1
|
Mendoza H, Jash E, Davis MB, Haines RA, VanDiepenbos S, Csankovszki G. Distinct regulatory mechanisms by the nuclear Argonautes HRDE-1 and NRDE-3 in the soma of Caenorhabditis elegans. G3 (BETHESDA, MD.) 2025; 15:jkaf057. [PMID: 40087923 PMCID: PMC12060244 DOI: 10.1093/g3journal/jkaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
RNA interference (RNAi) is a conserved silencing mechanism that depends on the generation of small RNA molecules that leads to the degradation of the targeted messenger RNAs (mRNAs). Nuclear RNAi is a unique process that triggers regulation through epigenetic alterations to the genome. This pathway has been extensively characterized in Caenorhabditis elegans and involves the nuclear recruitment of H3K9 histone methyltransferases by the Argonautes HRDE-1 and NRDE-3. The coordinate regulation of genetic targets by H3K9 methylation and the nuclear Argonautes is highly complex and has been mainly described based on the small RNA populations that are involved. Recent studies have also linked the nuclear RNAi pathway to the compaction of the hermaphrodite X chromosomes during dosage compensation (DC), a mechanism that balances genetic differences between the biological sexes by repressing X chromosomes in hermaphrodites. This chromosome-wide process provides an excellent opportunity to further investigate the relationship between H3K9 methylation and the nuclear Argonautes. Our work suggests that the nuclear RNAi and the H3K9 methylation pathways each contribute to the condensation of the X chromosomes during DC but the consequences on the transcriptional output of X-linked genes are minimal. Instead, nuclear RNAi mutants exhibit global transcriptional differences, in which HRDE-1 and NRDE-3 affect expression of their mRNA targets through different relationships to H3K9 methylation.
Collapse
Affiliation(s)
- Hector Mendoza
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eshna Jash
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca A Haines
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah VanDiepenbos
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Salsi V, Losi F, Salani M, Kaufman PD, Tupler R. Posttranscriptional RNA stabilization of telomeric RNAs FRG2, DBE-T, D4Z4 at human 4q35 in response to genotoxic stress and D4Z4 macrosatellite repeat length. Clin Epigenetics 2025; 17:73. [PMID: 40320530 PMCID: PMC12049803 DOI: 10.1186/s13148-025-01881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Reduced copy number of the D4Z4 macrosatellite at human chromosome 4q35 is associated with facioscapulohumeral muscular dystrophy (FSHD). A pervasive idea is that chromatin alterations at the 4q35 locus following D4Z4 repeat unit deletion lead to disease via inappropriate expression of nearby genes. Here, we sought to analyze transcription and chromatin characteristics at specific regions of 4q35 and how these are affected by D4Z4 deletions and exogenous stresses. RESULTS We found that the 4q subtelomere is subdivided into discrete domains, each with characteristic chromatin features associated with distinct gene expression profiles. Centromeric genes within 4q35 (SLC25A4, FAT1 and FRG1) display active histone marks at their promoters. In contrast, poised or repressed markings are present at telomeric loci including FRG2, DBE-T and D4Z4. We discovered that these discrete domains undergo region-specific chromatin changes upon treatment with chromatin enzyme inhibitors or genotoxic drugs. We demonstrated that the 4q35 telomeric FRG2, DBE-T and D4Z4-derived transcripts are induced upon DNA damage to levels inversely correlated with the D4Z4 repeat number, are stabilized through posttranscriptional mechanisms upon DNA damage and are bound to chromatin. CONCLUSION Our study reveals unforeseen biochemical features of RNAs from clustered transcription units within the 4q35 subtelomere. Specifically, the FRG2, DBE-T and D4Z4-derived transcripts are chromatin-associated and are stabilized posttranscriptionally after induction by genotoxic stress. Remarkably, the extent of this response is modulated by the copy number of the D4Z4 repeats, raising new hypotheses about their regulation and function in human biology and disease.
Collapse
Affiliation(s)
- Valentina Salsi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125, Modena, Italy
| | - Francesca Losi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125, Modena, Italy
| | - Monica Salani
- Center for Human Genetic Research, Massachusetts General Hospital Research Institute and Department of Neurology, Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125, Modena, Italy.
| |
Collapse
|
3
|
Yan C, He B, Wang C, Li W, Tao S, Chen J, Wang Y, Yang L, Wu Y, Wu Z, Liu N, Qin Y. Methionine in embryonic development: metabolism, redox homeostasis, epigenetic modification and signaling pathway. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40237424 DOI: 10.1080/10408398.2025.2491638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Methionine, an essential sulfur-containing amino acid, plays a critical role in methyl metabolism, folate metabolism, polyamine synthesis, redox homeostasis maintenance, epigenetic modification and signaling pathway regulation, particularly during embryonic development. Animal and human studies have increasingly documented that methionine deficiency or excess can negatively impact metabolic processes, translation, epigenetics, and signaling pathways, with ultimate detrimental effects on pregnancy outcomes. However, the underlying mechanisms by which methionine precisely regulates epigenetic modifications and affects signaling pathways remain to be elucidated. In this review, we discuss methionine and the metabolism of its metabolites, the influence of folate-mediated carbon metabolism, redox reactions, DNA and RNA methylation, and histone modifications, as well as the mammalian rapamycin complex and silent information regulator 1-MYC signaling pathway. This review also summarizes our present understanding of the contribution of methionine to these processes, and current nutritional and pharmaceutical strategies for the prevention and treatment of developmental defects in embryos.
Collapse
Affiliation(s)
- Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Biyan He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chenjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Wanzhen Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Yuquan Wang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Jiao P, Lu H, Hao L, Degen AA, Cheng J, Yin Z, Mao S, Xue Y. Nutrigenetic and Epigenetic Mechanisms of Maternal Nutrition-Induced Glucolipid Metabolism Changes in the Offspring. Nutr Rev 2025; 83:728-748. [PMID: 38781288 DOI: 10.1093/nutrit/nuae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Maternal nutrition during pregnancy regulates the offspring's metabolic homeostasis, including insulin sensitivity and the metabolism of glucose and lipids. The fetus undergoes a crucial period of plasticity in the uterus; metabolic changes in the fetus during pregnancy caused by maternal nutrition not only influence fetal growth and development but also have a long-term or even life-long impact for the offspring. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNAs, play important roles in intergenerational and transgenerational effects. In this context, this narrative review comprehensively summarizes and analyzes the molecular mechanisms underlying how maternal nutrition, including a high-fat diet, polyunsaturated fatty acid diet, methyl donor nutrient supplementation, feed restriction, and protein restriction during pregnancy, impacts the genes involved in glucolipid metabolism in the liver, adipose tissue, hypothalamus, muscle, and oocytes of the offspring in terms of the epigenetic modifications. This will provide a foundation for the further exploration of nutrigenetic and epigenetic mechanisms for integrative mother-child nutrition and promotion of the offspring's health through the regulation of maternal nutrition during pregnancy. Note: This paper is part of the Nutrition Reviews Special Collection on Precision Nutrition.
Collapse
Affiliation(s)
- Peng Jiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine of Qinghai University, Xining, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Oya T, Tanaka M, Hayashi A, Yoshimura Y, Nakamura R, Arita K, Murakami Y, Nakayama J. Characterization of the Swi6/HP1 binding motif in its partner protein reveals the basis for the functional divergence of the HP1 family proteins in fission yeast. FASEB J 2025; 39:e70387. [PMID: 39945308 PMCID: PMC11833287 DOI: 10.1096/fj.202402264rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
The heterochromatin protein 1 (HP1) family recognizes lysine 9-methylated histone H3 (H3K9me) and recruits other transacting factors to establish higher order chromatin structures. In the fission yeast Schizosaccharomyces pombe (S. pombe), two HP1 family proteins, Swi6 and Chp2, play distinct roles in recruiting transacting factors: Swi6 primarily recruits Epe1, a Jumonji C domain-containing protein involved in histone H3K9 demethylation, whereas Chp2 recruits Mit1, a component of the Snf2/Hdac Repressive Complex. However, detailed mechanisms of how multiple HP1 family proteins and their respective interactors work cooperatively or exclusively to form higher order chromatin structures remain elusive. In this study, we investigated the interactions between Swi6 and Epe1. We found that Swi6 interacts with Epe1 through its chromoshadow domain, and identified a unique motif, named the FVI motif, in Epe1 involved in this interaction through detailed mapping of the region. Enhanced green fluorescent protein (EGFP) tethering assays showed that the FVI motif is sufficient to recruit ectopically expressed EGFP to heterochromatic regions, and mutational analyses revealed that conserved hydrophobic residues in this motif are essential for proper targeting. Structural simulations further supported the importance of these residues in Swi6 binding. Interestingly, Mit1 containing the Epe1 FVI motif was recruited to the heterochromatic regions by Swi6 but not by Chp2. Cells expressing mutant Mit1 maintained heterochromatic silencing even in chp2∆ cells, suggesting that Chp2 is not required for heterochromatin formation when Mit1 is recruited by Swi6. These findings highlight distinct HP1-binding motifs in interactors, contributing to functional divergence among HP1 family proteins.
Collapse
Affiliation(s)
- Tomoyuki Oya
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
- Basic Biology ProgramGraduate Institute for Advanced Studies, SOKENDAIOkazakiJapan
| | - Mayo Tanaka
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Aki Hayashi
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Yuriko Yoshimura
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Rinko Nakamura
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
- Basic Biology ProgramGraduate Institute for Advanced Studies, SOKENDAIOkazakiJapan
| | - Kyohei Arita
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of ScienceHokkaido UniversitySapporoJapan
| | - Jun‐ichi Nakayama
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
- Basic Biology ProgramGraduate Institute for Advanced Studies, SOKENDAIOkazakiJapan
| |
Collapse
|
6
|
Davie JR, Sattarifard H, Sudhakar SRN, Roberts CT, Beacon TH, Muker I, Shahib AK, Rastegar M. Basic Epigenetic Mechanisms. Subcell Biochem 2025; 108:1-49. [PMID: 39820859 DOI: 10.1007/978-3-031-75980-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human genome consists of 23 chromosome pairs (22 autosomes and one pair of sex chromosomes), with 46 chromosomes in a normal cell. In the interphase nucleus, the 2 m long nuclear DNA is assembled with proteins forming chromatin. The typical mammalian cell nucleus has a diameter between 5 and 15 μm in which the DNA is packaged into an assortment of chromatin assemblies. The human brain has over 3000 cell types, including neurons, glial cells, oligodendrocytes, microglial, and many others. Epigenetic processes are involved in directing the organization and function of the genome of each one of the 3000 brain cell types. We refer to epigenetics as the study of changes in gene function that do not involve changes in DNA sequence. These epigenetic processes include histone modifications, DNA modifications, nuclear RNA, and transcription factors. In the interphase nucleus, the nuclear DNA is organized into different structures that are permissive or a hindrance to gene expression. In this chapter, we will review the epigenetic mechanisms that give rise to cell type-specific gene expression patterns.
Collapse
Affiliation(s)
- James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ishdeep Muker
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Guillermier C, Kumar NV, Bracken RC, Alvarez D, O'Keefe J, Gurkar A, Brown JD, Steinhauser ML. Nanoscale imaging of DNA-RNA identifies transcriptional plasticity at heterochromatin. Life Sci Alliance 2024; 7:e202402849. [PMID: 39288993 PMCID: PMC11408601 DOI: 10.26508/lsa.202402849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
The three-dimensional structure of DNA is a biophysical determinant of transcription. The density of chromatin condensation is one determinant of transcriptional output. Chromatin condensation is generally viewed as enforcing transcriptional suppression, and therefore, transcriptional output should be inversely proportional to DNA compaction. We coupled stable isotope tracers with multi-isotope imaging mass spectrometry to quantify and image nanovolumetric relationships between DNA density and newly made RNA within individual nuclei. Proliferative cell lines and cycling cells in the murine small intestine unexpectedly demonstrated no consistent relationship between DNA density and newly made RNA, even though localized examples of this phenomenon were detected at nuclear-cytoplasmic transitions. In contrast, non-dividing hepatocytes demonstrated global reduction in newly made RNA and an inverse relationship between DNA density and transcription, driven by DNA condensates at the nuclear periphery devoid of newly made RNA. Collectively, these data support an evolving model of transcriptional plasticity that extends at least to a subset of chromatin at the extreme of condensation as expected of heterochromatin.
Collapse
Affiliation(s)
- Christelle Guillermier
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naveen Vg Kumar
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronan C Bracken
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Diana Alvarez
- Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John O'Keefe
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aditi Gurkar
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan D Brown
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cardiovascular Division, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Sokolova V, Miratsky J, Svetlov V, Brenowitz M, Vant J, Lewis TS, Dryden K, Lee G, Sarkar S, Nudler E, Singharoy A, Tan D. Structural mechanism of HP1⍺-dependent transcriptional repression and chromatin compaction. Structure 2024; 32:2094-2106.e6. [PMID: 39383876 PMCID: PMC11560701 DOI: 10.1016/j.str.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Heterochromatin protein 1 (HP1) plays a central role in establishing and maintaining constitutive heterochromatin. However, the mechanisms underlying HP1-nucleosome interactions and their contributions to heterochromatin functions remain elusive. Here, we present the cryoelectron microscopy (cryo-EM) structure of an HP1α dimer bound to an H2A.Z-nucleosome, revealing two distinct HP1α-nucleosome interfaces. The primary HP1α binding site is located at the N terminus of histone H3, specifically at the trimethylated lysine 9 (K9me3) region, while a secondary binding site is situated near histone H2B, close to nucleosome superhelical location 4 (SHL4). Our biochemical data further demonstrates that HP1α binding influences the dynamics of DNA on the nucleosome. It promotes DNA unwrapping near the nucleosome entry and exit sites while concurrently restricting DNA accessibility in the vicinity of SHL4. Our study offers a model for HP1α-mediated heterochromatin maintenance and gene silencing. It also sheds light on the H3K9me-independent role of HP1 in responding to DNA damage.
Collapse
Affiliation(s)
- Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jacob Miratsky
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Vant
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Tyler S Lewis
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Kelly Dryden
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Gahyun Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Shayan Sarkar
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
9
|
Mendoza H, Jash E, Davis MB, Haines RA, Van Diepenbos S, Csankovszki G. Distinct regulatory mechanisms by the nuclear Argonautes HRDE-1 and NRDE-3 in the soma of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615038. [PMID: 39386440 PMCID: PMC11463658 DOI: 10.1101/2024.09.25.615038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA interference is a conserved silencing mechanism that depends on the generation of small RNA molecules that disrupt synthesis of their corresponding transcripts. Nuclear RNA interference is a unique process that triggers regulation through epigenetic alterations to the genome. This pathway has been extensively characterized in Caenorhabditis elegans and involves the nuclear recruitment of H3K9 histone methyltransferases by the Argonautes HRDE-1 and NRDE-3. The coordinate regulation of genetic targets by H3K9 methylation and the nuclear Argonautes is highly complex and has been mainly described based on the small RNA populations that are involved. Recent studies have also linked the nuclear RNAi pathway to the compaction of the hermaphrodite X chromosomes during dosage compensation, a mechanism that balances genetic differences between the biological sexes by repressing X chromosomes in hermaphrodites. This chromosome-wide process provides an excellent opportunity to further investigate the relationship between H3K9 methylation and the nuclear Argonautes from the perspective of the transcriptome. Our work suggests that the nuclear RNAi and the H3K9 methylation pathways each contribute to the condensation of the X chromosomes during dosage compensation but the consequences on their transcriptional output are minimal. Instead, nuclear RNAi mutants exhibit global transcriptional differences, in which HRDE-1 and NRDE-3 affect expression of their native targets through different modes of regulation and different relationships to H3K9 methylation. ARTICLE SUMMARY This study examines the transcriptional consequences during the disruption of the nuclear RNAi silencing mechanism in C. elegans . Through microscopy and bioinformatic work, we demonstrate that although nuclear RNAi mutants exhibit significantly decondensed X chromosomes, chromosome-wide transcriptional de-repression is not detectable. Downstream analyses further explore the global influence of the nuclear RNAi pathway, indicating that the nuclear Argonautes HRDE-1 and NRDE-3 function through two distinct mechanisms.
Collapse
|
10
|
Walter RM, Majumder K, Kalejta RF. ATRX restricts Human Cytomegalovirus (HCMV) viral DNA replication through heterochromatinization and minimizes unpackaged viral genomes. PLoS Pathog 2024; 20:e1012516. [PMID: 39236084 PMCID: PMC11407672 DOI: 10.1371/journal.ppat.1012516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/17/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
ATRX limits the accumulation of human cytomegalovirus (HCMV) Immediate Early (IE) proteins at the start of productive, lytic infections, and thus is a part of the cell-intrinsic defenses against infecting viruses. ATRX is a chromatin remodeler and a component of a histone chaperone complex. Therefore, we hypothesized ATRX would inhibit the transcription of HCMV IE genes by increasing viral genome heterochromatinization and decreasing its accessibility. To test this hypothesis, we quantitated viral transcription and genome structure in cells replete with or depleted of ATRX. We found ATRX did indeed limit viral IE transcription, increase viral genome chromatinization, and decrease viral genome accessibility. The inhibitory effects of ATRX extended to Early (E) and Late (L) viral protein accumulation, viral DNA replication, and progeny virion output. However, we found the negative effects of ATRX on HCMV viral DNA replication were independent of its effects on viral IE and E protein accumulation but correlated with viral genome heterochromatinization. Interestingly, the increased number of viral genomes synthesized in ATRX-depleted cells were not efficiently packaged, indicating the ATRX-mediated restriction to HCMV viral DNA replication may benefit productive infection by increasing viral fitness. Our work mechanistically describes the antiviral function of ATRX and introduces a novel, pro-viral role for this protein, perhaps explaining why, unlike during infections with other herpesviruses, it is not directly targeted by a viral countermeasure in HCMV infected cells.
Collapse
Affiliation(s)
- Ryan M. Walter
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert F. Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
11
|
Kim J, Diaz LF, Miller MJ, Leadem B, Krivega I, Dean A. An enhancer RNA recruits KMT2A to regulate transcription of Myb. Cell Rep 2024; 43:114378. [PMID: 38889007 PMCID: PMC11369905 DOI: 10.1016/j.celrep.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81-kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR-Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expressions were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the KMT2A/MLL1 complex. Myrlin CRISPRi compromised KMT2A occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting KMT2A.
Collapse
Affiliation(s)
- Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Luis F Diaz
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Matthew J Miller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; University of Iowa Medical School, Iowa City, IA 52242, USA
| | - Benjamin Leadem
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; GeneDx, Gaithersburg, MD 20877, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Sonothera, South San Francisco, CA 94080, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D'Orso I. KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription. Nat Commun 2024; 15:5859. [PMID: 38997286 PMCID: PMC11245487 DOI: 10.1038/s41467-024-49905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Signal-induced transcriptional programs regulate critical biological processes through the precise spatiotemporal activation of Immediate Early Genes (IEGs); however, the mechanisms of transcription induction remain poorly understood. By combining an acute depletion system with several genomics approaches to interrogate synchronized, temporal transcription, we reveal that KAP1/TRIM28 is a first responder that fulfills the temporal and heightened transcriptional demand of IEGs. Acute KAP1 loss triggers an increase in RNA polymerase II elongation kinetics during early stimulation time points. This elongation defect derails the normal progression through the transcriptional cycle during late stimulation time points, ultimately leading to decreased recruitment of the transcription apparatus for re-initiation thereby dampening IEGs transcriptional output. Collectively, KAP1 plays a counterintuitive role by negatively regulating transcription elongation to support full activation across multiple transcription cycles of genes critical for cell physiology and organismal functions.
Collapse
Affiliation(s)
- Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
13
|
Ukmar‐Godec T, Yu T, de Opakua AI, Pantoja CF, Munari F, Zweckstetter M. Conformational diversity of human HP1α. Protein Sci 2024; 33:e5079. [PMID: 38895997 PMCID: PMC11187854 DOI: 10.1002/pro.5079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Heterochromatin protein 1 alpha (HP1α) is an evolutionarily conserved protein that binds chromatin and is important for gene silencing. The protein comprises 191 residues arranged into three disordered regions and two structured domains, the chromo and chromoshadow domain, which associates into a homodimer. While high-resolution structures of the isolated domains of HP1 proteins are known, the structural properties of full-length HP1α remain largely unknown. Using a combination of NMR spectroscopy and structure predictions by AlphaFold2 we provide evidence that the chromo and chromoshadow domain of HP1α engage in direct contacts resulting in a compact chromo/chromoshadow domain arrangement. We further show that HP1β and HP1γ have increased interdomain dynamics when compared to HP1α which may contribute to the distinct roles of different Hp1 isoforms in gene silencing and activation.
Collapse
Affiliation(s)
- Tina Ukmar‐Godec
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | - Taekyung Yu
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | - Alain Ibanez de Opakua
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | - Christian F. Pantoja
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | | | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
14
|
Zhao H, Lin Y, Lin E, Liu F, Shu L, Jing D, Wang B, Wang M, Shan F, Zhang L, Lam JC, Midla SC, Giardine BM, Keller CA, Hardison RC, Blobel GA, Zhang H. Genome folding principles uncovered in condensin-depleted mitotic chromosomes. Nat Genet 2024; 56:1213-1224. [PMID: 38802567 DOI: 10.1038/s41588-024-01759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
During mitosis, condensin activity is thought to interfere with interphase chromatin structures. To investigate genome folding principles in the absence of chromatin loop extrusion, we codepleted condensin I and condensin II, which triggered mitotic chromosome compartmentalization in ways similar to that in interphase. However, two distinct euchromatic compartments, indistinguishable in interphase, emerged upon condensin loss with different interaction preferences and dependencies on H3K27ac. Constitutive heterochromatin gradually self-aggregated and cocompartmentalized with facultative heterochromatin, contrasting with their separation during interphase. Notably, some cis-regulatory element contacts became apparent even in the absence of CTCF/cohesin-mediated structures. Heterochromatin protein 1 (HP1) proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M to G1 phase in the combined absence of HP1α, HP1β and HP1γ, constitutive heterochromatin compartments are normally re-established. In sum, condensin-deficient mitotic chromosomes illuminate forces of genome compartmentalization not identified in interphase cells.
Collapse
Affiliation(s)
- Han Zhao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yinzhi Lin
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - En Lin
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fuhai Liu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lirong Shu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Dannan Jing
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Baiyue Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Manzhu Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Basic Medicine, Capital Medical University, Beijing, China
| | - Fengnian Shan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Pharmacology, South China University of Technology, Guangzhou, China
| | - Lin Zhang
- School of Biological Science, Hongkong University, Hongkong, China
| | - Jessica C Lam
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susannah C Midla
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
15
|
Castilho RM, Castilho LS, Palomares BH, Squarize CH. Determinants of Chromatin Organization in Aging and Cancer-Emerging Opportunities for Epigenetic Therapies and AI Technology. Genes (Basel) 2024; 15:710. [PMID: 38927646 PMCID: PMC11202709 DOI: 10.3390/genes15060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
This review article critically examines the pivotal role of chromatin organization in gene regulation, cellular differentiation, disease progression and aging. It explores the dynamic between the euchromatin and heterochromatin, coded by a complex array of histone modifications that orchestrate essential cellular processes. We discuss the pathological impacts of chromatin state misregulation, particularly in cancer and accelerated aging conditions such as progeroid syndromes, and highlight the innovative role of epigenetic therapies and artificial intelligence (AI) in comprehending and harnessing the histone code toward personalized medicine. In the context of aging, this review explores the use of AI and advanced machine learning (ML) algorithms to parse vast biological datasets, leading to the development of predictive models for epigenetic modifications and providing a framework for understanding complex regulatory mechanisms, such as those governing cell identity genes. It supports innovative platforms like CEFCIG for high-accuracy predictions and tools like GridGO for tailored ChIP-Seq analysis, which are vital for deciphering the epigenetic landscape. The review also casts a vision on the prospects of AI and ML in oncology, particularly in the personalization of cancer therapy, including early diagnostics and treatment optimization for diseases like head and neck and colorectal cancers by harnessing computational methods, AI advancements and integrated clinical data for a transformative impact on healthcare outcomes.
Collapse
Affiliation(s)
- Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Leonard S. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
| | - Bruna H. Palomares
- Oral Diagnosis Department, Piracicaba School of Dentistry, State University of Campinas, Piracicaba 13414-903, Sao Paulo, Brazil;
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
16
|
Ames A, Seman M, Larkin A, Raiymbek G, Chen Z, Levashkevich A, Kim B, Biteen JS, Ragunathan K. Epigenetic memory is governed by an effector recruitment specificity toggle in Heterochromatin Protein 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569027. [PMID: 38077059 PMCID: PMC10705379 DOI: 10.1101/2023.11.28.569027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
HP1 proteins are essential for establishing and maintaining transcriptionally silent heterochromatin. They dimerize, forming a binding interface to recruit diverse chromatin-associated factors. HP1 proteins are specialized and rapidly evolve, but the extent of variation required to achieve functional specialization is unknown. To investigate how changes in amino acid sequence impacts epigenetic inheritance, we performed a targeted mutagenesis screen of the S. pombe HP1 homolog, Swi6. Substitutions within an auxiliary surface adjacent to the HP1 dimerization interface produced Swi6 variants with divergent maintenance properties. Remarkably, substitutions at a single amino acid position led to the persistent gain or loss of epigenetic inheritance. These substitutions increased Swi6 chromatin occupancy in vivo and altered Swi6-protein interactions that reprogram H3K9me maintenance. We show that relatively minor changes in Swi6 amino acid composition can lead to profound changes in epigenetic inheritance which provides a redundant mechanism to evolve novel effector specificity. .
Collapse
|
17
|
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D’Orso I. KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592422. [PMID: 38746145 PMCID: PMC11092767 DOI: 10.1101/2024.05.05.592422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Signal-induced transcriptional programs regulate critical biological processes through the precise spatiotemporal activation of Immediate Early Genes (IEGs); however, the mechanisms of transcription induction remain poorly understood. By combining an acute depletion system with high resolution genomics approaches to interrogate synchronized, temporal transcription, we reveal that KAP1/TRIM28 is a first responder that fulfills the temporal and heightened transcriptional demand of IEGs. Unexpectedly, acute KAP1 loss triggers an increase in RNA polymerase II elongation kinetics during early stimulation time points. This elongation defect derails the normal progression through the transcriptional cycle during late stimulation time points, ultimately leading to decreased recruitment of the transcription apparatus for re-initiation thereby dampening IEGs transcriptional output. Collectively, KAP1 plays a counterintuitive role by negatively regulating transcription elongation to support full activation across multiple transcription cycles of genes critical for cell physiology and organismal functions.
Collapse
Affiliation(s)
- Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
18
|
Pinto TS, Feltran GDS, Fernandes CJDC, de Camargo Andrade AF, Coque ADC, Silva SL, Abuderman AA, Zambuzzi WF, Foganholi da Silva RA. Epigenetic changes in shear-stressed endothelial cells. Cell Biol Int 2024; 48:665-681. [PMID: 38420868 DOI: 10.1002/cbin.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces. Our study uncovers a noteworthy observation wherein endothelial cells exposed to high shear stress demonstrate a decrease in the epigenetic marks H3K4ac and H3K27ac, accompanied by significant alterations in the levels of HDAC (histone deacetylase) proteins. Moreover, we demonstrate a negative regulatory effect of increased shear stress on HOXA13 gene expression and a concomitant increase in the expression of the long noncoding RNA, HOTTIP, suggesting a direct association with the suppression of HOXA13. Collectively, these findings represent the first evidence of the role of histone-related epigenetic modifications in modulating chromatin compaction during mechanosignaling of endothelial cells in response to elevated shear stress forces. Additionally, our results highlight the importance of understanding the physiological role of HOXA13 in vascular biology and hypertensive patients, emphasizing the potential for developing small molecules to modulate its activity. These findings warrant further preclinical investigations and open new avenues for therapeutic interventions targeting epigenetic mechanisms in hypertensive conditions.
Collapse
Affiliation(s)
- Thaís Silva Pinto
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Célio Júnior da C Fernandes
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Amanda Fantini de Camargo Andrade
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Alex de Camargo Coque
- Epigenetic Study Center and Gene Regulation-CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Simone L Silva
- School of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Abdulwahab A Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia
| | - Willian F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Rodrigo A Foganholi da Silva
- Epigenetic Study Center and Gene Regulation-CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
- School of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| |
Collapse
|
19
|
Ding Z, Peng L, Zeng J, Yuan K, Tang Y, Yi Q. Functions of HP1 in preventing chromosomal instability. Cell Biochem Funct 2024; 42:e4017. [PMID: 38603595 DOI: 10.1002/cbf.4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Chromosomal instability (CIN), caused by errors in the segregation of chromosomes during mitosis, is a hallmark of many types of cancer. The fidelity of chromosome segregation is governed by a sophisticated cellular signaling network, one crucial orchestrator of which is Heterochromatin protein 1 (HP1). HP1 dynamically localizes to distinct sites at various stages of mitosis, where it regulates key mitotic events ranging from chromosome-microtubule attachment to sister chromatid cohesion to cytokinesis. Our evolving comprehension of HP1's multifaceted role has positioned it as a central protein in the orchestration of mitotic processes.
Collapse
Affiliation(s)
- Zexian Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Lei Peng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Jinghua Zeng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Kejia Yuan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yan Tang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
20
|
Cao Y, Xu J, Liu J, Liang Y, Ao F, Wang S, Wei Z, Wang L. Bisphenol A exposure decreases sperm production and male fertility through inhibition PCBP2 expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123309-123323. [PMID: 37985585 DOI: 10.1007/s11356-023-30815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Growing evidence suggests that the exposure of bisphenol A (BPA), an endocrine disruptor that commonly present in the environment, can impair reproduction. However, conflicting results have been reported, and the underlying mechanism has not been fully understood. In this study, 3-week-old male mice were oral exposed to 50 mg/kg/d BPA or equivalent corn oil for 28 days. Their testis and epididymis were then collected for morphology examination by HE stains. The number of sperm was counted, and the morphology was analyzed by PNA (peptide nucleic acid) and pap staining. Fertilization capacity and successful rate were analyzed after mating with wide-type females. Spermatid DNA damage and apoptosis were evaluated by DFI, γH2AX stain, and TUNEL assay. RNA sequencing analysis was conducted to identify differentially expressed genes in testicular tissue of mice exposed to BPA. RNA interference was used to verify the regulatory mechanism of BPA exposure on gene expression in GC-2 cells. Our data showed that the total number of sperm was decreased and the morphology was impaired in BPA-exposed mice. In addition, the serum testosterone level and fertilization efficiency were also reduced. Mechanism studies showed that BPA could suppress the expression of PCBP2, a key regulatory gene in spermatid development, by activating the EZH2/H3K27me3. In conclusion, we found that BPA exposure can impair spermatid development via affecting key gene expression that is at least partially due to epigenetic modification.
Collapse
Affiliation(s)
- Yuming Cao
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Jinfeng Xu
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Yan Liang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Fei Ao
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Shengnan Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Zexiao Wei
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Li Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Wu Y, Song T, Xu Q. R-LOOPs on Short Tandem Repeat Expansion Disorders in Neurodegenerative Diseases. Mol Neurobiol 2023; 60:7185-7195. [PMID: 37540313 DOI: 10.1007/s12035-023-03531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Expansions of short tandem repeats (STRs) have been found to be present in more than 50 diseases and have a close connection with neurodegenerative diseases. Transcriptional silencing and R-LOOP formation, RNA-mediated sequestration of RNA-binding proteins (RBPs), gain-of-function (GOF) proteins containing expanded repeats, and repeat-associated non-AUG (RAN) translation of toxic repeat peptides are some potential molecular mechanisms underlying STR expansion disorders. R-LOOP, a byproduct of transcription, is a three-stranded nucleic acid structure with abnormal accumulation that participates in the pathogenesis of STR expansion disorders by inducing DNA damage and genome instability. R-LOOPs can engender a series of DNA damage, such as DNA double-strand breaks (DSBs), single-strand breaks (SSBs), DNA recombination, or mutations in the DNA replication, transcription, or repair processes. In this review, we provide an in-depth discussion of recent advancements in R-LOOP and systematically elaborate on its genetic destabilizing effects in several neurodegenerative diseases. These molecular mechanisms will provide novel targets for drug design and therapeutic upgrading of these devastating diseases.
Collapse
Affiliation(s)
- Yiting Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingwei Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.
| |
Collapse
|
22
|
Sokolova V, Miratsky J, Svetlov V, Brenowitz M, Vant J, Lewis T, Dryden K, Lee G, Sarkar S, Nudler E, Singharoy A, Tan D. Structural mechanism of HP1α-dependent transcriptional repression and chromatin compaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569387. [PMID: 38076844 PMCID: PMC10705452 DOI: 10.1101/2023.11.30.569387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Heterochromatin protein 1 (HP1) plays a central role in establishing and maintaining constitutive heterochromatin. However, the mechanisms underlying HP1-nucleosome interactions and their contributions to heterochromatin functions remain elusive. In this study, we employed a multidisciplinary approach to unravel the interactions between human HP1α and nucleosomes. We have elucidated the cryo-EM structure of an HP1α dimer bound to an H2A.Z nucleosome, revealing that the HP1α dimer interfaces with nucleosomes at two distinct sites. The primary binding site is located at the N-terminus of histone H3, specifically at the trimethylated K9 (K9me3) region, while a novel secondary binding site is situated near histone H2B, close to nucleosome superhelical location 4 (SHL4). Our biochemical data further demonstrates that HP1α binding influences the dynamics of DNA on the nucleosome. It promotes DNA unwrapping near the nucleosome entry and exit sites while concurrently restricting DNA accessibility in the vicinity of SHL4. This study offers a model that explains how HP1α functions in heterochromatin maintenance and gene silencing, particularly in the context of H3K9me-dependent mechanisms. Additionally, it sheds light on the H3K9me-independent role of HP1 in responding to DNA damage.
Collapse
Affiliation(s)
- Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| | - Jacob Miratsky
- School of Molecular Sciences, Arizona State University; Tempe, AZ, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Vant
- School of Molecular Sciences, Arizona State University; Tempe, AZ, USA
| | - Tyler Lewis
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| | - Kelly Dryden
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903 USA
| | - Gahyun Lee
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| | - Shayan Sarkar
- Department of Pathology, Stony Brook University; Stony Brook, New York, 11794 USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| |
Collapse
|
23
|
Zhao H, Lin Y, Lin E, Liu F, Shu L, Jing D, Wang B, Wang M, Shan F, Zhang L, Lam JC, Midla SC, Giardine BM, Keller CA, Hardison RC, Blobel GA, Zhang H. Genome folding principles revealed in condensin-depleted mitotic chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566494. [PMID: 38014261 PMCID: PMC10680603 DOI: 10.1101/2023.11.09.566494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
During mitosis, condensin activity interferes with interphase chromatin structures. Here, we generated condensin-free mitotic chromosomes to investigate genome folding principles. Co-depletion of condensin I and II, but neither alone, triggered mitotic chromosome compartmentalization in ways that differ from interphase. Two distinct euchromatic compartments, indistinguishable in interphase, rapidly emerged upon condensin loss with different interaction preferences and dependence on H3K27ac. Constitutive heterochromatin gradually self-aggregated and co-compartmentalized with the facultative heterochromatin, contrasting with their separation during interphase. While topologically associating domains (TADs) and CTCF/cohesin mediated structural loops remained undetectable, cis-regulatory element contacts became apparent, providing an explanation for their quick re-establishment during mitotic exit. HP1 proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M- to G1-phase in the combined absence of HP1α, HP1β and HP1γ, re-established constitutive heterochromatin compartments normally. In sum, "clean-slate" condensing-deficient mitotic chromosomes illuminate mechanisms of genome compartmentalization not revealed in interphase cells.
Collapse
Affiliation(s)
- Han Zhao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yinzhi Lin
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - En Lin
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Fuhai Liu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Lirong Shu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Dannan Jing
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Baiyue Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Manzhu Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- School of Basic medicine, Capital Medical University, Beijing, China
| | - Fengnian Shan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- School of Pharmacology, South China University of Technology, Guangzhou, Guangdong, China
| | - Lin Zhang
- School of Biological Science, Hongkong University, Hongkong, China
| | - Jessica C. Lam
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susannah C. Midla
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Belinda M. Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Cheryl A. Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A. Blobel
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Stylianakis E, Chan JPK, Law PP, Jiang Y, Khadayate S, Karimi MM, Festenstein R, Vannier JB. Mouse HP1γ regulates TRF1 expression and telomere stability. Life Sci 2023; 331:122030. [PMID: 37598977 DOI: 10.1016/j.lfs.2023.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
AIMS Telomeric repeat-containing RNAs are long non-coding RNAs generated from the telomeres. TERRAs are essential for the establishment of heterochromatin marks at telomeres, which serve for the binding of members of the heterochromatin protein 1 (HP1) protein family of epigenetic modifiers involved with chromatin compaction and gene silencing. While HP1γ is enriched on gene bodies of actively transcribed human and mouse genes, it is unclear if its transcriptional role is important for HP1γ function in telomere cohesion and telomere maintenance. We aimed to study the effect of mouse HP1γ on the transcription of telomere factors and molecules that can affect telomere maintenance. MAIN METHODS We investigated the telomere function of HP1γ by using HP1γ deficient mouse embryonic fibroblasts (MEFs). We used gene expression analysis of HP1γ deficient MEFs and validated the molecular and mechanistic consequences of HP1γ loss by telomere FISH, immunofluorescence, RT-qPCR and DNA-RNA immunoprecipitation (DRIP). KEY FINDINGS Loss of HP1γ in primary MEFs led to a downregulation of various telomere and telomere-accessory transcripts, including the shelterin protein TRF1. Its downregulation is associated with increased telomere replication stress and DNA damage (γH2AX), effects more profound in females. We suggest that the source for the impaired telomere maintenance is a consequence of increased telomeric DNA-RNA hybrids and TERRAs arising at and from mouse chromosomes 18 and X. SIGNIFICANCE Our results suggest an important transcriptional control by mouse HP1γ of various telomere factors including TRF1 protein and TERRAs that has profound consequences on telomere stability, with a potential sexually dimorphic nature.
Collapse
Affiliation(s)
- Emmanouil Stylianakis
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jackson Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Pui Pik Law
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Yi Jiang
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Sanjay Khadayate
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad Mahdi Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Richard Festenstein
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jean-Baptiste Vannier
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
25
|
Zukher I, Dujardin G, Sousa-Luís R, Proudfoot NJ. Elongation roadblocks mediated by dCas9 across human genes modulate transcription and nascent RNA processing. Nat Struct Mol Biol 2023; 30:1536-1548. [PMID: 37783853 PMCID: PMC10584677 DOI: 10.1038/s41594-023-01090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Non-cleaving Cas9 (dCas9) is widely employed to manipulate specific gene loci, often with scant regard for unintended transcriptional effects. We demonstrate here that dCas9 mediates precise RNA polymerase II transcriptional pausing followed by transcription termination and potential alternative polyadenylation. By contrast, alternative splicing is unaffected, likely requiring more sustained alteration to elongation speed. The effect on transcription is orientation specific, with pausing only being induced when dCas9-associated guide RNA anneals to the non-template strand. Targeting the template strand induces minimal effects on transcription elongation and thus provides a neutral approach to recruit dCas9-linked effector domains to specific gene regions. In essence, we evaluate molecular effects of targeting dCas9 to mammalian transcription units. In so doing, we also provide new information on elongation by RNA polymerase II and coupled pre-mRNA processing.
Collapse
Affiliation(s)
- Inna Zukher
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Gwendal Dujardin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rui Sousa-Luís
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Wang CW, Chuang HC, Tan TH. ACE2 in chronic disease and COVID-19: gene regulation and post-translational modification. J Biomed Sci 2023; 30:71. [PMID: 37608279 PMCID: PMC10464117 DOI: 10.1186/s12929-023-00965-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a counter regulator of the renin-angiotensin system, provides protection against several chronic diseases. Besides chronic diseases, ACE2 is the host receptor for SARS-CoV or SARS-CoV-2 virus, mediating the first step of virus infection. ACE2 levels are regulated by transcriptional, post-transcriptional, and post-translational regulation or modification. ACE2 transcription is enhanced by transcription factors including Ikaros, HNFs, GATA6, STAT3 or SIRT1, whereas ACE2 transcription is reduced by the transcription factor Brg1-FoxM1 complex or ERRα. ACE2 levels are also regulated by histone modification or miRNA-induced destabilization. The protein kinase AMPK, CK1α, or MAP4K3 phosphorylates ACE2 protein and induces ACE2 protein levels by decreasing its ubiquitination. The ubiquitination of ACE2 is induced by the E3 ubiquitin ligase MDM2 or UBR4 and decreased by the deubiquitinase UCHL1 or USP50. ACE2 protein levels are also increased by the E3 ligase PIAS4-mediated SUMOylation or the methyltransferase PRMT5-mediated ACE2 methylation, whereas ACE2 protein levels are decreased by AP2-mediated lysosomal degradation. ACE2 is downregulated in several human chronic diseases like diabetes, hypertension, or lung injury. In contrast, SARS-CoV-2 upregulates ACE2 levels, enhancing host cell susceptibility to virus infection. Moreover, soluble ACE2 protein and exosomal ACE2 protein facilitate SARS-CoV-2 infection into host cells. In this review, we summarize the gene regulation and post-translational modification of ACE2 in chronic disease and COVID-19. Understanding the regulation and modification of ACE2 may help to develop prevention or treatment strategies for ACE2-mediated diseases.
Collapse
Affiliation(s)
- Chia-Wen Wang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| |
Collapse
|
27
|
Joron K, Viegas JO, Haas-Neill L, Bier S, Drori P, Dvir S, Lim PSL, Rauscher S, Meshorer E, Lerner E. Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation. Nat Commun 2023; 14:4885. [PMID: 37573411 PMCID: PMC10423231 DOI: 10.1038/s41467-023-40647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Fluorescent proteins (FP) are frequently used for studying proteins inside cells. In advanced fluorescence microscopy, FPs can report on additional intracellular variables. One variable is the local density near FPs, which can be useful in studying densities within cellular bio-condensates. Here, we show that a reduction in fluorescence lifetimes of common monomeric FPs reports increased levels of local densities. We demonstrate the use of this fluorescence-based variable to report the distribution of local densities within heterochromatin protein 1α (HP1α) in mouse embryonic stem cells (ESCs), before and after early differentiation. We find that local densities within HP1α condensates in pluripotent ESCs are heterogeneous and cannot be explained by a single liquid phase. Early differentiation, however, induces a change towards a more homogeneous distribution of local densities, which can be explained as a liquid-like phase. In conclusion, we provide a fluorescence-based method to report increased local densities and apply it to distinguish between homogeneous and heterogeneous local densities within bio-condensates.
Collapse
Affiliation(s)
- Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Juliane Oliveira Viegas
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Liam Haas-Neill
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Sariel Bier
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shani Dvir
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Patrick Siang Lin Lim
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
- Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
28
|
Huang L, Wang Q, Gu S, Cao N. Integrated metabolic and epigenetic mechanisms in cardiomyocyte proliferation. J Mol Cell Cardiol 2023; 181:79-88. [PMID: 37331466 DOI: 10.1016/j.yjmcc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Heart disease continues to be the leading cause of mortality worldwide, primarily attributed to the restricted regenerative potential of the adult human heart following injury. In contrast to their adult counterparts, many neonatal mammals can spontaneously regenerate their myocardium in the first few days of life via extensive proliferation of the pre-existing cardiomyocytes. Reasons for the decline in regenerative capacity during postnatal development, and how to control it, remain largely unexplored. Accumulated evidence suggests that the preservation of regenerative potential depends on a conducive metabolic state in the embryonic and neonatal heart. Along with the postnatal increase in oxygenation and workload, the mammalian heart undergoes a metabolic transition, shifting its primary metabolic substrate from glucose to fatty acids shortly after birth for energy advantage. This metabolic switch causes cardiomyocyte cell-cycle arrest, which is widely regarded as a key mechanism for the loss of regenerative capacity. Beyond energy provision, emerging studies have suggested a link between this intracellular metabolism dynamics and postnatal epigenetic remodeling of the mammalian heart that reshapes the expression of many genes important for cardiomyocyte proliferation and cardiac regeneration, since many epigenetic enzymes utilize kinds of metabolites as obligate cofactors or substrates. This review summarizes the current state of knowledge of metabolism and metabolite-mediated epigenetic modifications in cardiomyocyte proliferation, with a particular focus on highlighting the potential therapeutic targets that hold promise to treat human heart failure via metabolic and epigenetic regulations.
Collapse
Affiliation(s)
- Liying Huang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Qiyuan Wang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Nan Cao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
29
|
Alves VC, Figueiro-Silva J, Ferrer I, Carro E. Epigenetic silencing of OR and TAS2R genes expression in human orbitofrontal cortex at early stages of sporadic Alzheimer's disease. Cell Mol Life Sci 2023; 80:196. [PMID: 37405535 PMCID: PMC10322771 DOI: 10.1007/s00018-023-04845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Modulation of brain olfactory (OR) and taste receptor (TASR) expression was recently reported in neurological diseases. However, there is still limited evidence of these genes' expression in the human brain and the transcriptional regulation mechanisms involved remain elusive. We explored the possible expression and regulation of selected OR and TASR in the human orbitofrontal cortex (OFC) of sporadic Alzheimer's disease (AD) and non-demented control specimens using quantitative real-time RT-PCR and ELISA. Global H3K9me3 amounts were measured on OFC total histone extracts, and H3K9me3 binding at each chemoreceptor locus was examined through native chromatin immunoprecipitation. To investigate the potential interactome of the repressive histone mark H3K9me3 in OFC specimens, native nuclear complex co-immunoprecipitation (Co-IP) was combined with reverse phase-liquid chromatography coupled to mass spectrometry analysis. Interaction between H3K9me3 and MeCP2 was validated by reciprocal Co-IP, and global MeCP2 levels were quantitated. We found that OR and TAS2R genes are expressed and markedly downregulated in OFC at early stages of sporadic AD, preceding the progressive reduction in their protein levels and the appearance of AD-associated neuropathology. The expression pattern did not follow disease progression suggesting transcriptional regulation through epigenetic mechanisms. We discovered an increase of OFC global H3K9me3 levels and a substantial enrichment of this repressive signature at ORs and TAS2Rs proximal promoter at early stages of AD, ultimately lost at advanced stages. We revealed the interaction between H3K9me3 and MeCP2 at early stages and found that MeCP2 protein is increased in sporadic AD. Findings suggest MeCP2 might be implicated in OR and TAS2R transcriptional regulation through interaction with H3K9me3, and as an early event, it may uncover a novel etiopathogenetic mechanism of sporadic AD.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Joana Figueiro-Silva
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| | - Isidre Ferrer
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuropathology, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Eva Carro
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Present Address: Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Caroli J, Mattevi A. The NPAC-LSD2 complex in nucleosome demethylation. Enzymes 2023; 53:97-111. [PMID: 37748839 DOI: 10.1016/bs.enz.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
NPAC is a transcriptional co-activator widely associated with the H3K36me3 epigenetic marks present in the gene bodies. NPAC plays a fundamental role in RNA polymerase progression, and its depletion downregulates gene transcription. In this chapter, we review the current knowledge on the functional and structural features of this multi-domain protein. NPAC (also named GLYR1 or NP60) contains a PWWP motif, a chromatin binder and epigenetic reader that is proposed to weaken the DNA-histone contacts facilitating polymerase passage through the nucleosomes. The C-terminus of NPAC is a catalytically inactive dehydrogenase domain that forms a stable and rigid tetramer acting as an oligomerization module for the formation of co-transcriptional multimeric complexes. The PWWP and dehydrogenase domains are connected by a long, mostly disordered, linker that comprises putative sites for protein and DNA interactions. A short dodecapeptide sequence (residues 214-225) forms the binding site for LSD2, a flavin-dependent lysine-specific histone demethylase. This stretch of residues binds on the surface of LSD2 and facilitates the capture and processing of the H3 tail in the nucleosome context, thus promoting the H3K4me1/2 epigenetic mark removal. LSD2 is associated with other two chromatin modifiers, G9a and NSD3. The LSD2-G9a-NSD3 complex modifies the pattern of the post translational modifications deposited on histones, thus converting the relaxed chromatin into a transcriptionally refractory state after the RNA polymerase passage. NPAC is a scaffolding factor that organizes and coordinates the epigenetic activities required for optimal transcription elongation.
Collapse
Affiliation(s)
- Jonatan Caroli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
31
|
Boehm D, Lam V, Schnolzer M, Ott M. The lysine methyltransferase SMYD5 amplifies HIV-1 transcription and is post-transcriptionally upregulated by Tat and USP11. Cell Rep 2023; 42:112234. [PMID: 36897778 PMCID: PMC10124996 DOI: 10.1016/j.celrep.2023.112234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/22/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
A successful HIV-1 cure strategy may require enhancing HIV-1 latency to silence HIV-1 transcription. Modulators of gene expression show promise as latency-promoting agents in vitro and in vivo. Here, we identify Su(var)3-9, enhancer-of-zeste, and trithorax (SET) and myeloid, Nervy, and DEAF-1 (MYND) domain-containing protein 5 (SMYD5) as a host factor required for HIV-1 transcription. SMYD5 is expressed in CD4+ T cells and activates the HIV-1 promoter with or without the viral Tat protein, while knockdown of SMYD5 decreases HIV-1 transcription in cell lines and primary T cells. SMYD5 associates in vivo with the HIV-1 promoter and binds the HIV trans-activation response (TAR) element RNA and Tat. Tat is methylated by SMYD5 in vitro, and in cells expressing Tat, SMYD5 protein levels are increased. The latter requires expression of the Tat cofactor and ubiquitin-specific peptidase 11 (USP11). We propose that SMYD5 is a host activator of HIV-1 transcription stabilized by Tat and USP11 and, together with USP11, a possible target for latency-promoting therapy.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Victor Lam
- Tetrad Graduate Program, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Martina Schnolzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Melanie Ott
- Gladstone Institute of Virology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
32
|
EZH2 interacts with HP1BP3 to epigenetically activate WNT7B that promotes temozolomide resistance in glioblastoma. Oncogene 2023; 42:461-470. [PMID: 36517590 DOI: 10.1038/s41388-022-02570-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor in adults and harbors a subpopulation of glioma stem cells (GSCs). Enhancer of Zeste Homolog 2 (EZH2), a histone lysine methyltransferase, deeply involves in the stemness maintenance of GSC. However, the precise mechanism and therapeutic potential remain elusive. We postulated that the interactome of EZH2 in GSC is unique. Therefore, we performed proteomic and transcriptomic research to unveil the oncogenic mechanism of EZH2. Immunoprecipitation and mass spectrometry were used to identify proteins that co-precipitate with EZH2. We show that EZH2 binds to heterochromatin protein 1 binding protein 3 (HP1BP3) in GSCs and impairs the methylation of H3K9. Overexpression of HP1BP3 enhances the proliferation, self-renewal and temozolomide (TMZ) resistance of GBM cells. Furthermore, EZH2 and HP1BP3 co-activate WNT7B expression thereby increasing TMZ resistance and stemness of GBM cells. Importantly, inhibition of WNT7B autocrine via LGK974 effectively reverses the TMZ resistance. Our work clarifies a new oncogenic mechanism of EZH2 by which it interacts with HP1BP3 and epigenetically activates WNT7B thereby promoting TMZ resistance in GSCs. Our results provide a rationale for targeting WNT/β-catenin pathway as a promising strategy to overcome TMZ resistance in GSCs.
Collapse
|
33
|
Wistner SC, MacDonald IA, Stanley KA, Hathaway NA. Characterization of Hepatoma-Derived Growth Factor-Related Protein 2 Interactions with Heterochromatin. Cells 2023; 12:325. [PMID: 36672260 PMCID: PMC9856275 DOI: 10.3390/cells12020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
The expression of genetic information is tightly controlled by chromatin regulatory proteins, including those in the heterochromatin gene repression family. Many of these regulatory proteins work together on the chromatin substrate to precisely regulate gene expression during mammalian development, giving rise to many different tissues in higher organisms from a fixed genomic template. Here we identify and characterize the interactions of two related heterochromatin regulatory proteins, heterochromatin protein 1 alpha (HP1α) and M-phase phosphoprotein 8 (MPP8), with hepatoma-derived growth factor-related protein 2 (HRP2). We find in biochemical experiments that HRP2 copurifies and co-sediments with heterochromatin-associated proteins, including HP1α and MPP8. Using the Chromatin in vivo Assay in multiple cell types, we demonstrate that HP1α-mediated gene repression dynamics are altered by the presence of HRP2. Furthermore, the knockout of HRP2 in MDA-MB-231 cells results in significant changes to chromatin structure and stability, which alter gene expression patterns. Here, we detail a mechanism by which HRP2 contributes to epigenetic transcriptional regulation through engagement with heterochromatin-associated proteins to stabilize the chromatin landscape and influence gene expression.
Collapse
Affiliation(s)
- Sarah C. Wistner
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian A. MacDonald
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karly A. Stanley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel A. Hathaway
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Wu X, Liu H, Lian B, Jiang X, Chen C, Tang T, Ding X, Hu J, Zhao S, Zhang S, Wu J. Genome-wide analysis of epigenetic and transcriptional changes in the pathogenesis of RGSV in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1090794. [PMID: 36714706 PMCID: PMC9874293 DOI: 10.3389/fpls.2022.1090794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Rice grassy stunt virus (RGSV), a typical negative single-stranded RNA virus, invades rice and generates several disease signs, including dwarfing, tillering, and sterility. Previous research has revealed that RGSV-encoded proteins can force the host's ubiquitin-proteasome system to utilize them for viral pathogenesis. However, most of the studies were limited to a single omics level and lacked multidimensional data collection and correlation analysis on the mechanisms of RGSV-rice interactions. Here, we performed a comprehensive association analysis of genome-wide methylation sequencing, transcriptome sequencing, and histone H3K9me3 modification in RGSV-infested as well as non-infested rice leaves, and the levels of all three cytosine contexts (CG, CHG and CHH) were found to be slightly lower in RGSV-infected rice leaves than in normal rice. Large proportions of DMRs were distributed in the promoter and intergenic regions, and most DMRs were enriched in the CHH context, where the number of CHH hypo-DMRs was almost twice as high as that of hyper-DMRs. Among the genes with down-regulated expression and hypermethylation, we analyzed and identified 11 transcripts involved in fertility, plant height and tillering, and among the transcribed up-regulated and hypermethylated genes, we excavated 7 transcripts related to fertility, plant height and tillering. By analyzing the changes of histone H3K9me3 modification before and after virus infestation, we found that the distribution of H3K9me3 modification in the whole rice genome was prevalent, mainly concentrated in the gene promoter and gene body regions, which was distinctly different from the characteristics of animals. Combined with transcriptomic data, H3K9me3 mark was found to favor targeting highly expressed genes. After RGSV infection, H3K9me3 modifications in several regions of CTK and BR hormone signaling-related genes were altered, providing important targets for subsequent studies.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongfei Liu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bi Lian
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Jiang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cheng Chen
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianxin Tang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinlun Ding
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Hu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shanshan Zhao
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zhang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
Qiu X, Kong L, Chen H, Lin Y, Tu S, Wang L, Chen Z, Zeng M, Xiao J, Yuan P, Qiu M, Wang Y, Ye W, Duan K, Dong S, Wang Y. The Phytophthora sojae nuclear effector PsAvh110 targets a host transcriptional complex to modulate plant immunity. THE PLANT CELL 2023; 35:574-597. [PMID: 36222564 PMCID: PMC9806631 DOI: 10.1093/plcell/koac300] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/18/2022] [Indexed: 05/27/2023]
Abstract
Plants have evolved sophisticated immune networks to restrict pathogen colonization. In response, pathogens deploy numerous virulent effectors to circumvent plant immune responses. However, the molecular mechanisms by which pathogen-derived effectors suppress plant defenses remain elusive. Here, we report that the nucleus-localized RxLR effector PsAvh110 from the pathogen Phytophthora sojae, causing soybean (Glycine max) stem and root rot, modulates the activity of a transcriptional complex to suppress plant immunity. Soybean like-heterochromatin protein 1-2 (GmLHP1-2) and plant homeodomain finger protein 6 (GmPHD6) form a transcriptional complex with transcriptional activity that positively regulates plant immunity against Phytophthora infection. To suppress plant immunity, the nuclear effector PsAvh110 disrupts the assembly of the GmLHP1-2/GmPHD6 complex via specifically binding to GmLHP1-2, thus blocking its transcriptional activity. We further show that PsAvh110 represses the expression of a subset of immune-associated genes, including BRI1-associated receptor kinase 1-3 (GmBAK1-3) and pathogenesis-related protein 1 (GmPR1), via G-rich elements in gene promoters. Importantly, PsAvh110 is a conserved effector in different Phytophthora species, suggesting that the PsAvh110 regulatory mechanism might be widely utilized in the genus to manipulate plant immunity. Thus, our study reveals a regulatory mechanism by which pathogen effectors target a transcriptional complex to reprogram transcription.
Collapse
Affiliation(s)
- Xufang Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqun Tu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Vinson DA, Stephens KE, O’Meally RN, Bhat S, Dancy BCR, Cole RN, Yegnasubramanian S, Taverna SD. De novo methylation of histone H3K23 by the methyltransferases EHMT1/GLP and EHMT2/G9a. Epigenetics Chromatin 2022; 15:36. [PMID: 36411491 PMCID: PMC9677696 DOI: 10.1186/s13072-022-00468-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022] Open
Abstract
Epigenetic modifications to histone proteins serve an important role in regulating permissive and repressive chromatin states, but despite the identification of many histone PTMs and their perceived role, the epigenetic writers responsible for generating these chromatin signatures are not fully characterized. Here, we report that the canonical histone H3K9 methyltransferases EHMT1/GLP and EHMT2/G9a are capable of catalyzing methylation of histone H3 lysine 23 (H3K23). Our data show that while both enzymes can mono- and di-methylate H3K23, only EHMT1/GLP can tri-methylate H3K23. We also show that pharmacologic inhibition or genetic ablation of EHMT1/GLP and/or EHMT2/G9a leads to decreased H3K23 methylation in mammalian cells. Taken together, this work identifies H3K23 as a new direct methylation target of EHMT1/GLP and EHMT2/G9a, and highlights the differential activity of these enzymes on H3K23 as a substrate.
Collapse
Affiliation(s)
- David A. Vinson
- grid.21107.350000 0001 2171 9311Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kimberly E. Stephens
- grid.21107.350000 0001 2171 9311Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Robert N. O’Meally
- grid.21107.350000 0001 2171 9311Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Shri Bhat
- grid.21107.350000 0001 2171 9311Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Blair C. R. Dancy
- grid.21107.350000 0001 2171 9311Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.507680.c0000 0001 2230 3166Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500 USA
| | - Robert N. Cole
- grid.21107.350000 0001 2171 9311Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Sean D. Taverna
- grid.21107.350000 0001 2171 9311Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
37
|
Mishra R, Haldar S, Biondi S, Bhari VK, Singh G, Bhowmick NA. TGF-β controls stromal telomere length through epigenetic modifications. 3 Biotech 2022; 12:290. [PMID: 36276465 PMCID: PMC9512944 DOI: 10.1007/s13205-022-03346-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/01/2022] [Indexed: 11/01/2022] Open
Abstract
Telomere length is primarily controlled by the enzyme telomerase, but being chromatin structures, telomeres undergo epigenetic regulation for their maintenance and function. Altered telomere length among cancer cells combined with shorter telomere length in cancer-associated stromal cells, strongly implicated with progression to prostate cancer metastasis and cancer death and providing a novel target for therapeutics. Transforming growth factor-β (TGF-β) signaling pathways are well-recognized for their role in stromal-epithelial interactions responsible for prostate androgen responsiveness, promoting tumorigenesis. However, the underlying mechanism remains unclear. We sought to establish a role for TGF-β in the regulation of telomere length in mouse and human prostate fibroblast. Polymerase chain reaction (PCR)-based telomere length measuring methods are widely used due to their repeatability and reproducibility. Using real-time RT-PCR-based telomere length measuring method, we identified that TGF-beta regulates telomere length via increased expression of histone methyltransferase, Suv39h1, which in turn affected histone methylation levels at the telomeric ends. Moreover, treatment of DAPT and non-steroidal antiandrogen bicalutamide demonstrated that notch and androgen signaling co-operated with TGF-ß in regulating stromal telomere length. Telomere variation in tumor cells and non-tumor cells within the tumor microenvironment greatly facilitates the clinical assessment of prostate cancer; therefore, understanding stromal telomere length regulation mechanism will hold significant prospects for cancer treatment, diagnosis, and prognosis. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03346-5.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kalyanpur, Kanpur, UP 208024 India
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Subhash Haldar
- Department of Food and Nutrition, University of Gour Banga, Mokdumpur, West Bengal 732101 India
| | - Shea Biondi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Vikash Kumar Bhari
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007 India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016 India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, CA 90073 USA
| |
Collapse
|
38
|
Mining Transcriptomic Data to Uncover the Association between CBX Family Members and Cancer Stemness. Int J Mol Sci 2022; 23:ijms232113083. [PMID: 36361869 PMCID: PMC9656300 DOI: 10.3390/ijms232113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Genetic and epigenetic changes might facilitate the acquisition of stem cell-like phenotypes of tumors, resulting in worse patients outcome. Although the role of chromobox (CBX) domain proteins, a family of epigenetic factors that recognize specific histone marks, in the pathogenesis of several tumor types is well documented, little is known about their association with cancer stemness. Here, we have characterized the relationship between the CBX family members' expression and cancer stemness in liver, lung, pancreatic, and uterine tumors using publicly available TCGA and GEO databases and harnessing several bioinformatic tools (i.e., Oncomine, GEPIA2, TISIDB, GSCA, UALCAN, R2 platform, Enrichr, GSEA). We demonstrated that significant upregulation of CBX3 and downregulation of CBX7 are consistently associated with enriched cancer stem-cell-like phenotype across distinct tumor types. High CBX3 expression is observed in higher-grade tumors that exhibit stem cell-like traits, and CBX3-associated gene expression profiles are robustly enriched with stemness markers and targets for c-Myc transcription factor regardless of the tumor type. Similar to high-stemness tumors, CBX3-overexpressing cancers manifest a higher mutation load. On the other hand, higher-grade tumors are characterized by the significant downregulation of CBX7, and CBX7-associated gene expression profiles are significantly depleted with stem cell markers. In contrast to high-stemness tumors, cancer with CBX7 upregulation exhibit a lower mutation burden. Our results clearly demonstrate yet unrecognized association of high CBX3 and low CBX7 expression with cancer stem cell-like phenotype of solid tumors.
Collapse
|
39
|
Herman N, Kadener S, Shifman S. The chromatin factor ROW cooperates with BEAF-32 in regulating long-range inducible genes. EMBO Rep 2022; 23:e54720. [PMID: 36245419 PMCID: PMC9724677 DOI: 10.15252/embr.202254720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Insulator proteins located at the boundaries of topological associated domains (TAD) are involved in higher-order chromatin organization and transcription regulation. However, it is still not clear how long-range contacts contribute to transcriptional regulation. Here, we show that relative-of-WOC (ROW) is essential for the long-range transcription regulation mediated by the boundary element-associated factor of 32kD (BEAF-32). We find that ROW physically interacts with heterochromatin proteins (HP1b and HP1c) and the insulator protein (BEAF-32). These proteins interact at TAD boundaries where ROW, through its AT-hook motifs, binds AT-rich sequences flanked by BEAF-32-binding sites and motifs. Knockdown of row downregulates genes that are long-range targets of BEAF-32 and bound indirectly by ROW (without binding motif). Analyses of high-throughput chromosome conformation capture (Hi-C) data reveal long-range interactions between promoters of housekeeping genes bound directly by ROW and promoters of developmental genes bound indirectly by ROW. Thus, our results show cooperation between BEAF-32 and the ROW complex, including HP1 proteins, to regulate the transcription of developmental and inducible genes through long-range interactions.
Collapse
Affiliation(s)
- Neta Herman
- Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | | | - Sagiv Shifman
- Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
40
|
Rittiner J, Cumaran M, Malhotra S, Kantor B. Therapeutic modulation of gene expression in the disease state: Treatment strategies and approaches for the development of next-generation of the epigenetic drugs. Front Bioeng Biotechnol 2022; 10:1035543. [PMID: 36324900 PMCID: PMC9620476 DOI: 10.3389/fbioe.2022.1035543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic dysregulation is an important determinant of many pathological conditions and diseases. Designer molecules that can specifically target endogenous DNA sequences provide a means to therapeutically modulate gene function. The prokaryote-derived CRISPR/Cas editing systems have transformed our ability to manipulate the expression program of genes through specific DNA and RNA targeting in living cells and tissues. The simplicity, utility, and robustness of this technology have revolutionized epigenome editing for research and translational medicine. Initial success has inspired efforts to discover new systems for targeting and manipulating nucleic acids on the epigenetic level. The evolution of nuclease-inactive and RNA-targeting Cas proteins fused to a plethora of effector proteins to regulate gene expression, epigenetic modifications and chromatin interactions opened up an unprecedented level of possibilities for the development of "next-generation" gene therapy therapeutics. The rational design and construction of different types of designer molecules paired with viral-mediated gene-to-cell transfers, specifically using lentiviral vectors (LVs) and adeno-associated vectors (AAVs) are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription. Notwithstanding the speedy progress of CRISPR/Cas-based gene therapy products, multiple challenges outlined by undesirable off-target effects, oncogenicity and other virus-induced toxicities could derail the successful translation of these new modalities. Here, we review how CRISPR/Cas-based gene therapy is translated from research-grade technological system to therapeutic modality, paying particular attention to the therapeutic flow from engineering sophisticated genome and epigenome-editing transgenes to delivery vehicles throughout efficient and safe manufacturing and administration of the gene therapy regimens. In addition, the potential solutions to some of the obstacles facing successful CRISPR/Cas utility in the clinical research are discussed in this review. We believe, that circumventing these challenges will be essential for advancing CRISPR/Cas-based tools towards clinical use in gene and cell therapies.
Collapse
Affiliation(s)
- Joseph Rittiner
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Mohanapriya Cumaran
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Sahil Malhotra
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| |
Collapse
|
41
|
Chen C, Wang Z, Qin Y. Connections between metabolism and epigenetics: mechanisms and novel anti-cancer strategy. Front Pharmacol 2022; 13:935536. [PMID: 35935878 PMCID: PMC9354823 DOI: 10.3389/fphar.2022.935536] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cells undergo metabolic adaptations to sustain their growth and proliferation under several stress conditions thereby displaying metabolic plasticity. Epigenetic modification is known to occur at the DNA, histone, and RNA level, which can alter chromatin state. For almost a century, our focus in cancer biology is dominated by oncogenic mutations. Until recently, the connection between metabolism and epigenetics in a reciprocal manner was spotlighted. Explicitly, several metabolites serve as substrates and co-factors of epigenetic enzymes to carry out post-translational modifications of DNA and histone. Genetic mutations in metabolic enzymes facilitate the production of oncometabolites that ultimately impact epigenetics. Numerous evidences also indicate epigenome is sensitive to cancer metabolism. Conversely, epigenetic dysfunction is certified to alter metabolic enzymes leading to tumorigenesis. Further, the bidirectional relationship between epigenetics and metabolism can impact directly and indirectly on immune microenvironment, which might create a new avenue for drug discovery. Here we summarize the effects of metabolism reprogramming on epigenetic modification, and vice versa; and the latest advances in targeting metabolism-epigenetic crosstalk. We also discuss the principles linking cancer metabolism, epigenetics and immunity, and seek optimal immunotherapy-based combinations.
Collapse
|
42
|
Pelinski Y, Hidaoui D, Stolz A, Hermetet F, Chelbi R, Diop MK, Chioukh AM, Porteu F, Elvira-Matelot E. NF-κB signaling controls H3K9me3 levels at intronic LINE-1 and hematopoietic stem cell genes in cis. J Exp Med 2022; 219:213343. [PMID: 35802137 PMCID: PMC9274146 DOI: 10.1084/jem.20211356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 01/11/2023] Open
Abstract
Ionizing radiations (IR) alter hematopoietic stem cell (HSC) function on the long term, but the mechanisms underlying these effects are still poorly understood. We recently showed that IR induces the derepression of L1Md, the mouse young subfamilies of LINE-1/L1 retroelements. L1 contributes to gene regulatory networks. However, how L1Md are derepressed and impact HSC gene expression are not known. Here, we show that IR triggers genome-wide H3K9me3 decrease that occurs mainly at L1Md. Loss of H3K9me3 at intronic L1Md harboring NF-κB binding sites motifs but not at promoters is associated with the repression of HSC-specific genes. This is correlated with reduced NFKB1 repressor expression. TNF-α treatment rescued all these effects and prevented IR-induced HSC loss of function in vivo. This TNF-α/NF-κB/H3K9me3/L1Md axis might be important to maintain HSCs while allowing expression of immune genes during myeloid regeneration or damage-induced bone marrow ablation.
Collapse
Affiliation(s)
- Yanis Pelinski
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Donia Hidaoui
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne Stolz
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Hermetet
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rabie Chelbi
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - M’boyba Khadija Diop
- Université Paris-Saclay, Gif-sur-Yvette, France,Bioinformatics Platform UMS AMMICa INSERM US23/CNRS 3655, Gustave Roussy, Villejuif, France
| | - Amir M. Chioukh
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Françoise Porteu
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emilie Elvira-Matelot
- INSERM UMR1287, Gustave Roussy, Villejuif, France,Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
43
|
Yu H, Chen M, Hu Y, Ou S, Yu X, Liang S, Li N, Yang M, Kong X, Sun C, Jia S, Zhang Q, Liu L, Hurst LD, Li R, Wang W, Wang J. Dynamic reprogramming of H3K9me3 at hominoid-specific retrotransposons during human preimplantation development. Cell Stem Cell 2022; 29:1031-1050.e12. [PMID: 35803225 DOI: 10.1016/j.stem.2022.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Reprogramming of H3K9me3-dependent heterochromatin is required for early development. How H3K9me3 is involved in early human development remains, however, largely unclear. Here, we resolve the temporal landscape of H3K9me3 during human preimplantation development and its regulation for diverse hominoid-specific retrotransposons. At the 8-cell stage, H3K9me3 reprogramming at hominoid-specific retrotransposons termed SINE-VNTR-Alu (SVA) facilitates interaction between certain promoters and SVA-derived enhancers, promoting the zygotic genome activation. In trophectoderm, de novo H3K9me3 domains prevent pluripotent transcription factors from binding to hominoid-specific retrotransposons-derived regulatory elements for inner cell mass (ICM)-specific genes. H3K9me3 re-establishment at SVA elements in the ICM is associated with higher transcription of DNA repair genes, when compared with naive human pluripotent stem cells. Our data demonstrate that species-specific reorganization of H3K9me3-dependent heterochromatin at hominoid-specific retrotransposons plays important roles during early human development, shedding light on how the epigenetic regulation for early development has evolved in mammals.
Collapse
Affiliation(s)
- Hanwen Yu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Manqi Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yuanlang Hu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Songbang Ou
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiu Yu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Shiqi Liang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Niannian Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingzhu Yang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Xuhui Kong
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shiqi Jia
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Qingxue Zhang
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Ruiqi Li
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Wenjun Wang
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jichang Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
44
|
Bloskie T, Storey KB. Epigenetics of the frozen brain: roles for lysine methylation in hypometabolism. FEBS Lett 2022; 596:2007-2020. [PMID: 35770350 DOI: 10.1002/1873-3468.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022]
Abstract
Wood frog (Rana sylvatica) freeze tolerance necessitates metabolic rate depression, where costly processes such as gene transcription are commonly suppressed. Epigenetic mechanisms, such as histone lysine methylation, have recently been implicated in hypometabolic states of various animals, although they are underreported in nervous tissues. In the present study, we track the expression of eight lysine methyltransferases, as well as the activity on, and abundance of putative histone products across the freeze-thaw cycle and freeze-associated sub-stresses (anoxia, dehydration) of wood frog brains. Our results suggest that hypomethylation of transcriptionally repressive H3K9 may be a key facet of metabolic recovery during the thawing of nervous tissue, which we speculate may have a positive effect on global gene transcription. Some non-histone roles for lysine methylation are also proposed.
Collapse
Affiliation(s)
- Tighe Bloskie
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
45
|
Schoelz JM, Riddle NC. Functions of HP1 proteins in transcriptional regulation. Epigenetics Chromatin 2022; 15:14. [PMID: 35526078 PMCID: PMC9078007 DOI: 10.1186/s13072-022-00453-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/18/2022] [Indexed: 01/24/2023] Open
Abstract
In eukaryotes, DNA is packaged into chromatin, which presents significant barriers to transcription. Non-histone chromatin proteins such as the Heterochromatin Protein 1 (HP1) proteins are critical regulators of transcription, contributing to gene regulation through a variety of molecular mechanisms. HP1 proteins are highly conserved, and many eukaryotic genomes contain multiple HP1 genes. Given the presence of multiple HP1 family members within a genome, HP1 proteins can have unique as well as shared functions. Here, we review the mechanisms by which HP1 proteins contribute to the regulation of transcription. Focusing on the Drosophila melanogaster HP1 proteins, we examine the role of these proteins in regulating the transcription of genes, transposable elements, and piRNA clusters. In D. melanogaster, as in other species, HP1 proteins can act as transcriptional repressors and activators. The available data reveal that the precise impact of HP1 proteins on gene expression is highly context dependent, on the specific HP1 protein involved, on its protein partners present, and on the specific chromatin context the interaction occurs in. As a group, HP1 proteins utilize a variety of mechanisms to contribute to transcriptional regulation, including both transcriptional (i.e. chromatin-based) and post-transcriptional (i.e. RNA-based) processes. Despite extensive studies of this important protein family, open questions regarding their functions in gene regulation remain, specifically regarding the role of hetero- versus homodimerization and post-translational modifications of HP1 proteins.
Collapse
Affiliation(s)
- John M Schoelz
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicole C Riddle
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
46
|
Abstract
Human immunodeficiency virus (HIV)-infected macrophages are long-lived cells that sustain persistent virus expression, which is both a barrier to viral eradication and contributor to neurological complications in patients despite antiretroviral therapy (ART). To better understand the regulation of HIV-1 in macrophages, we compared HIV-infected primary human monocyte-derived macrophages (MDM) to acutely infected primary CD4 T cells and Jurkat cells latently infected with HIV (JLAT 8.4). HIV genomes in MDM were actively transcribed despite enrichment with heterochromatin-associated H3K9me3 across the complete HIV genome in combination with elevated activation marks of H3K9ac and H3K27ac at the long terminal repeat (LTR). Macrophage patterns contrasted with JLAT cells, which showed conventional bivalent H3K4me3/H3K27me3, and acutely infected CD4 T cells, which showed an intermediate epigenotype. 5'-Methylcytosine (5mC) was enriched across the HIV genome in latently infected JLAT cells, while 5'-hydroxymethylcytosine (5hmC) was enriched in CD4 cells and MDMs. HIV infection induced multinucleation of MDMs along with DNA damage-associated p53 phosphorylation, as well as loss of TET2 and the nuclear redistribution of 5-hydoxymethylation. Taken together, our findings suggest that HIV induces a unique macrophage nuclear and transcriptional profile, and viral genomes are maintained in a noncanonical bivalent epigenetic state. IMPORTANCE Macrophages serve as a reservoir for long-term persistence and chronic production of HIV. We found an atypical epigenetic control of HIV in macrophages marked by heterochromatic H3K9me3 despite active viral transcription. HIV infection induced changes in macrophage nuclear morphology and epigenetic regulatory factors. These findings may identify new mechanisms to control chronic HIV expression in infected macrophages.
Collapse
|
47
|
Du Y, Qian C. Non‐canonical bivalent H3K4me3K9me3 recognition by Spindlin1/C11orf84 complex. Bioessays 2022; 44:e2100229. [DOI: 10.1002/bies.202100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yongming Du
- School of Biomedical Sciences The University of Hong Kong Pok Fu Lam Hong Kong
| | - Chengmin Qian
- School of Biomedical Sciences The University of Hong Kong Pok Fu Lam Hong Kong
| |
Collapse
|
48
|
The Current State of Chromatin Immunoprecipitation (ChIP) from FFPE Tissues. Int J Mol Sci 2022; 23:ijms23031103. [PMID: 35163027 PMCID: PMC8834906 DOI: 10.3390/ijms23031103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer cells accumulate epigenomic aberrations that contribute to cancer initiation and progression by altering both the genomic stability and the expression of genes. The awareness of such alterations could improve our understanding of cancer dynamics and the identification of new therapeutic strategies and biomarkers to refine tumor classification and treatment. Formalin fixation and paraffin embedding (FFPE) is the gold standard to preserve both tissue integrity and organization, and, in the last decades, a huge number of biological samples have been archived all over the world following this procedure. Recently, new chromatin immunoprecipitation (ChIP) techniques have been developed to allow the analysis of histone post-translational modifications (PTMs) and transcription factor (TF) distribution in FFPE tissues. The application of ChIP to genome-wide chromatin studies using real archival samples represents an unprecedented opportunity to conduct retrospective clinical studies thanks to the possibility of accessing large cohorts of samples and their associated diagnostic records. However, although recent attempts to standardize have been made, fixation and storage conditions of clinical specimens are still extremely variable and can affect the success of chromatin studies. The procedures introduced in the last few years dealt with this problem proponing successful strategies to obtain high-resolution ChIP profiles from FFPE archival samples. In this review, we compare the different FFPE-ChIP techniques, highlighting their strengths, limitations, common features, and peculiarities, as well as pitfalls and caveats related to ChIP studies in FFPE samples, in order to facilitate their application.
Collapse
|
49
|
Naik A, Dalpatraj N, Thakur N. Global Gene Expression Regulation Mediated by TGFβ Through H3K9me3 Mark. Cancer Inform 2022; 21:11769351221115135. [PMID: 35923287 PMCID: PMC9340917 DOI: 10.1177/11769351221115135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Epigenetic alterations play an important part in carcinogenesis. Different biological responses, including cell proliferation, migration, apoptosis, invasion, and senescence, are affected by epigenetic alterations in cancer. In addition, growth factors, such as transforming growth factor beta (TGFβ) are important regulators of tumorigenesis. Our understanding of the interplay between the epigenetic bases of tumorigenesis and growth factor signaling in tumorigenesis is rudimentary. Some studies suggest a link between TGFβ signaling and the heterochromatinizing histone mark H3K9me3. There is evidence for signal-dependent interactions between R-Smads and histone methyltransferases. However, the effects of TGFβ signaling on genome wide H3K9me3 landscape remains unknown. Our research examines TGFβ -induced genome-wide H3K9me3 in prostate cancer. Method: Chromatin-Immunoprecipitation followed by sequencing was performed to analyze genome-wide association of H3K9me3 epigenetic mark. DAVID Functional annotation tool was utilized to understand the involvement of different Biological Processes and Molecular Function. MEME-ChIP tool was also used to analyze known and novel DNA-binding motifs. Results: H3K9me3 occupancy appears to increase at intronic regions after short-term (6 hours) TGFβ stimulation and at distal intergenic regions during long-term stimulation (24 hours). We also found evidence for a possible association of SLC transporters with H3K9me3 mark in presence of TGFβ during tumorigenesis. No direct correlation was found between the occupancy of H3K9me3 mark and the expression of various genes. The epigenetic mechanisms-mediated regulation of gene expression by TGFβ was concentrated at promoters rich in SRY and FOXJ3 binding sites. Conclusion: Our results point toward a positive association of oncogenic function of TGFβ and the H3K9me3 mark and provide a context to the role of H3K9me3 in TGFβ-induced cell migration and cell adhesion. Interestingly, these functions of TGFβ through H3K9me3 mark regulation seem to depend on transcriptional activation in contrast to the conventionally known repressive nature of H3K9me3.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Nidhi Dalpatraj
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| |
Collapse
|
50
|
Dion A, Muñoz PT, Franklin TB. Epigenetic mechanisms impacted by chronic stress across the rodent lifespan. Neurobiol Stress 2022; 17:100434. [PMID: 35198660 PMCID: PMC8841894 DOI: 10.1016/j.ynstr.2022.100434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Exposures to stress at all stages of development can lead to long-term behavioural effects, in part through changes in the epigenome. This review describes rodent research suggesting that stress in prenatal, postnatal, adolescent and adult stages leads to long-term changes in epigenetic regulation in the brain which have causal impacts on rodent behaviour. We focus on stress-induced epigenetic changes that have been linked to behavioural deficits including poor learning and memory, and increased anxiety-like and depressive-like behaviours. Interestingly, aspects of these stress-induced behavioural changes can be transmitted to offspring across several generations, a phenomenon that has been proposed to result via epigenetic mechanisms in the germline. Here, we also discuss evidence for the differential impact of stress on the epigenome in males and females, conscious of the fact that the majority of published studies have only investigated males. This has led to a limited picture of the epigenetic impact of stress, highlighting the need for future studies to investigate females as well as males.
Collapse
|