1
|
Santema LL, Fraaije MW. Activity assays for flavoprotein oxidases: an overview. Appl Microbiol Biotechnol 2025; 109:115. [PMID: 40341429 PMCID: PMC12062150 DOI: 10.1007/s00253-025-13494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/10/2025]
Abstract
Flavoprotein oxidases have found many biotechnological applications. For identifying and improving their characteristics, it is essential to have reliable and robust assay methodology available. The methodologies used to monitor their activity seem to be scattered in the literature and seem often selected based on convenience. Due to the diversity of reactions catalyzed by flavoprotein oxidases, it is virtually impossible to recommend a single activity assay. A literature analysis of 60 recent papers describing flavoprotein oxidases revealed that continuous spectrophotometric assays, in particular colorimetric assays, are the preferred choice, as they are facile, scalable and allow for better interpretation of data than discontinuous assays. Colorimetric assays typically rely on the extinction coefficient of a monitored chromogenic product, which can be highly variable depending on the experimental conditions. Therefore, it is important to determine the extinction coefficient under the specific experimental conditions used, rather than taking it directly from the literature. To provide a guideline and assist in standardization, this review describes the most commonly utilized activity assays for flavoprotein oxidases, along with their respective merits and limitations. KEY POINTS: • Researchers should be more aware of limitations of activity assays. • Extinction coefficients should be determined for the appropriate experimental setup. • New robust activity assays are desired.
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
2
|
Martschini A, Kostelac A, Haltrich D, Peterbauer CK. Characterization of a Pyranose Oxidase/ C-Glycoside Oxidase from Microbacterium sp. 3H14, Belonging to the Unexplored Clade II of Actinobacterial POx/CGOx. Biomolecules 2024; 14:1510. [PMID: 39766217 PMCID: PMC11673046 DOI: 10.3390/biom14121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Pyranose oxidase (POx) is an FAD-dependent oxidoreductase and belongs to the glucose-methanol-choline (GMC) superfamily of oxidoreductases. As recently reported, POxs and FAD-dependent C-glycoside oxidases (CGOxs) share the same sequence space, and phylogenetic analysis of actinobacterial sequences belonging to this shared sequence space showed that it can be divided into four clades. Here, we report the biochemical characterization of a POx/CGOx from Microbacterium sp. 3H14 (MPOx), belonging to the hitherto unexplored clade II of actinobacterial POx/CGOx. Overall, MPOx demonstrates comparable features to POxs/CGOxs of clades III and IV, including the preference for glycosides over monosaccharides as electron donors. However, as MPOx efficiently oxidizes the C-glycoside aspalathin as well as the O-glycoside phlorizin, it shows activity with yet another set of glycoside structures compared to other POx/CGOx members.
Collapse
Affiliation(s)
- Andrea Martschini
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria; (A.M.); (A.K.); (C.K.P.)
| | - Anja Kostelac
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria; (A.M.); (A.K.); (C.K.P.)
- Doctoral Programme Molecular Biotechnology of Proteins BioToP, BOKU University, 1190 Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria; (A.M.); (A.K.); (C.K.P.)
| | - Clemens K. Peterbauer
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria; (A.M.); (A.K.); (C.K.P.)
| |
Collapse
|
3
|
Santema LL, Rozeboom HJ, Borger VP, Kaya SG, Fraaije MW. Identification of a robust bacterial pyranose oxidase that displays an unusual pH dependence. J Biol Chem 2024; 300:107885. [PMID: 39395808 DOI: 10.1016/j.jbc.2024.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Pyranose oxidases are valuable biocatalysts, yet only a handful of bacterial pyranose oxidases are known. These bacterial enzymes exhibit noteworthy distinctions from their extensively characterized fungal counterparts, encompassing variations in substrate specificity and structural attributes. Herein a bacterial pyranose oxidase from Oscillatoria princeps (OPOx) was biochemically characterized in detail. In contrast to the fungal pyranose oxidases, OPOx could be well expressed in Escherichia coli as soluble, fully flavinylated, and active oxidase. It was found to be highly thermostable (melting temperature >90 °C) and showed activity on glucose, exhibiting an exceptionally low KM value (48 μM). Elucidation of its crystal structure revealed similarities with fungal pyranose oxidases, such as being a tetramer with a large central void leading to a narrow substrate access tunnel. In the active site, the FAD cofactor is covalently bound to a histidine. OPOx displays a relatively narrow pH optimum for activity with a sharp decline at relatively basic pH values which is accompanied by a drastic change in its flavin absorbance spectrum. The pH-dependent switch in flavin absorbance features and oxidase activity was shown to be fully reversible. It is hypothesized that a glutamic acid helps to stabilize the protonated form of the histidine that is tethered to the FAD. OPOx presents itself as a valuable biocatalyst as it is highly robust, well-expressed in E. coli, shows low KM values for monosaccharides, and has a peculiar pH-dependent "on-off switch".
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | | | - Veronica P Borger
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Saniye G Kaya
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Kostelac A, Taborda A, Martins LO, Haltrich D. Evolution and separation of actinobacterial pyranose and C-glycoside-3-oxidases. Appl Environ Microbiol 2024; 90:e0167623. [PMID: 38179968 PMCID: PMC10807413 DOI: 10.1128/aem.01676-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024] Open
Abstract
FAD-dependent pyranose oxidase (POx) and C-glycoside-3-oxidase (CGOx) are both members of the glucose-methanol-choline superfamily of oxidoreductases and belong to the same sequence space. Pyranose oxidases had been studied for their oxidation of monosaccharides such as D-glucose, but recently, a bacterial C-glycoside-3-oxidase that is phylogenetically related to POx and that reacts with C-glycosides such as carminic acid, mangiferin or puerarin has been described. Since these actinobacterial CGOx enzymes belong to the same sequence space as bacterial POx, they must have evolved from the same ancestor. Here, we performed a phylogenetic analysis of actinobacterial sequences and resurrected seven ancestral enzymes of the POx/CGOx sequence space to study the evolutionary trajectory of substrate preferences for monosaccharides and C-glycosides. Clade I, with its dimeric member POx from Kitasatospora aureofaciens, shows strict preference for monosaccharides (D-glucose and D-xylose) and does not react with any of the glycosides tested. No extant member of clade II has been studied to date. The two extant members of clades III and IV, monomeric POx/CGOx from Pseudoarthrobacter siccitolerans and Streptomyces canus, oxidized both monosaccharides as well as various C-glycosides (homoorientin, isovitexin, mangiferin, and puerarin). Steady-state kinetic parameters of several clades III and IV ancestral enzymes indicate that the generalist ancestor N35 slowly evolved to present-day enzymes with a much higher preference for C-glycosides than monosaccharides. Based on structural predictions of ancestors, we hypothesize that the strict specificity of bacterial clade I POx (and also fungal POx) is the result of oligomerization, which in turn results from the evolution of protein segments that were shown to be important for oligomerization, the arm, and the head domain.IMPORTANCEC-Glycosides often form active compounds in various plants. Breakage of the C-C bond in these glycosides to release the aglycone is challenging and proceeds via a two-step reaction, the oxidation of the sugar and subsequent cleavage of the C-C bond. Recently, an enzyme from a soil bacterium, FAD-dependent C-glycoside-3-oxidase (CGOx), was shown to catalyze the initial oxidation reaction. Here, we show that CGOx belongs to the same sequence space as pyranose oxidase (POx), and that an actinobacterial ancestor of the POx/CGOx family evolved into four clades, two of which show a high preference for C-glycosides.
Collapse
Affiliation(s)
- Anja Kostelac
- Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Austria
- Doctoral Programme BioToP—Biomolecular Technology of Proteins, BOKU—University of Natural Resources and Life Sciences, Vienna, Austria
| | - André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Dietmar Haltrich
- Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
5
|
Taborda A, Frazão T, Rodrigues MV, Fernández-Luengo X, Sancho F, Lucas MF, Frazão C, Melo EP, Ventura MR, Masgrau L, Borges PT, Martins LO. Mechanistic insights into glycoside 3-oxidases involved in C-glycoside metabolism in soil microorganisms. Nat Commun 2023; 14:7289. [PMID: 37963862 PMCID: PMC10646112 DOI: 10.1038/s41467-023-42000-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
C-glycosides are natural products with important biological activities but are recalcitrant to degradation. Glycoside 3-oxidases (G3Oxs) are recently identified bacterial flavo-oxidases from the glucose-methanol-coline (GMC) superfamily that catalyze the oxidation of C-glycosides with the concomitant reduction of O2 to H2O2. This oxidation is followed by C-C acid/base-assisted bond cleavage in two-step C-deglycosylation pathways. Soil and gut microorganisms have different oxidative enzymes, but the details of their catalytic mechanisms are largely unknown. Here, we report that PsG3Ox oxidizes at 50,000-fold higher specificity (kcat/Km) the glucose moiety of mangiferin to 3-keto-mangiferin than free D-glucose to 2-keto-glucose. Analysis of PsG3Ox X-ray crystal structures and PsG3Ox in complex with glucose and mangiferin, combined with mutagenesis and molecular dynamics simulations, reveal distinctive features in the topology surrounding the active site that favor catalytically competent conformational states suitable for recognition, stabilization, and oxidation of the glucose moiety of mangiferin. Furthermore, their distinction to pyranose 2-oxidases (P2Oxs) involved in wood decay and recycling is discussed from an evolutionary, structural, and functional viewpoint.
Collapse
Grants
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- Fundação para a Ciência e Tecnologia, Portugal, grants 2022.02027.PTDC, UIDB/04612/2020 and UIDP/04612/2020, LA/P/0087/2020, PTDC/BII-BBF/29564/2017, and AAC 01/SAICT/2016 Fundação para a Ciência e Tecnologia, Portugal, Ph.D. fellowships 2020.07928, 2022.13872, and 2022.09426 Ministry of Science and Innovation, Spain, grant PID2021-126897NB-I00 and fellowship PRE2019-088412, funded by the MCIN/AEI/10.13039/501100011033/ FEDER, EU
- Fundação para a Ciência e Tecnologia (FCT), Portugal, grants UIDB/04326/2020, UIDP/043226/2020 and LA/P/0101/2020
Collapse
Affiliation(s)
- André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Tomás Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Miguel V Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | | | - Ferran Sancho
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | | | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Eduardo P Melo
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139, Faro, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Laura Masgrau
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
6
|
Virginia LJ, Peterbauer C. Localization of Pyranose 2-Oxidase from Kitasatospora aureofaciens: A Step Closer to Elucidate a Biological Role. Int J Mol Sci 2023; 24:1975. [PMID: 36768294 PMCID: PMC9916811 DOI: 10.3390/ijms24031975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Lignin degradation in fungal systems is well characterized. Recently, a potential for lignin depolymerization and modification employing similar enzymatic activities by bacteria is increasingly recognized. The presence of genes annotated as peroxidases in Actinobacteria genomes suggests that these bacteria should contain auxiliary enzymes such as flavin-dependent carbohydrate oxidoreductases. The only auxiliary activity subfamily with significantly similar representatives in bacteria is pyranose oxidase (POx). A biological role of providing H2O2 for peroxidase activation and reduction of radical degradation products suggests an extracellular localization, which has not been established. Analysis of the genomic locus of POX from Kitasatospora aureofaciens (KaPOx), which is similar to fungal POx, revealed a start codon upstream of the originally annotated one, and the additional sequence was considered a putative Tat-signal peptide by computational analysis. We expressed KaPOx including this additional upstream sequence as well as fusion constructs consisting of the additional sequence, the KaPOx mature domain and the fluorescent protein mRFP1 in Streptomyces lividans. The putative signal peptide facilitated secretion of KaPOx and the fusion protein, suggesting a natural extracellular localization and supporting a potential role in providing H2O2 and reducing radical compounds derived from lignin degradation.
Collapse
Affiliation(s)
- Ludovika Jessica Virginia
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
- Doctoral Programme BioToP—Biomolecular Technology of Proteins, BOKU—University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Clemens Peterbauer
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
- Doctoral Programme BioToP—Biomolecular Technology of Proteins, BOKU—University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
7
|
Kostelac A, Sützl L, Puc J, Furlanetto V, Divne C, Haltrich D. Biochemical Characterization of Pyranose Oxidase from Streptomyces canus-Towards a Better Understanding of Pyranose Oxidase Homologues in Bacteria. Int J Mol Sci 2022; 23:13595. [PMID: 36362382 PMCID: PMC9659204 DOI: 10.3390/ijms232113595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Pyranose oxidase (POx, glucose 2-oxidase; EC 1.1.3.10, pyranose:oxygen 2-oxidoreductase) is an FAD-dependent oxidoreductase and a member of the auxiliary activity (AA) enzymes (subfamily AA3_4) in the CAZy database. Despite the general interest in fungal POxs, only a few bacterial POxs have been studied so far. Here, we report the biochemical characterization of a POx from Streptomyces canus (ScPOx), the sequence of which is positioned in a separate, hitherto unexplored clade of the POx phylogenetic tree. Kinetic analyses revealed that ScPOx uses monosaccharide sugars (such as d-glucose, d-xylose, d-galactose) as its electron-donor substrates, albeit with low catalytic efficiencies. Interestingly, various C- and O-glycosides (such as puerarin) were oxidized by ScPOx as well. Some of these glycosides are characteristic substrates for the recently described FAD-dependent C-glycoside 3-oxidase from Microbacterium trichothecenolyticum. Here, we show that FAD-dependent C-glycoside 3-oxidases and pyranose oxidases are enzymes belonging to the same sequence space.
Collapse
Affiliation(s)
- Anja Kostelac
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Leander Sützl
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Jolanta Puc
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Valentina Furlanetto
- School of Engineering Sciences in Chemistry, Biotechnology, and Health-CBH, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Christina Divne
- School of Engineering Sciences in Chemistry, Biotechnology, and Health-CBH, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| |
Collapse
|
8
|
FAD-dependent C-glycoside-metabolizing enzymes in microorganisms: Screening, characterization, and crystal structure analysis. Proc Natl Acad Sci U S A 2021; 118:2106580118. [PMID: 34583991 DOI: 10.1073/pnas.2106580118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
C-glycosides have a unique structure, in which an anomeric carbon of a sugar is directly bonded to the carbon of an aglycone skeleton. One of the natural C-glycosides, carminic acid, is utilized by the food, cosmetic, and pharmaceutical industries, for a total of more than 200 tons/y worldwide. However, a metabolic pathway of carminic acid has never been identified. In this study, we isolated the previously unknown carminic acid-catabolizing microorganism and discovered a flavoenzyme "C-glycoside 3-oxidase" named CarA that catalyzes oxidation of the sugar moiety of carminic acid. A Basic Local Alignment Search Tool (BLAST) search demonstrated that CarA homologs were distributed in soil microorganisms but not intestinal ones. In addition to CarA, two CarA homologs were cloned and heterologously expressed, and their biochemical properties were determined. Furthermore, a crystal structure of one homolog was determined. Together with the biochemical analysis, the crystal structure and a mutagenesis analysis of CarA revealed the mechanisms underlying their substrate specificity and catalytic reaction. Our study suggests that CarA and its homologs play a crucial role in the metabolism of C-glycosides in nature.
Collapse
|
9
|
Mozuch MD, Hirth KC, Schwartz TJ, Kersten PJ. Repurposing Inflatable Packaging Pillows as Bioreactors: a Convenient Synthesis of Glucosone by Whole-Cell Catalysis Under Oxygen. Appl Biochem Biotechnol 2020; 193:743-760. [PMID: 33188507 PMCID: PMC7910265 DOI: 10.1007/s12010-020-03448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/02/2020] [Indexed: 11/21/2022]
Abstract
Biocatalysis using molecular oxygen as the electron acceptor has significant potential for selective oxidations at low cost. However, oxygen is poorly soluble in water, and its slow rate of mass transfer in the aqueous phase is a major obstacle, even for laboratory-scale syntheses. Oxygen transfer can be accelerated by vigorous mechanical methods, but these are often incompatible with biological catalysts. Gentler conditions can be achieved with shallow, high surface area bag reactors that are designed for single use and generally for specialized cell culture applications. As a less-expensive alternative to these high-end bioreactors, we describe repurposing inflatable shipping pillows with resealable valves to provide high surface area mixing under oxygen for preparative synthesis of glucosone (D-arabino-hexos-2-ulose) from D-glucose using non-growing Escherichia coli whole cells containing recombinant pyranose 2-oxidase (POX) as catalyst. Parallel reactions permitted systematic study of the effects of headspace composition (i.e., air vs 100% oxygen), cell density, exogenous catalase, and reaction volume in the oxidation of 10% glucose. Importantly, only a single charge of 100% oxygen is required for stoichiometric conversion on a multi-gram scale in 18 h with resting cells, and the conversion was successfully repeated with recycled cells.
Collapse
Affiliation(s)
- Michael D Mozuch
- Forest Products Laboratory, Forest Service, US Department of Agriculture, Madison, WI, 53726, USA
| | - Kolby C Hirth
- Forest Products Laboratory, Forest Service, US Department of Agriculture, Madison, WI, 53726, USA
| | - Thomas J Schwartz
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Philip J Kersten
- Forest Products Laboratory, Forest Service, US Department of Agriculture, Madison, WI, 53726, USA.
| |
Collapse
|
10
|
Savino S, Fraaije MW. The vast repertoire of carbohydrate oxidases: An overview. Biotechnol Adv 2020; 51:107634. [PMID: 32961251 DOI: 10.1016/j.biotechadv.2020.107634] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023]
Abstract
Carbohydrates are widely abundant molecules present in a variety of forms. For their biosynthesis and modification, nature has evolved a plethora of carbohydrate-acting enzymes. Many of these enzymes are of particular interest for biotechnological applications, where they can be used as biocatalysts or biosensors. Among the enzymes catalysing conversions of carbohydrates are the carbohydrate oxidases. These oxidative enzymes belong to different structural families and use different cofactors to perform the oxidation reaction of CH-OH bonds in carbohydrates. The variety of carbohydrate oxidases available in nature reflects their specificity towards different sugars and selectivity of the oxidation site. Thanks to their properties, carbohydrate oxidases have received a lot of attention in basic and applied research, such that nowadays their role in biotechnological processes is of paramount importance. In this review we provide an overview of the available knowledge concerning the known carbohydrate oxidases. The oxidases are first classified according to their structural features. After a description on their mechanism of action, substrate acceptance and characterisation, we report on the engineering of the different carbohydrate oxidases to enhance their employment in biocatalysis and biotechnology. In the last part of the review we highlight some practical applications for which such enzymes have been exploited.
Collapse
Affiliation(s)
- Simone Savino
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands.
| |
Collapse
|
11
|
Phylogeny and Structure of Fatty Acid Photodecarboxylases and Glucose-Methanol-Choline Oxidoreductases. Catalysts 2020. [DOI: 10.3390/catal10091072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucose-methanol-choline (GMC) oxidoreductases are a large and diverse family of flavin-binding enzymes found in all kingdoms of life. Recently, a new related family of proteins has been discovered in algae named fatty acid photodecarboxylases (FAPs). These enzymes use the energy of light to convert fatty acids to the corresponding Cn-1 alkanes or alkenes, and hold great potential for biotechnological application. In this work, we aimed at uncovering the natural diversity of FAPs and their relations with other GMC oxidoreductases. We reviewed the available GMC structures, assembled a large dataset of GMC sequences, and found that one active site amino acid, a histidine, is extremely well conserved among the GMC proteins but not among FAPs, where it is replaced with alanine. Using this criterion, we found several new potential FAP genes, both in genomic and metagenomic databases, and showed that related bacterial, archaeal and fungal genes are unlikely to be FAPs. We also identified several uncharacterized clusters of GMC-like proteins as well as subfamilies of proteins that lack the conserved histidine but are not FAPs. Finally, the analysis of the collected dataset of potential photodecarboxylase sequences revealed the key active site residues that are strictly conserved, whereas other residues in the vicinity of the flavin adenine dinucleotide (FAD) cofactor and in the fatty acid-binding pocket are more variable. The identified variants may have different FAP activity and selectivity and consequently may prove useful for new biotechnological applications, thereby fostering the transition from a fossil carbon-based economy to a bio-economy by enabling the sustainable production of hydrocarbon fuels.
Collapse
|
12
|
Abrera AT, Sützl L, Haltrich D. Pyranose oxidase: A versatile sugar oxidoreductase for bioelectrochemical applications. Bioelectrochemistry 2019; 132:107409. [PMID: 31821902 DOI: 10.1016/j.bioelechem.2019.107409] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Pyranose oxidase (POx) is an FAD-dependent oxidoreductase, and like glucose oxidase (GOx) it is a member of the glucose-methanol-choline (GMC) superfamily of oxidoreductases. POx oxidizes several monosaccharides including D-glucose, D-galactose, and D-xylose, while concurrently oxygen is reduced to hydrogen peroxide. In addition to this oxidase activity, POx shows pronounced activity with alternative electron acceptors that include various quinones or (complexed) metal ions. Even though POx in general shows properties that are more favourable than those of GOx (e.g., a considerably higher catalytic efficiency (kcat/Km) for D-glucose, significantly lower Michaelis constants Km for D-glucose, reactivity with both anomeric forms of D-glucose) it is much less frequently used for both biosensor and biofuel cell applications than GOx. POx has been applied in biosensing of D-glucose, D-galactose, and D-xylose, and in combination with α-glucosidase also maltose. An attractive application is in biosensors constructed for the measurement of 1,5-anhydro-D-glucitol, a recognised biomarker in diabetes. Bioelectrochemical applications of POx had been restricted to enzymes of fungal origin. The recent discovery and characterisation of POx from bacterial sources, which show properties that are very distinct from the fungal enzymes, might open new possibilities for further applications in bioelectrochemistry.
Collapse
Affiliation(s)
- Annabelle T Abrera
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; University of the Philippines Los Baños, College Laguna, Philippines
| | - Leander Sützl
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; Doctoral Programme BioToP - Biomolecular Technology of Proteins, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Wien, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; Doctoral Programme BioToP - Biomolecular Technology of Proteins, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Wien, Austria.
| |
Collapse
|
13
|
Abrera AT, Chang H, Kracher D, Ludwig R, Haltrich D. Characterization of pyranose oxidase variants for bioelectrocatalytic applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140335. [PMID: 31785381 PMCID: PMC6949865 DOI: 10.1016/j.bbapap.2019.140335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 11/28/2022]
Abstract
Pyranose oxidase (POx) catalyzes the oxidation of d-glucose to 2-ketoglucose with concurrent reduction of oxygen to H2O2. POx from Trametes ochracea (ToPOx) is known to react with alternative electron acceptors including 1,4-benzoquinone (1,4-BQ), 2,6-dichlorophenol indophenol (DCPIP), and the ferrocenium ion. In this study, enzyme variants with improved electron acceptor turnover and reduced oxygen turnover were characterized as potential anode biocatalysts. Pre-steady-state kinetics of the oxidative half-reaction of ToPOx variants T166R, Q448H, L545C, and L547R with these alternative electron acceptors were evaluated using stopped-flow spectrophotometry. Higher kinetic constants were observed as compared to the wild-type ToPOx for some of the variants. Subsequently, the variants were immobilized on glassy carbon electrodes. Cyclic voltammetry measurements were performed to measure the electrochemical responses of these variants with glucose as substrate in the presence of 1,4-BQ, DCPIP, or ferrocene methanol as redox mediators. High catalytic efficiencies (Imaxapp/KMapp) compared to the wild-type POx proved the potential of these variants for future bioelectrocatalytic applications, in biosensors or biofuel cells. Among the variants, L545C showed the most desirable properties as determined kinetically and electrochemically. Pyranose oxidase (POx) shows attractive features for bioelectrocatalysis. Trametes ochracea POx variant L545C is most promising for these applications. Rapid kinetics experiments give good predictions for performance on an electrode.
Collapse
Affiliation(s)
- Annabelle T Abrera
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria; University of the Philippines Los Baños, College Laguna, Los Baños, Philippines
| | - Hucheng Chang
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Daniel Kracher
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Dietmar Haltrich
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.
| |
Collapse
|
14
|
Herzog PL, Sützl L, Eisenhut B, Maresch D, Haltrich D, Obinger C, Peterbauer CK. Versatile Oxidase and Dehydrogenase Activities of Bacterial Pyranose 2-Oxidase Facilitate Redox Cycling with Manganese Peroxidase In Vitro. Appl Environ Microbiol 2019; 85:e00390-19. [PMID: 31028028 PMCID: PMC6581175 DOI: 10.1128/aem.00390-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
Pyranose 2-oxidase (POx) has long been accredited a physiological role in lignin degradation, but evidence to provide insights into the biochemical mechanisms and interactions is insufficient. There are ample data in the literature on the oxidase and dehydrogenase activities of POx, yet the biological relevance of this duality could not be established conclusively. Here we present a comprehensive biochemical and phylogenetic characterization of a novel pyranose 2-oxidase from the actinomycetous bacterium Kitasatospora aureofaciens (KaPOx) as well as a possible biomolecular synergism of this enzyme with peroxidases using phenolic model substrates in vitro A phylogenetic analysis of both fungal and bacterial putative POx-encoding sequences revealed their close evolutionary relationship and supports a late horizontal gene transfer of ancestral POx sequences. We successfully expressed and characterized a novel bacterial POx gene from K. aureofaciens, one of the putative POx genes closely related to well-known fungal POx genes. Its biochemical characteristics comply with most of the classical hallmarks of known fungal pyranose 2-oxidases, i.e., reactivity with a range of different monosaccharides as electron donors as well as activity with oxygen, various quinones, and complexed metal ions as electron acceptors. Thus, KaPOx shows the pronounced duality of oxidase and dehydrogenase similar to that of fungal POx. We further performed efficient redox cycling of aromatic lignin model compounds between KaPOx and manganese peroxidase (MnP). In addition, we found a Mn(III) reduction activity in KaPOx, which, in combination with its ability to provide H2O2, implies this and potentially other POx as complementary enzymatic tools for oxidative lignin degradation by specialized peroxidases.IMPORTANCE Establishment of a mechanistic synergism between pyranose oxidase and (manganese) peroxidases represents a vital step in the course of elucidating microbial lignin degradation. Here, the comprehensive characterization of a bacterial pyranose 2-oxidase from Kitasatospora aureofaciens is of particular interest for several reasons. First, the phylogenetic analysis of putative pyranose oxidase genes reveals a widespread occurrence of highly similar enzymes in bacteria. Still, there is only a single report on a bacterial pyranose oxidase, stressing the need of closing this gap in the scientific literature. In addition, the relatively small K. aureofaciens proteome supposedly supplies a limited set of enzymatic functions to realize lignocellulosic biomass degradation. Both enzyme and organism therefore present a viable model to study the mechanisms of bacterial lignin decomposition, elucidate physiologically relevant interactions with specialized peroxidases, and potentially realize biotechnological applications.
Collapse
Affiliation(s)
- Peter L Herzog
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Leander Sützl
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Beate Eisenhut
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens K Peterbauer
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
15
|
Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:118. [PMID: 31168323 PMCID: PMC6509819 DOI: 10.1186/s13068-019-1457-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/02/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The glucose-methanol-choline (GMC) superfamily is a large and functionally diverse family of oxidoreductases that share a common structural fold. Fungal members of this superfamily that are characterised and relevant for lignocellulose degradation include aryl-alcohol oxidoreductase, alcohol oxidase, cellobiose dehydrogenase, glucose oxidase, glucose dehydrogenase, pyranose dehydrogenase, and pyranose oxidase, which together form family AA3 of the auxiliary activities in the CAZy database of carbohydrate-active enzymes. Overall, little is known about the extant sequence space of these GMC oxidoreductases and their phylogenetic relations. Although some individual forms are well characterised, it is still unclear how they compare in respect of the complete enzyme class and, therefore, also how generalizable are their characteristics. RESULTS To improve the understanding of the GMC superfamily as a whole, we used sequence similarity networks to cluster large numbers of fungal GMC sequences and annotate them according to functionality. Subsequently, different members of the GMC superfamily were analysed in detail with regard to their sequences and phylogeny. This allowed us to define the currently characterised sequence space and show that complete clades of some enzymes have not been studied in any detail to date. Finally, we interpret our results from an evolutionary perspective, where we could show, for example, that pyranose dehydrogenase evolved from aryl-alcohol oxidoreductase after a change in substrate specificity and that the cytochrome domain of cellobiose dehydrogenase was regularly lost during evolution. CONCLUSIONS This study offers new insights into the sequence variation and phylogenetic relationships of fungal GMC/AA3 sequences. Certain clades of these GMC enzymes identified in our phylogenetic analyses are completely uncharacterised to date, and might include enzyme activities of varying specificities and/or activities that are hitherto unstudied.
Collapse
Affiliation(s)
- Leander Sützl
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Gabriel Foley
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Mikael Bodén
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
16
|
Improving a bacterial pyranose 2-oxidase using a combination of rational design and directed evolution for biosensor applications. N Biotechnol 2018. [DOI: 10.1016/j.nbt.2018.05.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Zhang K, Huang M, Ma J, Liu Z, Zeng J, Liu X, Xu T, Wang X, Liu Y, Bu Z, Zhu Y. Identification and characterization of a novel bacterial pyranose 2-oxidase from the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnol Lett 2018; 40:871-880. [PMID: 29605940 DOI: 10.1007/s10529-018-2538-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/06/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify and characterize a novel bacterial pyranose 2-oxidase (P2Ox) and investigate its potential use in lignin degradation applications. RESULTS A new bacterial P2Ox (PaP2Ox) enzyme was identified in the lignocellulolytic bacterium Pantoea ananatis Sd-1. The PaP2Ox open reading frame was cloned, and the encoded protein was heterologously expressed in an Escherichia coli expression system. Unlike another reported bacterial P2Ox enzyme, the purified PaP2Ox exhibits a homotetrameric spatial conformation that is similar to fungal P2Oxs, with each subunit having a molecular mass of 65 kDa. The recombinant PaP2Ox exhibits maximum activity at 50 °C and pH 6.5 with D-glucose as its preferred substrate. In addition, this enzyme was shown to work in combination with bacterial laccase in lignin degradation. CONCLUSIONS The bacterial enzyme PaP2Ox has potential use in ligninolytic systems and shows promising value in industrial biotechnological applications.
Collapse
Affiliation(s)
- Keke Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People's Republic of China
| | - Mei Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People's Republic of China
| | - Jiangshan Ma
- Hunan Academy of Forestry, Changsha, 410004, Hunan, People's Republic of China
| | - Zeyi Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People's Republic of China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People's Republic of China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People's Republic of China
| | - Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiang Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People's Republic of China
| | - Ying Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People's Republic of China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
18
|
Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D. Multiplicity of enzymatic functions in the CAZy AA3 family. Appl Microbiol Biotechnol 2018; 102:2477-2492. [PMID: 29411063 PMCID: PMC5847212 DOI: 10.1007/s00253-018-8784-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 11/29/2022]
Abstract
The CAZy auxiliary activity family 3 (AA3) comprises enzymes from the glucose-methanol-choline (GMC) family of oxidoreductases, which assist the activity of other AA family enzymes via their reaction products or support the action of glycoside hydrolases in lignocellulose degradation. The AA3 family is further divided into four subfamilies, which include cellobiose dehydrogenase, glucose oxidoreductases, aryl-alcohol oxidase, alcohol (methanol) oxidase, and pyranose oxidoreductases. These different enzymes catalyze a wide variety of redox reactions with respect to substrates and co-substrates. The common feature of AA3 family members is the formation of key metabolites such as H2O2 or hydroquinones, which are required by other AA enzymes. The multiplicity of enzymatic functions in the AA3 family is reflected by the multigenicity of AA3 genes in fungi, which also depends on their lifestyle. We provide an overview of the phylogenetic, molecular, and catalytic properties of AA3 enzymes and discuss their interactions with other carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Leander Sützl
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Christophe V F P Laurent
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Annabelle T Abrera
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- University of the Philippines Los Baños, College Laguna, Los Baños, Philippines
| | - Georg Schütz
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria.
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria.
| |
Collapse
|