1
|
Novak TE, Bailey NP, Stevison LS. Genetic characterization of Macaca arctoides: A highlight of key genes and pathways. Primates 2023:10.1007/s10329-023-01064-x. [PMID: 37142891 DOI: 10.1007/s10329-023-01064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
When compared to the approximately 22 other macaque species, Macaca arctoides has many unique phenotypes. These traits fall into various phenotypic categories, including genitalia, coloration, mating, and olfactory traits. Here we used a previously identified whole genome set of 690 outlier genes to look for possible genetic explanations of these unique traits. Of these, 279 genes were annotated miRNAs, which are non-coding. Patterns within the remaining outliers in coding genes were investigated using GO (n = 370) and String (n = 383) analysis, which showed many interconnected immune-related genes. Further, we compared the outliers to candidate pathways associated with M. arcotides' unique phenotypes, revealing 10/690 outlier genes that overlapped these four pathways: hedgehog signaling, WNT signaling, olfactory, and melanogenesis. Of these, genes in all pathways except olfactory had higher FST values than the rest of the genes in the genome based on permutation tests. Overall, our results point to many genes each having a small impact on phenotype, working in tandem to cause large systemic changes. Additionally, these results may indicate pleiotropy. This seems to be especially true with the development and coloration of M. arctoides. Our results highlight that development, melanogenesis, immune function, and miRNAs may be heavily involved in M. arctoides' evolutionary history.
Collapse
Affiliation(s)
- Taylor E Novak
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| | - Nick P Bailey
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| |
Collapse
|
2
|
Cabarcas-Petroski S, Olshefsky G, Schramm L. BDP1 as a biomarker in serous ovarian cancer. Cancer Med 2023; 12:6401-6418. [PMID: 36305848 PMCID: PMC10028122 DOI: 10.1002/cam4.5388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND TFIIIB, an RNA polymerase III specific transcription factor has been found to be deregulated in human cancers with much of the research focused on the TBP, BRF1, and BRF2 subunits. To date, the TFIIIB specific subunit BDP1 has not been investigated in ovarian cancer but has previously been shown to be deregulated in neuroblastoma, breast cancer, and Non-Hodgkins lymphoma. RESULTS Using in silico analysis of clinically derived platforms, we report a decreased BDP1 expression as a result of deletion in serous ovarian cancer and a correlation with higher and advanced ovarian stages. Further analysis in the context of TP53 mutations, a major contributor to ovarian tumorigenesis, suggests that high BDP1 expression is unfavorable for overall survival and high BDP1 expression occurs in stages 2, 3 and 4 serous ovarian cancer. Additionally, high BDP1 expression is disadvantageous and unfavorable for progression-free survival. Lastly, BDP1 expression significantly decreased in patients treated with first-line chemotherapy, platin and taxane, at twelve-month relapse-free survival. CONCLUSIONS Taken together with a ROC analysis, the data suggest BDP1 could be of clinical relevance as a predictive biomarker in serous ovarian cancer. Lastly, this study further demonstrates that both the over- and under expression of BDP1 warrants further investigation and suggests BDP1 may exhibit dual function in the context of tumorigenesis.
Collapse
Affiliation(s)
| | | | - Laura Schramm
- Biology Department, St. John's University, Queens, New York, USA
| |
Collapse
|
3
|
Wang Q, Daiß JL, Xu Y, Engel C. Snapshots of RNA polymerase III in action - A mini review. Gene 2022; 821:146282. [PMID: 35149153 DOI: 10.1016/j.gene.2022.146282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
RNA polymerase (Pol) III is responsible for the transcription of tRNAs, 5S rRNA, U6 snRNA, and other non-coding RNAs. Transcription factors such as TFIIIA, -B, -C, SNAPc, and Maf1 are required for promoter recognition, promoter opening, and Pol III activity regulation. Recent developments in cryo-electron microscopy and advanced purification approaches for endogenous multi-subunit complexes accelerated structural studies resulting in detailed structural insights which allowed an in-depth understanding of the molecular mechanisms underlying Pol III transcription. Here, we summarize structural data on Pol III and its regulating factors providing a three-dimensional framework to guide further analysis of RNA polymerase III.
Collapse
Affiliation(s)
- Qianmin Wang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China; Present address: Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Youwei Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
4
|
Yang W, Yang L, Wang J, Zhang Y, Li S, Yin Q, Suo J, Ma R, Ye Y, Cheng H, Li J, Hui J, Hu P. Msi2-mediated MiR7a-1 processing repression promotes myogenesis. J Cachexia Sarcopenia Muscle 2022; 13:728-742. [PMID: 34877814 PMCID: PMC8818652 DOI: 10.1002/jcsm.12882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 10/02/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Most of the microRNAs (MiRs) involved in myogenesis are transcriptional regulated. The role of MiR biogenesis in myogenesis has not been characterized yet. RNA-binding protein Musashi 2 (Msi2) is considered to be one of the major drivers for oncogenesis and stem cell proliferation. The functions of Msi2 in myogenesis have not been explored yet. We sought to investigate Msi2-regulated biogenesis of MiRs in myogenesis and muscle stem cell (MuSC) ageing. METHODS We detected the expression of Msi2 in MuSCs and differentiated myotubes by quantitative reverse transcription PCR (RT-qPCR) and western blot. Msi2-binding partner human antigen R (HuR) was identified by immunoprecipitation followed by mass spectrometry analysis. The cooperative binding of Msi2 and HuR on MiR7a-1 was analysed by RNA immunoprecipitation and electrophoresis mobility shift assays. The inhibition of the processing of pri-MiR7a-1 mediated by Msi2 and HuR was shown by Msi2 and HuR knockdown. Immunofluorescent staining, RT-qPCR and immunoblotting were used to characterize the function of MiR7a-1 in myogenesis. Msi2 and HuR up-regulate cryptochrome circadian regulator 2 (Cry2) via MiR7a-1 was confirmed by the luciferase assay and western blot. The post-transcriptional regulatory cascade was further confirmed by RNAi and overexpressing of Msi2 and HuR in MuSCs, and the in vivo function was characterized by histopathological and molecular biological methods in Msi2 knockout mice. RESULTS We identified a post-transcription regulatory cascade governed by a pair of RNA-binding proteins Msi2 and HuR. Msi2 is enriched in differentiated muscle cells and promotes MuSC differentiation despite its pro-proliferation functions in other cell types. Msi2 works synergistically with another RNA-binding protein HuR to repress the biogenesis of MiR7a-1 in an Msi2 dose-dependent manner to regulate the translation of the key component of the circadian core oscillator complex Cry2. Down-regulation of Cry2 (0.6-fold, vs. control, P < 0.05) mediated by MiR7a-1 represses MuSC differentiation. The disruption of this cascade leads to differentiation defects of MuSCs. In aged muscles, Msi2 (0.3-fold, vs. control, P < 0.01) expression declined, and the Cry2 protein level also decreases (0.5-fold, vs. control, P < 0.05), suggesting that the disruption of the Msi2-mediated post-transcriptional regulatory cascade could attribute to the declined ability of muscle regeneration in aged skeletal muscle. CONCLUSIONS Our findings have identified a new post-transcriptional cascade regulating myogenesis. The cascade is disrupted in skeletal muscle ageing, which leads to declined muscle regeneration ability.
Collapse
Affiliation(s)
- Wenjun Yang
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lele Yang
- Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China
| | - Jianhua Wang
- Department of Orthopaedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuanyuan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Li
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qi Yin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jinlong Suo
- Department of Orthopedic Surgery and Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth 's Hospital, Shanghai, China
| | - Ruimiao Ma
- Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China
| | - Yuzhen Ye
- Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ping Hu
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zheng L, Lin Y, Zhong S. ROS Signaling-Mediated Novel Biological Targets: Brf1 and RNA Pol III Genes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5888432. [PMID: 34646425 PMCID: PMC8505076 DOI: 10.1155/2021/5888432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Biomolecule metabolism produces ROS (reactive oxygen species) under physiological and pathophysiological conditions. Dietary factors (alcohol) and carcinogens (EGF, DEN, and MNNG) also induce the release of ROS. ROS often causes cell stress and tissue injury, eventually resulting in disorders or diseases of the body through different signaling pathways. Normal metabolism of protein is critically important to maintain cellular function and body health. Brf1 (transcript factor II B-related factor 1) and its target genes, RNA Pol III genes (RNA polymerase III-dependent genes), control the process of protein synthesis. Studies have demonstrated that the deregulation of Brf1 and its target genes is tightly linked to cell proliferation, cell transformation, tumor development, and human cancers, while alcohol, EGF, DEN, and MNNG are able to induce the deregulation of these genes through different signaling pathways. Therefore, it is very important to emphasize the roles of these signaling events mediating the processes of Brf1 and RNA Pol III gene transcription. In the present paper, we mainly summarize our studies on signaling events which mediate the deregulation of these genes in the past dozen years. These studies indicate that Brf1 and RNA Pol III genes are novel biological targets of ROS.
Collapse
Affiliation(s)
- Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, China
| | - Yongluan Lin
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Jarrous N, Mani D, Ramanathan A. Coordination of transcription and processing of tRNA. FEBS J 2021; 289:3630-3641. [PMID: 33929081 DOI: 10.1111/febs.15904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Coordination of transcription and processing of RNA is a basic principle in regulation of gene expression in eukaryotes. In the case of mRNA, coordination is primarily founded on a co-transcriptional processing mechanism by which a nascent precursor mRNA undergoes maturation via cleavage and modification by the transcription machinery. A similar mechanism controls the biosynthesis of rRNA. However, the coordination of transcription and processing of tRNA, a rather short transcript, remains unknown. Here, we present a model for high molecular weight initiation complexes of human RNA polymerase III that assemble on tRNA genes and process precursor transcripts to mature forms. These multifunctional initiation complexes may support co-transcriptional processing, such as the removal of the 5' leader of precursor tRNA by RNase P. Based on this model, maturation of tRNA is predetermined prior to transcription initiation.
Collapse
Affiliation(s)
- Nayef Jarrous
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dhivakar Mani
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aravind Ramanathan
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
7
|
Herrera MC, Chymkowitch P, Robertson JM, Eriksson J, Bøe SO, Alseth I, Enserink JM. Cdk1 gates cell cycle-dependent tRNA synthesis by regulating RNA polymerase III activity. Nucleic Acids Res 2019; 46:11698-11711. [PMID: 30247619 PMCID: PMC6294503 DOI: 10.1093/nar/gky846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 01/14/2023] Open
Abstract
tRNA genes are transcribed by RNA polymerase III (RNAPIII). During recent years it has become clear that RNAPIII activity is strictly regulated by the cell in response to environmental cues and the homeostatic status of the cell. However, the molecular mechanisms that control RNAPIII activity to regulate the amplitude of tDNA transcription in normally cycling cells are not well understood. Here, we show that tRNA levels fluctuate during the cell cycle and reveal an underlying molecular mechanism. The cyclin Clb5 recruits the cyclin dependent kinase Cdk1 to tRNA genes to boost tDNA transcription during late S phase. At tDNA genes, Cdk1 promotes the recruitment of TFIIIC, stimulates the interaction between TFIIIB and TFIIIC, and increases the dynamics of RNA polymerase III in vivo. Furthermore, we identified Bdp1 as a putative Cdk1 substrate in this process. Preventing Bdp1 phosphorylation prevented cell cycle-dependent recruitment of TFIIIC and abolished the cell cycle-dependent increase in tDNA transcription. Our findings demonstrate that under optimal growth conditions Cdk1 gates tRNA synthesis in S phase by regulating the RNAPIII machinery, revealing a direct link between the cell cycle and RNAPIII activity.
Collapse
Affiliation(s)
- Maria C Herrera
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,The Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway
| | - Pierre Chymkowitch
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
| | - Joseph M Robertson
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Eriksson
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Stig Ove Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,The Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway
| |
Collapse
|
8
|
Román-Carraro FC, Florencio-Martínez LE, Romero-Meza G, Nepomuceno-Mejía T, Carrero JC, Arroyo R, Ortega-López J, Manning-Cela RG, Martínez-Calvillo S. TFIIIB Subunit Bdp1 Participates in RNA Polymerase III Transcription in the Protozoan Parasite Leishmania major. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1425281. [PMID: 31058184 PMCID: PMC6463643 DOI: 10.1155/2019/1425281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/13/2019] [Indexed: 01/03/2023]
Abstract
Leishmania major, a protozoan parasite that diverged early from the main eukaryotic lineage, exhibits unusual mechanisms of gene expression. Little is known in this organism about the transcription factors involved in the synthesis of tRNA, 5S rRNA, and snRNAs, transcribed by RNA Polymerase III (Pol III). Here we identify and characterize the TFIIIB subunit Bdp1 in L. major (LmBdp1). Bdp1 plays key roles in Pol III transcription initiation in other organisms, as it participates in Pol III recruitment and promoter opening. In silico analysis showed that LmBdp1 contains the typical extended SANT domain as well as other Bdp1 conserved regions. Nevertheless, LmBdp1 also displays distinctive features, including the presence of only one aromatic residue in the N-linker region. We were not able to produce null mutants of LmBdp1 by homologous recombination, as the obtained double replacement cell line contained an extra copy of LmBdp1, indicating that LmBdp1 is essential for the viability of L. major promastigotes. Notably, the mutant cell line showed reduced levels of the LmBdp1 protein, and its growth was significantly decreased in relation to wild-type cells. Nuclear run-on assays demonstrated that Pol III transcription was affected in the mutant cell line, and ChIP experiments showed that LmBdp1 binds to 5S rRNA, tRNA, and snRNA genes. Thus, our results indicate that LmBdp1 is an essential protein required for Pol III transcription in L. major.
Collapse
Affiliation(s)
- Fiordaliso C. Román-Carraro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, Mexico
| | - Luis E. Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, Mexico
| | - Gabriela Romero-Meza
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, Mexico
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, Mexico
| | - Julio C. Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de México, CP 07360, Mexico
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de México, CP 07360, Mexico
| | - Rebeca G. Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de México, CP 07360, Mexico
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, Mexico
| |
Collapse
|
9
|
Wang F, Zhao K, Yu S, Xu A, Han W, Mei Y. RNF12 catalyzes BRF1 ubiquitination and regulates RNA polymerase III-dependent transcription. J Biol Chem 2018; 294:130-141. [PMID: 30413534 DOI: 10.1074/jbc.ra118.004524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
RNA polymerase III (Pol III) is responsible for the production of small noncoding RNA species, including tRNAs and 5S rRNA. Pol III-dependent transcription is generally enhanced in transformed cells and tumors, but the underlying mechanisms remain not well-understood. It has been demonstrated that the BRF1 subunit of TFIIIB is essential for the accurate initiation of Pol III-dependent transcription. However, it is not known whether BRF1 undergoes ubiquitin modification and whether BRF1 ubiquitination regulates Pol III-dependent transcription. Here, we show that RNF12, a RING domain-containing ubiquitin E3 ligase, physically interacts with BRF1. Via direct interaction, RNF12 catalyzes Lys27- and Lys33-linked polyubiquitination of BRF1. Furthermore, RNF12 is able to negatively regulate Pol III-dependent transcription and cell proliferation via BRF1. These findings uncover a novel mechanism for the regulation of BRF1 and reveal RNF12 as an important regulator of Pol III-dependent transcription.
Collapse
Affiliation(s)
- Fang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Kailiang Zhao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Sixiang Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - An Xu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Yide Mei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
10
|
Graczyk D, Cieśla M, Boguta M. Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:320-329. [DOI: 10.1016/j.bbagrm.2018.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 01/03/2023]
|
11
|
Willis IM, Moir RD. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery. Annu Rev Biochem 2018; 87:75-100. [PMID: 29328783 DOI: 10.1146/annurev-biochem-062917-012624] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA polymerase (Pol) III has a specialized role in transcribing the most abundant RNAs in eukaryotic cells, transfer RNAs (tRNAs), along with other ubiquitous small noncoding RNAs, many of which have functions related to the ribosome and protein synthesis. The high energetic cost of producing these RNAs and their central role in protein synthesis underlie the robust regulation of Pol III transcription in response to nutrients and stress by growth regulatory pathways. Downstream of Pol III, signaling impacts posttranscriptional processes affecting tRNA function in translation and tRNA cleavage into smaller fragments that are increasingly attributed with novel cellular activities. In this review, we consider how nutrients and stress control Pol III transcription via its factors and its negative regulator, Maf1. We highlight recent work showing that the composition of the tRNA population and the function of individual tRNAs is dynamically controlled and that unrestrained Pol III transcription can reprogram central metabolic pathways.
Collapse
Affiliation(s)
- Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , .,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; ,
| |
Collapse
|
12
|
WITHDRAWN: Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Lei J, Chen S, Zhong S. Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017; 1:112-120. [PMID: 29276645 PMCID: PMC5739085 DOI: 10.1016/j.livres.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The levels of the products of RNA polymerase III-dependent genes (Pol III genes), including tRNAs and 5S rRNA, are elevated in transformed and tumor cells, which potentiate tumorigenesis. TFIIB-related factor 1 (Brf1) is a key transcription factor and specifically regulates the transcription of Pol III genes. In vivo and in vitro studies have demonstrated that a decrease in Brf1 reduces Pol III gene transcription and is sufficient for inhibiting cell transformation and tumor formation. Emerging evidence indicates that dysregulation of Brf1 and Pol III genes is linked to the development of hepatocellular carcinoma (HCC) in humans and animals. We have reported that Brf1 is overexpressed in human liver cancer patients and that those with high Brf1 levels have shorter survivals. This review summarizes the effects of dysregulation of these genes on HCC and their regulation by signaling pathways and epigenetics. These novel data should help us determine the molecular mechanisms of HCC from a different perspective and guide the development of therapeutic approaches for HCC patients.
Collapse
Affiliation(s)
- Junxia Lei
- School of medicine, South china university of technology, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Songlin Chen
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Corresponding author. Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. (S. Zhong)
| |
Collapse
|
14
|
Gouge J, Guthertz N, Kramm K, Dergai O, Abascal-Palacios G, Satia K, Cousin P, Hernandez N, Grohmann D, Vannini A. Molecular mechanisms of Bdp1 in TFIIIB assembly and RNA polymerase III transcription initiation. Nat Commun 2017; 8:130. [PMID: 28743884 PMCID: PMC5526994 DOI: 10.1038/s41467-017-00126-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Initiation of gene transcription by RNA polymerase (Pol) III requires the activity of TFIIIB, a complex formed by Brf1 (or Brf2), TBP (TATA-binding protein), and Bdp1. TFIIIB is required for recruitment of Pol III and to promote the transition from a closed to an open Pol III pre-initiation complex, a process dependent on the activity of the Bdp1 subunit. Here, we present a crystal structure of a Brf2-TBP-Bdp1 complex bound to DNA at 2.7 Å resolution, integrated with single-molecule FRET analysis and in vitro biochemical assays. Our study provides a structural insight on how Bdp1 is assembled into TFIIIB complexes, reveals structural and functional similarities between Bdp1 and Pol II factors TFIIA and TFIIF, and unravels essential interactions with DNA and with the upstream factor SNAPc. Furthermore, our data support the idea of a concerted mechanism involving TFIIIB and RNA polymerase III subunits for the closed to open pre-initiation complex transition.Transcription initiation by RNA polymerase III requires TFIIIB, a complex formed by Brf1/Brf2, TBP and Bdp1. Here, the authors describe the crystal structure of a Brf2-TBP-Bdp1 complex bound to a DNA promoter and characterize the role of Bdp1 in TFIIIB assembly and pre-initiation complex formation.
Collapse
Affiliation(s)
- Jerome Gouge
- The Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Kevin Kramm
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, University of Regensburg, 93053, Regensburg, Germany
| | - Oleksandr Dergai
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | | | | | - Pascal Cousin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Dina Grohmann
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, University of Regensburg, 93053, Regensburg, Germany
| | | |
Collapse
|
15
|
A new role of GCN2 in the nucleolus. Biochem Biophys Res Commun 2017; 485:484-491. [DOI: 10.1016/j.bbrc.2017.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 01/06/2023]
|
16
|
Lin F, Cao SB, Ma XS, Sun HX. Inhibition of casein kinase 2 blocks G 2/M transition in early embryo mitosis but not in oocyte meiosis in mouse. J Reprod Dev 2017; 63:319-324. [PMID: 28367932 PMCID: PMC5481635 DOI: 10.1262/jrd.2016-064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Casein kinase 2 (CK2) is a highly conserved, ubiquitously expressed serine/threonine protein kinase with hundreds of substrates. The role of CK2 in the G2/M transition of oocytes, zygotes, and 2-cell embryos was studied in mouse by enzyme activity inhibition using the specific inhibitor 4, 5, 6, 7-tetrabromobenzotriazole (TBB). Zygotes and 2-cell embryos were arrested at G2 phase by TBB treatment, and DNA damage was increased in the female pronucleus of arrested zygotes. Further developmental ability of arrested zygotes was reduced, but that of arrested 2-cell embryos was not affected after releasing from inhibition. By contrast, the G2/M transition in oocytes was not affected by TBB. These results indicate that CK2 activity is essential for mitotic G2/M transition in early embryos but not for meiotic G2/M transition in oocytes.
Collapse
Affiliation(s)
- Fei Lin
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shi-Bing Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Shan Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Xiang Sun
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
17
|
Helbo AS, Lay FD, Jones PA, Liang G, Grønbæk K. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters. Sci Rep 2017; 7:41947. [PMID: 28176797 PMCID: PMC5296907 DOI: 10.1038/srep41947] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022] Open
Abstract
Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide.
Collapse
Affiliation(s)
- Alexandra Søgaard Helbo
- Department of Hematology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Fides D Lay
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA
| | - Peter A Jones
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA.,Van Andel Research Institute, Grand Rapids, 49503, USA
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
18
|
Wei Y, Xu J, Zhang W, Wen Z, Liu F. RNA polymerase III component Rpc9 regulates hematopoietic stem and progenitor cell maintenance in zebrafish. Development 2016; 143:2103-10. [DOI: 10.1242/dev.126797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 04/25/2016] [Indexed: 12/18/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are capable of self-renewal and replenishing all lineages of blood cells throughout the lifetime and thus critical for tissue homeostasis. However, the mechanism regulating HSPC development is still incompletely understood. Here, we isolate a zebrafish mutant with defective T lymphopoiesis and positional cloning identifies that Rpc9, a component of DNA-directed RNA polymerase III (Pol III) complex, is responsible for the mutant phenotype. Further analysis shows that rpc9-deficiency leads to the impairment of HSPCs and their derivatives in zebrafish embryos. Excessive apoptosis is observed in the caudal hematopoietic tissue (CHT, the equivalent of fetal liver in mammals) of rpc9−/− embryos and the hematopoietic defects in rpc9−/− embryos can be fully rescued by suppression of p53. Thus, our work illustrate that Rpc9, a component of Pol III, plays an important tissue-specific role in HSPC maintenance during zebrafish embryogenesis and that it might be conserved across vertebrates including mammals.
Collapse
Affiliation(s)
- Yonglong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Xu
- State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, China
| | - Zilong Wen
- State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
19
|
Lou G, Ma N, Xu Y, Jiang L, Yang J, Wang C, Jiao Y, Gao X. Differential distribution of U6 (RNU6-1) expression in human carcinoma tissues demonstrates the requirement for caution in the internal control gene selection for microRNA quantification. Int J Mol Med 2015; 36:1400-8. [PMID: 26352225 DOI: 10.3892/ijmm.2015.2338] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/24/2015] [Indexed: 11/06/2022] Open
Abstract
Alterations in microRNA (miRNA) expression patterns have been associated with a number of human diseases. Accurate quantitation of miRNA levels is important for their use as biomarkers and in determining their functions. Although the issue of proper miRNA detection was solved with the introduction of standard reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) assays, numerous issues with the selection of appropriate internal control genes remain. U6 (RNU6‑1) snRNA, the most commonly used internal control gene in miRNA RT‑qPCR assays, was shown to be unstable in clinical samples, particularly cancer tissues. Identification of the distribution of U6 in different tissues is the premise of more accurate quantification of miRNAs. However, the distribution of U6 in human carcinoma tissues and corresponding normal tissues is unknown. In the present study, U6 levels were significantly higher in human breast carcinoma tissues compared with the corresponding normal tissues by RT‑qPCR. In the carcinoma or corresponding adjacent normal tissues, the expression levels of U6 in epithelial cells were higher than those in the mesenchymal cells. Furthermore, the expression levels of U6 in the carcinoma tissues of the liver and intrahepatic bile ducts were higher than those in the adjacent normal tissues. These results suggest that the expression and distribution of U6 exhibits a high degree of variability among several types of human cells. Therefore, caution is required when selecting U6 as an internal control gene for evaluating expression profiles of miRNAs in patients with carcinoma, particularly carcinoma of the liver and intrahepatic bile ducts.
Collapse
Affiliation(s)
- Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P.R. China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, P.R. China
| | - Ya Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, P.R. China
| | - Lei Jiang
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P.R. China
| | - Jing Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, P.R. China
| | - Chuxuan Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, P.R. China
| | - Yufei Jiao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P.R. China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, P.R. China
| |
Collapse
|
20
|
A Region of Bdp1 Necessary for Transcription Initiation That Is Located within the RNA Polymerase III Active Site Cleft. Mol Cell Biol 2015; 35:2831-40. [PMID: 26055328 DOI: 10.1128/mcb.00263-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/01/2015] [Indexed: 02/02/2023] Open
Abstract
The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf1, consistent with the findings of previous studies. In addition, we identified an essential N-terminal region that cross-linked with the Pol III catalytic subunit C128 as well as Brf1. Closer examination revealed that this region interacted with the C128 N-terminal region, the N-terminal half of Brf1, and the C-terminal domain of the C37 subunit, together positioning this region within the active site cleft of the preinitiation complex. With our functional data, our analyses identified an essential region of Bdp1 that is positioned within the active site cleft of Pol III and necessary for transcription initiation.
Collapse
|
21
|
Lee J, Moir RD, Willis IM. Differential Phosphorylation of RNA Polymerase III and the Initiation Factor TFIIIB in Saccharomyces cerevisiae. PLoS One 2015; 10:e0127225. [PMID: 25970584 PMCID: PMC4430316 DOI: 10.1371/journal.pone.0127225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/13/2015] [Indexed: 11/19/2022] Open
Abstract
The production of ribosomes and tRNAs for protein synthesis has a high energetic cost and is under tight transcriptional control to ensure that the level of RNA synthesis is balanced with nutrient availability and the prevailing environmental conditions. In the RNA polymerase (pol) III system in yeast, nutrients and stress affect transcription through a bifurcated signaling pathway in which protein kinase A (PKA) and TORC1 activity directly or indirectly, through downstream kinases, alter the phosphorylation state and function of the Maf1 repressor and Rpc53, a TFIIF-like subunit of the polymerase. However, numerous lines of evidence suggest greater complexity in the regulatory network including the phosphoregulation of other pol III components. To address this issue, we systematically examined all 17 subunits of pol III along with the three subunits of the initiation factor TFIIIB for evidence of differential phosphorylation in response to inhibition of TORC1. A relatively high stoichiometry of phosphorylation was observed for several of these proteins and the Rpc82 subunit of the polymerase and the Bdp1 subunit of TFIIIB were found to be differentially phosphorylated. Bdp1 is phosphorylated on four major sites during exponential growth and the protein is variably dephosphorylated under conditions that inhibit tRNA gene transcription. PKA, the TORC1-regulated kinase Sch9 and protein kinase CK2 are all implicated in the phosphorylation of Bdp1. Alanine substitutions at the four phosphosites cause hyper-repression of transcription indicating that phosphorylation of Bdp1 opposes Maf1-mediated repression. The new findings suggest an integrated regulatory model for signaling events controlling pol III transcription.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (RDM); (IMW)
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (RDM); (IMW)
| |
Collapse
|
22
|
Sanchez-Casalongue ME, Lee J, Diamond A, Shuldiner S, Moir RD, Willis IM. Differential phosphorylation of a regulatory subunit of protein kinase CK2 by target of rapamycin complex 1 signaling and the Cdc-like kinase Kns1. J Biol Chem 2015; 290:7221-33. [PMID: 25631054 DOI: 10.1074/jbc.m114.626523] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcriptional regulation of ribosome and tRNA synthesis plays a central role in determining protein synthetic capacity and is tightly controlled in response to nutrient availability and cellular stress. In Saccharomyces cerevisiae, the regulation of ribosome and tRNA synthesis was recently shown to involve the Cdc-like kinase Kns1 and the GSK-3 kinase Mck1. In this study, we explored additional roles for these conserved kinases in processes connected to the target of rapamycin complex 1 (TORC1). We conducted a synthetic chemical-genetic screen in a kns1Δ mck1Δ strain and identified many novel rapamycin-hypersensitive genes. Gene ontology analysis showed enrichment for TORC1-regulated processes (vesicle-mediated transport, autophagy, and regulation of cell size) and identified new connections to protein complexes including the protein kinase CK2. CK2 is considered to be a constitutively active kinase and in budding yeast, the holoenzyme comprises two regulatory subunits, Ckb1 and Ckb2, and two catalytic subunits, Cka1 and Cka2. We show that Ckb1 is differentially phosphorylated in vivo and that Kns1 mediates this phosphorylation when nutrients are limiting and under all tested stress conditions. We determined that the phosphorylation of Ckb1 does not detectably affect the stability of the CK2 holoenzyme but correlates with the reduced occupancy of Ckb1 on tRNA genes after rapamycin treatment. Thus, the differential occupancy of tRNA genes by CK2 is likely to modulate its activation of RNA polymerase III transcription. Our data suggest that TORC1, via its effector kinase Kns1, may regulate the association of CK2 with some of its substrates by phosphorylating Ckb1.
Collapse
Affiliation(s)
| | | | | | | | | | - Ian M Willis
- From the Departments of Biochemistry and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
23
|
Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA. Proc Natl Acad Sci U S A 2013; 110:20681-6. [PMID: 24297901 DOI: 10.1073/pnas.1313097110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.
Collapse
|
24
|
Abstract
SIGNIFICANCE Both transfer RNA (tRNA) and cytochrome c are essential molecules for the survival of cells. tRNA decodes mRNA codons into amino-acid-building blocks in protein in all organisms, whereas cytochrome c functions in the electron transport chain that powers ATP synthesis in mitochondrion-containing eukaryotes. Additionally, in vertebrates, cytochrome c that is released from mitochondria is a potent inducer of apoptosis, activating apoptotic proteins (caspases) in the cytoplasm to dismantle cells. A better understanding of both tRNA and cytochrome c is essential for an insight into the regulation of cell life and death. RECENT ADVANCES A recent study showed that the mitochondrion-released cytochrome c can be removed from the cell-death pathway by tRNA molecules. The direct binding of cytochrome c by tRNA provides a mechanism for tRNA to regulate cell death, beyond its role in gene expression. CRITICAL ISSUES The nature of the tRNA-cytochrome c binding interaction remains unknown. The questions of how this interaction affects tRNA function, cellular metabolism, and apoptotic sensitivity are unanswered. FUTURE DIRECTIONS Investigations into the critical issues raised above will improve the understanding of tRNA in the fundamental processes of cell death and metabolism. Such knowledge will inform therapies in cell death-related diseases.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
25
|
Mroczek S, Dziembowski A. U6 RNA biogenesis and disease association. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:581-92. [PMID: 23776162 DOI: 10.1002/wrna.1181] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/15/2022]
Abstract
U6 snRNA is one of five uridine-rich noncoding RNAs that form the major spliceosome complex. Unlike other U-snRNAs, it reveals many distinctive aspects of biogenesis such as transcription by RNA polymerase III, transcript nuclear retention and particular features of transcript ends: monomethylated 5'-guanosine triphosphate as cap structure and a 2',3'-cyclic phosphate moiety (>P) at the 3' termini. U6-snRNA plays a central role in splicing and thus its transcription, maturation, snRNP formation, and recycling are essential for cellular homeostasis. U6 snRNA enters the splicing cycle as part of the tri-U4/U6.U5snRNP complex, and after significant structural arrangements forms the catalytic site of the spliceosome together with U2 snRNA and Prp8. U6 snRNA also contributes to the splicing reaction by coordinating metal cations required for catalysis. Many human diseases are associated with altered splicing processes. Disruptions of the basal splicing machinery can be lethal or lead to severe diseases such as spinal muscular atrophy, amyotrophic lateral sclerosis, or retinitis pigmentosa. Recent studies have identified a new U6 snRNA biogenesis factor Usb1, the absence of which leads to poikiloderma with neutropenia (PN) (OMIM 604173), an autosomal recessive skin disease. Usb1 is an evolutionarily conserved 3'→5' exoribonuclease that is responsible for removing 3'-terminal uridines from U6 snRNA transcripts, which leads to the formation of a 2',3' cyclic phosphate moiety (>P). This maturation step is fundamental for U6 snRNP assembly and recycling. Usb1 represents the first example of a direct association between a spliceosomal U6 snRNA biogenesis factor and human genetic disease.
Collapse
Affiliation(s)
- Seweryn Mroczek
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
26
|
Gjidoda A, Henry RW. RNA polymerase III repression by the retinoblastoma tumor suppressor protein. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:385-92. [PMID: 23063750 PMCID: PMC3549324 DOI: 10.1016/j.bbagrm.2012.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 12/29/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein regulates multiple pathways that influence cell growth, and as a key regulatory node, its function is inactivated in most cancer cells. In addition to its canonical roles in cell cycle control, RB functions as a global repressor of RNA polymerase (Pol) III transcription. Indeed, Pol III transcripts accumulate in cancer cells and their heightened levels are implicated in accelerated growth associated with RB dysfunction. Herein we review the mechanisms of RB repression for the different types of Pol III genes. For type 1 and type 2 genes, RB represses transcription through direct contacts with the core transcription machinery, notably Brf1-TFIIIB, and inhibits preinitiation complex formation and Pol III recruitment. A contrasting model for type 3 gene repression indicates that RB regulation involves stable and simultaneous promoter association by RB, the general transcription machinery including SNAPc, and Pol III, suggesting that RB may impede Pol III promoter escape or elongation. Interestingly, analysis of published genomic association data for RB and Pol III revealed added regulatory complexity for Pol III genes both during active growth and during arrested growth associated with quiescence and senescence. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alison Gjidoda
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| |
Collapse
|
27
|
Maf1, a general negative regulator of RNA polymerase III in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23201230 DOI: 10.1016/j.bbagrm.2012.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
tRNA synthesis by yeast RNA polymerase III (Pol III) is down-regulated under growth-limiting conditions. This control is mediated by Maf1, a global negative regulator of Pol III transcription. Conserved from yeast to man, Maf1 was originally discovered in Saccharomyces cerevisiae by a genetic approach. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from the recently reported structural and biochemical data on Pol III and Maf1. The phosphorylation status of Maf1 determines its nuclear localization and interaction with the Pol III complex and several Maf1 kinases have been identified to be involved in Pol III control. Moreover, Maf1 indirectly affects tRNA maturation and decay. Here I discuss the current understanding of the mechanisms that oversee the Maf1-mediated regulation of Pol III activity and the role of Maf1 in the control of tRNA biosynthesis in yeast. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
28
|
Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:361-75. [PMID: 23165150 DOI: 10.1016/j.bbagrm.2012.11.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 12/29/2022]
Abstract
Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
29
|
James Faresse N, Canella D, Praz V, Michaud J, Romascano D, Hernandez N. Genomic study of RNA polymerase II and III SNAPc-bound promoters reveals a gene transcribed by both enzymes and a broad use of common activators. PLoS Genet 2012; 8:e1003028. [PMID: 23166507 PMCID: PMC3499247 DOI: 10.1371/journal.pgen.1003028] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/24/2012] [Indexed: 12/23/2022] Open
Abstract
SNAPc is one of a few basal transcription factors used by both RNA polymerase (pol) II and pol III. To define the set of active SNAPc-dependent promoters in human cells, we have localized genome-wide four SNAPc subunits, GTF2B (TFIIB), BRF2, pol II, and pol III. Among some seventy loci occupied by SNAPc and other factors, including pol II snRNA genes, pol III genes with type 3 promoters, and a few un-annotated loci, most are primarily occupied by either pol II and GTF2B, or pol III and BRF2. A notable exception is the RPPH1 gene, which is occupied by significant amounts of both polymerases. We show that the large majority of SNAPc-dependent promoters recruit POU2F1 and/or ZNF143 on their enhancer region, and a subset also recruits GABP, a factor newly implicated in SNAPc-dependent transcription. These activators associate with pol II and III promoters in G1 slightly before the polymerase, and ZNF143 is required for efficient transcription initiation complex assembly. The results characterize a set of genes with unique properties and establish that polymerase specificity is not absolute in vivo. SNAPc-dependent promoters are unique among cellular promoters in being very similar to each other, even though some of them recruit RNA polymerase II and others RNA polymerase III. We have examined all SNAPc-bound promoters present in the human genome. We find a surprisingly small number of them, some 70 promoters. Among these, the large majority is bound by either RNA polymerase II or RNA polymerase III, as expected, but one gene hitherto considered an RNA polymerase III gene is also occupied by significant levels of RNA polymerase II. Both RNA polymerase II and RNA polymerase III SNAPc-dependent promoters use a largely overlapping set of a few transcription activators, including GABP, a novel factor implicated in snRNA gene transcription.
Collapse
Affiliation(s)
- Nicole James Faresse
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joëlle Michaud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - David Romascano
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
30
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
31
|
Moir RD, Lee J, Willis IM. Recovery of RNA polymerase III transcription from the glycerol-repressed state: revisiting the role of protein kinase CK2 in Maf1 phosphoregulation. J Biol Chem 2012; 287:30833-41. [PMID: 22810236 DOI: 10.1074/jbc.m112.378828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maf1 is a conserved regulator of RNA polymerase (pol) III transcription and is required for transcriptional repression under diverse stress conditions. In yeast, Maf1 function is negatively regulated at seven phosphosites by the overlapping action of protein kinase A (PKA) and the TORC1-regulated kinase Sch9. Under stress conditions, Maf1 is dephosphorylated at these sites leading to its nuclear accumulation, increased association with pol III genes and direct physical interactions with the polymerase which ultimately inhibit transcription. These changes are reversed upon return to optimal growth conditions. Transcription in this system is also regulated by protein kinase CK2. CK2 stimulates pol III transcription in yeast and human cells via phosphorylation of the initiation factor TFIIIB. Recently it was proposed that CK2 phosphorylation of Maf1 is required for reactivation of pol III transcription following growth on glycerol. We have examined this hypothesis using two Maf1 mutants (Maf1-id S388A and Maf1-ck2(0)) which lack all of the CK2 phosphosites implicated in the response. Both mutant proteins are phosphoregulated, function normally during repression and transcription is fully restored to the wild-type level upon transfer from glycerol to glucose. Additionally, phos-tag gel analysis of Maf1 7SA, a functional mutant that cannot be phosphorylated by PKA/Sch9, did not reveal any evidence for differential phosphorylation of Maf1 during carbon source switching. Together, these data do not support the proposed requirement for CK2 phosphorylation of Maf1 during derepression of pol III transcription.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
32
|
Fairley JA, Mitchell LE, Berg T, Kenneth NS, von Schubert C, Silljé HHW, Medema RH, Nigg EA, White RJ. Direct regulation of tRNA and 5S rRNA gene transcription by Polo-like kinase 1. Mol Cell 2012; 45:541-52. [PMID: 22281053 DOI: 10.1016/j.molcel.2011.11.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/27/2011] [Accepted: 11/23/2011] [Indexed: 12/29/2022]
Abstract
Polo-like kinase Plk1 controls numerous aspects of cell-cycle progression. We show that it associates with tRNA and 5S rRNA genes and regulates their transcription by RNA polymerase III (pol III) through direct binding and phosphorylation of transcription factor Brf1. During interphase, Plk1 promotes tRNA and 5S rRNA expression by phosphorylating Brf1 directly on serine 450. However, this stimulatory modification is overridden at mitosis, when elevated Plk1 activity causes Brf1 phosphorylation on threonine 270 (T270), which prevents pol III recruitment. Thus, although Plk1 enhances net tRNA and 5S rRNA production, consistent with its proliferation-stimulating function, it also suppresses untimely transcription when cells divide. Genomic instability is apparent in cells with Brf1 T270 mutated to alanine to resist Plk1-directed inactivation, suggesting that chromosome segregation is vulnerable to inappropriate pol III activity.
Collapse
Affiliation(s)
- Jennifer A Fairley
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Selvakumar T, Gjidoda A, Hovde SL, Henry RW. Regulation of human RNA polymerase III transcription by DNMT1 and DNMT3a DNA methyltransferases. J Biol Chem 2012; 287:7039-50. [PMID: 22219193 DOI: 10.1074/jbc.m111.285601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human small nuclear RNA (snRNA) and small cytoplasmic RNA (scRNA) gene families encode diverse non-coding RNAs that influence cellular growth and division. Many snRNA and scRNA genes are related via their compact and yet powerful promoters that support RNA polymerase III transcription. We have utilized the human U6 snRNA gene family to examine the mechanism for regulated transcription of these potent transcription units. Analysis of nine U6 family members showed enriched CpG density within the promoters of actively transcribed loci relative to inert genes, implying a relationship between gene potency and DNA methylation. Indeed, both pharmacological inhibition of DNA methyltransferase (DNMT) activity and the forced diminution of DNMT-1, DNMT-3a, and DNMT-3b by siRNA targeting resulted in increased U6 levels in asynchronously growing MCF7 adenocarcinoma cells. In vitro transcription assays further showed that template methylation impedes U6 transcription by RNA polymerase III. Both DNMT-1 and DNMT-3a were detected at the U6-1 locus by chromatin immunoprecipitation directly linking these factors to RNA polymerase III regulation. Despite this association, the endogenous U6-1 locus was not substantially methylated in actively growing cells. However, both DNMT occupancy and low frequency methylation were correlated with increased Retinoblastoma tumor suppressor (RB) expression, suggesting that the RB status can influence specific epigenetic marks.
Collapse
Affiliation(s)
- Tharakeswari Selvakumar
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
34
|
RNA polymerase III under control: repression and de-repression. Trends Biochem Sci 2011; 36:451-6. [PMID: 21816617 DOI: 10.1016/j.tibs.2011.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/17/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
The synthesis of tRNA by yeast RNA polymerase III (Pol III) is regulated in response to changing environmental conditions. This control is mediated by Maf1, the global negative regulator of Pol III transcription conserved from yeast to humans. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from recently reported structural and biochemical data on Pol III and Maf1. Efficient Pol III transcription, following the shift of cells from a non-fermentable carbon source to glucose, requires phosphorylation of Maf1. One of the newly identified Maf1 kinases is the chromatin-bound casein kinase II (CK2). Current studies have allowed us to propose an innovative mechanism of Pol III regulation. We suggest that CK2-mediated phosphorylation of Maf1, occurring directly on tDNA chromatin, controls Pol III recycling.
Collapse
|
35
|
Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation. Proc Natl Acad Sci U S A 2011; 108:4926-31. [PMID: 21383183 DOI: 10.1073/pnas.1010010108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maf1 protein is a global negative regulator of RNA polymerase (Pol) III transcription conserved from yeast to man. We report that phosphorylation of Maf1 by casein kinase II (CK2), a highly evolutionarily conserved eukaryotic kinase, is required for efficient Pol III transcription. Both recombinant human and yeast CK2 were able to phosphorylate purified human or yeast Maf1, indicating that Maf1 can be a direct substrate of CK2. Upon transfer of Saccharomyces cerevisiae from repressive to favorable growth conditions, CK2 activity is required for the release of Maf1 from Pol III bound to a tRNA gene and for subsequent activation of tRNA transcription. In a yeast strain lacking Maf1, CK2 inhibition showed no effect on tRNA synthesis, confirming that CK2 activates Pol III via Maf1. Additionally, CK2 was found to associate with tRNA genes, and this association is enhanced in absence of Maf1, especially under repressive conditions. These results corroborate the previously reported TFIIIB-CK2 interaction and indicate an important role of CK2-mediated Maf1 phosphorylation in triggering Pol III activation.
Collapse
|
36
|
Cabarcas S, Watabe K, Schramm L. Inhibition of U6 snRNA Transcription by PTEN. ONLINE JOURNAL OF BIOLOGICAL SCIENCES 2010; 10:114-125. [PMID: 21479160 PMCID: PMC3071578 DOI: 10.3844/ojbsci.2010.114.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PROBLEM STATEMENT: RNA polymerase III (RNA pol III) is responsible for transcribing many of the small structural RNA molecules involved in RNA processing and protein translation, thereby regulating the growth rate of a cell. RNA pol III transcribes both gene internal (tRNA) and gene external (U6 snRNA) promoters and proper initiation by RNA polymerase III requires the transcription initiation factor TFIIIB. TFIIIB has been shown to be a target of repression by tumor suppressors such as ARF, p53, RB and the RB-related pocket proteins. Also, TFIIIB activity is stimulated by the oncogenes c-Myc and the ERK mitogen-activated protein kinase. Recently, two TFIIIB subunits, BRF1 and BRF2, have been demonstrated to behave as oncogenes, making deregulation of TFIIIB activity and thus RNA pol III transcription an important step in tumor development. PTEN is a commonly mutated tumor suppressor regulating cell growth, proliferation and survival. Thus, we sought to examine the potential role of PTEN in regulating U6 snRNA transcription. APPROACH: We examined the potential for PTEN to regulate U6 snRNA transcription using in vitro RNA pol III luciferase assays, western blotting and deletion analysis in cancer cell lines differing in their PTEN status. RESULTS: Using breast, cervical, prostate and glioblastoma cancer cells we demonstrate: (1) PTEN inhibition of gene external RNA pol III transcription is cell type specific, (2) PTEN-mediated inhibition of U6 transcription occurs via the C2 lipid-binding domain and (3) PTEN repression of U6 transcription occurs, at least in part, through the TFIIIB subunit BRF2. CONCLUSION/RECOMMENDATIONS: Our data demonstrates that regulation of the U6 snRNA gene by PTEN is mediated, in part by the TFIIIB oncogene BRF2, potentially identifying novel targets for chemotherapeutic drug design.
Collapse
Affiliation(s)
- Stephanie Cabarcas
- Department of Biological Sciences, St. John's University, Queens, New York 11439
| | | | | |
Collapse
|
37
|
Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 2010; 9:3687-99. [PMID: 20890107 DOI: 10.4161/cc.9.18.13203] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, Pessac, France
| | | | | | | | | |
Collapse
|
38
|
Mahoney SJ, Dempsey JM, Blenis J. Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:53-107. [PMID: 20374739 DOI: 10.1016/s1877-1173(09)90002-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein synthesis is a highly energy-consuming process that must be tightly regulated. Signal transduction cascades respond to extracellular and intracellular cues to phosphorylate proteins involved in ribosomal biogenesis and translation initiation and elongation. These phosphorylation events regulate the timing and rate of translation of both specific and total mRNAs. Alterations in this regulation can result in dysfunction and disease. While many signaling pathways intersect to control protein synthesis, the mTOR and MAPK pathways appear to be key players. This chapter briefly reviews the mTOR and MAPK pathways and then focuses on individual phosphorylation events that directly control ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Sarah J Mahoney
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
39
|
The JNKs differentially regulate RNA polymerase III transcription by coordinately modulating the expression of all TFIIIB subunits. Proc Natl Acad Sci U S A 2009; 106:12682-7. [PMID: 19620725 DOI: 10.1073/pnas.0904843106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA polymerase (pol) III-dependent transcription is subject to stringent regulation by tumor suppressors and oncogenic proteins and enhanced RNA pol III transcription is essential for cellular transformation and tumorigenesis. Since the c-Jun N-terminal kinases (JNKs) display both oncogenic and tumor suppressor properties, the roles of these proteins in regulating RNA pol III transcription were examined. In both mouse and human cells, loss or reduction in JNK1 expression represses RNA pol III transcription. In contrast, loss or reduction in JNK2 expression induces transcription. The JNKs coordinately regulate expression of all 3 TFIIIB subunits. While JNK1 positively regulates TBP expression, the RNA pol III-specific factors, Brf1 and Bdp1, JNK2 negatively regulates their expression. Brf1 is coregulated with TBP through the JNK target, Elk-1. Reducing Elk-1 expression decreases Brf1 expression. Decreasing JNK1 expression reduces Elk-1 occupancy at the Brf1 promoter, while decreasing JNK2 expression enhances recruitment of Elk-1 to the Brf1 promoter. In contrast, regulation of Bdp1 occurs through JNK-mediated alterations in TBP expression. Altered TBP expression mimics the effect of reduced JNK1 or JNK2 levels on Bdp1 expression. Decreasing JNK1 expression reduces the occupancy of TBP at the Bdp1 promoter, while decreasing JNK2 expression enhances recruitment of TBP to the Bdp1 promoter. Together, these results provide a molecular mechanism for regulating RNA pol III transcription through the coordinate control of TFIIIB subunit expression and elucidate opposing functions for the JNKs in regulating a large class of genes that dictate the biosynthetic capacity of cells.
Collapse
|
40
|
Jawdekar GW, Henry RW. Transcriptional regulation of human small nuclear RNA genes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:295-305. [PMID: 18442490 PMCID: PMC2684849 DOI: 10.1016/j.bbagrm.2008.04.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/06/2023]
Abstract
The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated.
Collapse
Affiliation(s)
- Gauri W. Jawdekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
41
|
PTEN represses RNA polymerase III-dependent transcription by targeting the TFIIIB complex. Mol Cell Biol 2008; 28:4204-14. [PMID: 18391023 DOI: 10.1128/mcb.01912-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PTEN, a tumor suppressor whose function is frequently lost in human cancers, possesses a lipid phosphatase activity that represses phosphatidylinositol 3-kinase (PI3K) signaling, controlling cell growth, proliferation, and survival. The potential for PTEN to regulate the synthesis of RNA polymerase (Pol) III transcription products, including tRNAs and 5S rRNAs, was evaluated. The expression of PTEN in PTEN-deficient cells repressed RNA Pol III transcription, whereas decreased PTEN expression enhanced transcription. Transcription repression by PTEN was uncoupled from PTEN-mediated effects on the cell cycle and was independent of p53. PTEN acts through its lipid phosphatase activity, inhibiting the PI3K/Akt/mTOR/S6K pathway to decrease transcription. PTEN, through the inactivation of mTOR, targets the TFIIIB complex, disrupting the association between TATA-binding protein and Brf1. Kinetic analysis revealed that PTEN initially induces a decrease in the serine phosphorylation of Brf1, leading to a selective reduction in the occupancy of all TFIIIB subunits on tRNA(Leu) genes, whereas prolonged PTEN expression results in the enhanced serine phosphorylation of Bdp1. Together, these results demonstrate a new class of genes regulated by PTEN through its ability to repress the activation of PI3K/Akt/mTOR/S6K signaling.
Collapse
|
42
|
Yee NS, Gong W, Huang Y, Lorent K, Dolan AC, Maraia RJ, Pack M. Mutation of RNA Pol III subunit rpc2/polr3b Leads to Deficiency of Subunit Rpc11 and disrupts zebrafish digestive development. PLoS Biol 2007; 5:e312. [PMID: 18044988 PMCID: PMC2229849 DOI: 10.1371/journal.pbio.0050312] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 09/26/2007] [Indexed: 11/18/2022] Open
Abstract
The role of RNA polymerase III (Pol III) in developing vertebrates has not been examined. Here, we identify a causative mutation of the second largest Pol III subunit, polr3b, that disrupts digestive organ development in zebrafish slim jim (slj) mutants. The slj mutation is a splice-site substitution that causes deletion of a conserved tract of 41 amino acids in the Polr3b protein. Structural considerations predict that the slj Pol3rb deletion might impair its interaction with Polr3k, the ortholog of an essential yeast Pol III subunit, Rpc11, which promotes RNA cleavage and Pol III recycling. We engineered Schizosaccharomyces pombe to carry an Rpc2 deletion comparable to the slj mutation and found that the Pol III recovered from this rpc2-delta yeast had markedly reduced levels of Rpc11p. Remarkably, overexpression of cDNA encoding the zebrafish rpc11 ortholog, polr3k, rescued the exocrine defects in slj mutants, indicating that the slj phenotype is due to deficiency of Rpc11. These data show that functional interactions between Pol III subunits have been conserved during eukaryotic evolution and support the utility of zebrafish as a model vertebrate for analysis of Pol III function.
Collapse
Affiliation(s)
- Nelson S Yee
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Weilong Gong
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ying Huang
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kristin Lorent
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Amy C Dolan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richard J Maraia
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Pack
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
43
|
Gu L, Husain-Ponnampalam R, Hoffmann-Benning S, Henry RW. The protein kinase CK2 phosphorylates SNAP190 to negatively regulate SNAPC DNA binding and human U6 transcription by RNA polymerase III. J Biol Chem 2007; 282:27887-96. [PMID: 17670747 DOI: 10.1074/jbc.m702269200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human U6 small nuclear RNA gene transcription by RNA polymerase III requires the general transcription factor SNAP(C), which binds to human small nuclear RNA core promoter elements and nucleates pre-initiation complex assembly with the Brf2-TFIIIB complex. Multiple components in this pathway are phosphorylated by the protein kinase CK2, including the Bdp1 subunit of the Brf2-TFIIIB complex, and RNA polymerase III, with negative and positive outcomes for U6 transcription, respectively. However, a role for CK2 phosphorylation of SNAP(C) in U6 transcription has not been defined. In this report, we investigated the role of CK2 in modulating the transcriptional properties of SNAP(C) and demonstrate that within SNAP(C), CK2 phosphorylates the N-terminal half of the SNAP190 subunit at two regions (amino acids 20-63 and 514-545) that each contain multiple CK2 consensus sites. SNAP190 phosphorylation by CK2 inhibits both SNAP(C) DNA binding and U6 transcription activity. Mutational analyses of SNAP190 support a model wherein CK2 phosphorylation triggers an allosteric inhibition of the SNAP190 Myb DNA binding domain.
Collapse
Affiliation(s)
- Liping Gu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
44
|
Panova TB, Panov KI, Russell J, Zomerdijk JCBM. Casein kinase 2 associates with initiation-competent RNA polymerase I and has multiple roles in ribosomal DNA transcription. Mol Cell Biol 2006; 26:5957-68. [PMID: 16880508 PMCID: PMC1592790 DOI: 10.1128/mcb.00673-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian RNA polymerase I (Pol I) complexes contain a number of associated factors, some with undefined regulatory roles in transcription. We demonstrate that casein kinase 2 (CK2) in human cells is associated specifically only with the initiation-competent Pol Ibeta isoform and not with Pol Ialpha. Chromatin immunoprecipitation analysis places CK2 at the ribosomal DNA (rDNA) promoter in vivo. Pol Ibeta-associated CK2 can phosphorylate topoisomerase IIalpha in Pol Ibeta, activator upstream binding factor (UBF), and selectivity factor 1 (SL1) subunit TAFI110. A potent and selective CK2 inhibitor, 3,8-dibromo-7-hydroxy-4-methylchromen-2-one, limits in vitro transcription to a single round, suggesting a role for CK2 in reinitiation. Phosphorylation of UBF by CK2 increases SL1-dependent stabilization of UBF at the rDNA promoter, providing a molecular mechanism for the stimulatory effect of CK2 on UBF activation of transcription. These positive effects of CK2 in Pol I transcription contrast to that wrought by CK2 phosphorylation of TAFI110, which prevents SL1 binding to rDNA, thereby abrogating the ability of SL1 to nucleate preinitiation complex (PIC) formation. Thus, CK2 has the potential to regulate Pol I transcription at multiple levels, in PIC formation, activation, and reinitiation of transcription.
Collapse
Affiliation(s)
- Tatiana B Panova
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
45
|
Lin CY, Navarro S, Reddy S, Comai L. CK2-mediated stimulation of Pol I transcription by stabilization of UBF-SL1 interaction. Nucleic Acids Res 2006; 34:4752-66. [PMID: 16971462 PMCID: PMC1635259 DOI: 10.1093/nar/gkl581] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
High levels of rRNA synthesis by RNA polymerase I are important for cell growth and proliferation. In vitro studies have indicated that the formation of a stable complex between the HMG box factor [Upstream binding factor (UBF)] and SL1 at the rRNA gene promoter is necessary to direct multiple rounds of Pol I transcription initiation. The recruitment of SL1 to the promoter occurs through protein interactions with UBF and is regulated by phosphorylation of UBF. Here we show that the protein kinase CK2 co-immunoprecipitates with the Pol I complex and is associated with the rRNA gene promoter. Inhibition of CK2 kinase activity reduces Pol I transcription in cultured cells and in vitro. Significantly, CK2 regulates the interaction between UBF and SL1 by counteracting the inhibitory effect of HMG boxes five and six through the phosphorylation of specific serines located at the C-terminus of UBF. Transcription reactions with immobilized templates indicate that phosphorylation of CK2 phosphoacceptor sites in the C-terminal domain of UBF is important for promoting multiple rounds of Pol I transcription. These data demonstrate that CK2 is recruited to the rRNA gene promoter and directly regulates Pol I transcription re-initiation by stabilizing the association between UBF and SL1.
Collapse
Affiliation(s)
| | | | - Sita Reddy
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California2250 Alcazar Street, Los Angeles, CA, 90033, USA
| | - Lucio Comai
- To whom correspondence should be addressed. Tel: +1 323 442 3950; Fax: +1 323 441 2764;
| |
Collapse
|
46
|
Jawdekar GW, Hanzlowsky A, Hovde SL, Jelencic B, Feig M, Geiger JH, Henry RW. The unorthodox SNAP50 zinc finger domain contributes to cooperative promoter recognition by human SNAPC. J Biol Chem 2006; 281:31050-60. [PMID: 16901896 DOI: 10.1074/jbc.m603810200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human small nuclear RNA gene transcription by RNA polymerases II and III depends upon promoter recognition by the SNAPC general transcription factor. DNA binding by SNAPC involves direct DNA contacts by the SNAP190 subunit in cooperation with SNAP50 and SNAP43. The data presented herein shows that SNAP50 plays an important role in DNA binding by SNAPC through its zinc finger domain. The SNAP50 zinc finger domain contains 15 cysteine and histidine residues configured in two potential zinc coordination arrangements. Individual alanine substitution of each cysteine and histidine residue demonstrated that eight sites are important for DNA binding by SNAPC. However, metal binding studies revealed that SNAPC contains a single zinc atom indicating that only one coordination site functions as a zinc finger. Of the eight residues critical for DNA binding, four cysteine residues were also essential for both U1 and U6 transcription by RNA polymerase II and III, respectively. Surprisingly, the remaining four residues, although critical for U1 transcription could support partial U6 transcription. DNA binding studies showed that defects in DNA binding by SNAPC alone could be suppressed through cooperative DNA binding with another member of the RNA polymerase III general transcription machinery, TFIIIB. These results suggest that these eight cysteine and histidine residues perform different functions during DNA binding with those residues involved in zinc coordination likely performing a dominant role in domain stabilization and the others involved in DNA binding. These data further define the unorthodox SNAP50 zinc finger region as an evolutionarily conserved DNA binding domain.
Collapse
Affiliation(s)
- Gauri W Jawdekar
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Emran F, Florens L, Ma B, Swanson SK, Washburn MP, Hernandez N. A role for Yin Yang-1 (YY1) in the assembly of snRNA transcription complexes. Gene 2006; 377:96-108. [PMID: 16769183 DOI: 10.1016/j.gene.2006.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/17/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
The RNA polymerase (pol) II and III human small nuclear RNA (snRNA) genes have very similar promoters and recruit a number of common factors. In particular, both types of promoters utilize the small nuclear RNA activating protein complex (SNAP(c)) and the TATA box binding protein (TBP) for basal transcription, and are activated by Oct-1. We find that SNAP(c) purified from cell lines expressing tagged SNAP(c) subunits is associated with Yin Yang-1 (YY1), a factor implicated in both activation and repression of transcription. Recombinant YY1 accelerates the binding of SNAP(c) to the proximal sequence element, its target within snRNA promoters. Moreover, it enhances the formation of a complex on the pol III U6 snRNA promoter containing all the factors (SNAP(c), TBP, TFIIB-related factor 2 (Brf2), and B double prime 1 (Bdp1)) that are sufficient to direct in vitro U6 transcription when complemented with purified pol III, as well as that of a subcomplex containing TBP, Brf2, and Bdp1. YY1 is found on both the RNA polymerase II U1 and the RNA polymerase III U6 promoters as determined by chromatin immunoprecipitations. Thus, YY1 represents a new factor that participates in transcription complexes formed on both pol II and III promoters.
Collapse
Affiliation(s)
- Farida Emran
- Stony Brook University, Graduate Program in Molecular and Cellular Pharmacology, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
48
|
Inter- and Supramolecular Interactions of Protein Kinase CK2 and their Relevance for Genome Integrity. Genome Integr 2006. [DOI: 10.1007/7050_002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Fairley JA, Kantidakis T, Kenneth NS, Intine RV, Maraia RJ, White RJ. Human La is found at RNA polymerase III-transcribed genes in vivo. Proc Natl Acad Sci U S A 2005; 102:18350-5. [PMID: 16344466 PMCID: PMC1317925 DOI: 10.1073/pnas.0506415102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Indexed: 11/18/2022] Open
Abstract
The human La autoantigen can bind to nascent RNA transcripts and has also been postulated to act as an RNA polymerase III (pol III) transcription initiation and termination factor. Here, we show by chromatin immunoprecipitation (ChIP) that La is associated with pol III-transcribed genes in vivo. In contrast, the Ro autoantigen, which can also bind pol III transcripts, is not found at these genes. The putative pol III transcription factors NF1 and TFIIA are also not detected at class III genes. Binding of La remains when transcription is repressed at mitosis and does not correlate with the presence of polymerase at the gene. However, gene occupancy depends on the phosphorylation status of La, with the less prevalent, unphosphorylated form being found selectively on pol III templates.
Collapse
Affiliation(s)
- Jennifer A Fairley
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Oliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen H, Skiena S, Futcher B, Leatherwood J. The cell cycle-regulated genes of Schizosaccharomyces pombe. PLoS Biol 2005; 3:e225. [PMID: 15966770 PMCID: PMC1157095 DOI: 10.1371/journal.pbio.0030225] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 04/21/2005] [Indexed: 12/12/2022] Open
Abstract
Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know. A comprehensive examination of gene expression throughout the cell cycle of fission yeast is compared with recent related studies to highlight robust transcriptional patterns.
Collapse
Affiliation(s)
- Anna Oliva
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Adam Rosebrock
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Francisco Ferrezuelo
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Saumyadipta Pyne
- 2 Department of Computer Science, Stony Brook University, Stony Brook, New York, United States of America
| | - Haiying Chen
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Steve Skiena
- 2 Department of Computer Science, Stony Brook University, Stony Brook, New York, United States of America
| | - Bruce Futcher
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Janet Leatherwood
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|