells, co-factor recycling, and immobilization methods for the synthesis of pharmaceuticals, value-added chemicals, and materials.
Collapse
Affiliation(s)
- Joshua Britton
- Departments of Chemistry, Molecular Biology, and Biochemistry, University of California, Irvine, CA 92697-2025, USA.
| | | | | |
Collapse
|
10
|
Gu Y, Xue P. Pseudomonas
sp. Lipase Immobilized on Magnetic Porous Polymer Microspheres as an Effective and Recyclable Biocatalyst for Resolution of Allylic Alcohols. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yaohua Gu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering; Ningxia University; Yinchuan 750021 China
| | - Ping Xue
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering; Ningxia University; Yinchuan 750021 China
| |
Collapse
|
11
|
Cho HJ, Jang WJ, Moon SY, Lee JM, Kim JH, Han HS, Kim KW, Lee BJ, Kong IS. Immobilization of β-1,3-1,4-glucanase from Bacillus sp. on porous silica for production of β-glucooligosaccharides. Enzyme Microb Technol 2018; 110:30-37. [DOI: 10.1016/j.enzmictec.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/26/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
|
12
|
Kołodziejczak-Radzimska A, Zdarta J, Jesionowski T. Physicochemical and catalytic properties of acylase I from aspergillus melleus
immobilized on amino- and carbonyl-grafted stöber silica. Biotechnol Prog 2018; 34:767-777. [DOI: 10.1002/btpr.2610] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/04/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Agnieszka Kołodziejczak-Radzimska
- Poznan Univeristy of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4; Poznan 60965 Poland
| | - Jakub Zdarta
- Poznan Univeristy of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4; Poznan 60965 Poland
| | - Teofil Jesionowski
- Poznan Univeristy of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4; Poznan 60965 Poland
| |
Collapse
|
13
|
Lipase immobilization on functionalized mesoporous TiO 2 : Specific adsorption, hyperactivation and application in cinnamyl acetate synthesis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Strep-tag II fusion technology for the modification and immobilization of lipase B from Candida antarctica (CALB). J Genet Eng Biotechnol 2017; 15:359-367. [PMID: 30647674 PMCID: PMC6296563 DOI: 10.1016/j.jgeb.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/15/2017] [Indexed: 11/21/2022]
Abstract
Fusion tags - amino acid sequences that are genetically coded to be expressed as attached moieties to a protein - have the potential to enhance the activity of native enzyme, enable specific purification of the enzyme, and promote simple and efficient immobilization of enzymes onto material supports. In this work, we demonstrate the effect of a Strep-tag II fusion tag on the properties of free and immobilized lipase B from Candida antarctica (CALB). The gene encoding the mature portion of CALB was codon-optimized and cloned in pASG-IBA2 plasmid for expression in E. coli. Purified recombinant Strep-tag II CALB was immobilized to Strep-Tactin based support through affinity binding, and the immobilized and free Strep-tag II CALB were compared to a commercial CALB. Following modification, the enzyme could be selectively purified from culture media with no observable non-specific binding. The catalytic efficiency of the purified fusion-tagged enzyme was significantly greater than that of the commercial CALB in its free form. Immobilization of the fusion-tagged enzyme to Strep-Tactin modified crosslinked agarose support yielded a catalytically active enzyme; however, the kcat of the immobilized enzyme was significantly reduced compared to the free tagged enzyme. This work indicates that a C-terminus Strep-tag II fusion tag may be employed to improve the catalytic efficiency of free CALB, but may not be suitable for immobilized applications that employ binding of the enzyme to a Strep-Tactin-modified support.
Collapse
|
15
|
Immobilization of SMG1-F278N lipase onto a novel epoxy resin: Characterization and its application in synthesis of partial glycerides. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Vessally E, Ghasemisarabbadeih M, Ekhteyari Z, Hosseinzadeh-Khanmiri R, Ghorbani-Kalhor E, Ejlali L. Platinum nanoparticles supported on polymeric ionic liquid functionalized magnetic silica: effective and reusable heterogeneous catalysts for the selective oxidation of alcohols in water. RSC Adv 2016. [DOI: 10.1039/c6ra16851e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this manuscript, we demonstrate that functionalized magnetic silica nanoparticles are efficient and recyclable catalysts for the selective, aerobic oxidation of various primary and secondary alcohols.
Collapse
Affiliation(s)
| | | | | | | | | | - Ladan Ejlali
- Department of Chemistry
- Islamic Azad University
- Tabriz
- Iran
| |
Collapse
|