1
|
Grzechnik P, Mischo HE. Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination. J Mol Biol 2025; 437:168802. [PMID: 39321865 PMCID: PMC11870849 DOI: 10.1016/j.jmb.2024.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, United Kingdom
| | - Hannah E Mischo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
2
|
Kieft R, Zhang Y, Yan H, Schmitz RJ, Sabatini R. Protein phosphatase PP1 regulation of RNA polymerase II transcription termination and allelic exclusion of VSG genes in trypanosomes. Nucleic Acids Res 2024; 52:6866-6885. [PMID: 38783162 PMCID: PMC11229358 DOI: 10.1093/nar/gkae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The genomes of Leishmania and trypanosomes are organized into polycistronic transcription units flanked by a modified DNA base J involved in promoting RNA polymerase II (Pol II) termination. We recently characterized a Leishmania complex containing a J-binding protein, PP1 protein phosphatase 1, and PP1 regulatory protein (PNUTS) that controls transcription termination potentially via dephosphorylation of Pol II by PP1. While T. brucei contains eight PP1 isoforms, none purified with the PNUTS complex, complicating the analysis of PP1 function in termination. We now demonstrate that the PP1-binding motif of TbPNUTS is required for function in termination in vivo and that TbPP1-1 modulates Pol II termination in T. brucei and dephosphorylation of the large subunit of Pol II. PP1-1 knock-down results in increased cellular levels of phosphorylated RPB1 accompanied by readthrough transcription and aberrant transcription of the chromosome by Pol II, including Pol I transcribed loci that are typically silent, such as telomeric VSG expression sites involved in antigenic variation. These results provide important insights into the mechanism underlying Pol II transcription termination in primitive eukaryotes that rely on polycistronic transcription and maintain allelic exclusion of VSG genes.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Zhang Y, Sabatini R. Leishmania PNUTS discriminates between PP1 catalytic subunits through an RVxF-ΦΦ-F motif and polymorphisms in the PP1 C-tail and catalytic domain. J Biol Chem 2023; 299:105432. [PMID: 37926279 PMCID: PMC10731240 DOI: 10.1016/j.jbc.2023.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Phosphoprotein phosphatase 1 (PP1) associates with specific regulatory subunits to achieve, among other functions, substrate selectivity. Among the eight PP1 isotypes in Leishmania, PP1-8e associates with the regulatory protein PNUTS along with the structural factors JBP3 and Wdr82 in the PJW/PP1 complex that modulates RNA polymerase II (pol II) phosphorylation and transcription termination. Little is known regarding interactions involved in PJW/PP1 complex formation, including how PP1-8e is the selective isotype associated with PNUTS. Here, we show that PNUTS uses an established RVxF-ΦΦ-F motif to bind the PP1 catalytic domain with similar interfacial interactions as mammalian PP1-PNUTS and noncanonical motifs. These atypical interactions involve residues within the PP1-8e catalytic domain and N and C terminus for isoform-specific regulator binding. This work advances our understanding of PP1 isoform selectivity and reveals key roles of PP1 residues in regulator binding. We also explore the role of PNUTS as a scaffold protein for the complex by identifying the C-terminal region involved in binding JBP3 and Wdr82 and impact of PNUTS on the stability of complex components and function in pol II transcription in vivo. Taken together, these studies provide a potential mechanism where multiple motifs within PNUTS are used combinatorially to tune binding affinity to PP1, and the C terminus for JBP3 and Wdr82 association, in the Leishmania PJW/PP1 complex. Overall, our data provide insights in the formation of the PJW/PP1 complex involved in regulating pol II transcription in divergent protozoans where little is understood.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
4
|
Kieft R, Zhang Y, Yan H, Schmitz RJ, Sabatini R. Protein Phosphatase PP1 Regulation of Pol II Phosphorylation is Linked to Transcription Termination and Allelic Exclusion of VSG Genes and TERRA in Trypanosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.21.563358. [PMID: 37905150 PMCID: PMC10614956 DOI: 10.1101/2023.10.21.563358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The genomes of Leishmania and trypanosomes are organized into polycistronic transcription units flanked by a modified DNA base J involved in promoting RNA polymerase II (Pol II) termination. We recently characterized a Leishmania complex containing a J-binding protein, PP1 protein phosphatase 1, and PP1 regulatory protein (PNUTS) that controls transcription termination potentially via dephosphorylation of Pol II by PP1. While T. brucei contains eight PP1 isoforms, none purified with the PNUTS complex, suggesting a unique PP1-independent mechanism of termination. We now demonstrate that the PP1-binding motif of TbPNUTS is required for function in termination in vivo and that TbPP1-1 modulates Pol II termination in T. brucei involving dephosphorylation of the C-terminal domain of the large subunit of Pol II. PP1-1 knock-down results in increased cellular levels of phosphorylated large subunit of Pol II accompanied by readthrough transcription and pervasive transcription of the entire genome by Pol II, including Pol I transcribed loci that are typically silent, such as telomeric VSG expression sites involved in antigenic variation and production of TERRA RNA. These results provide important insights into the mechanism underlying Pol II transcription termination in primitive eukaryotes that rely on polycistronic transcription and maintain allelic exclusion of VSG genes.
Collapse
|
5
|
Han Z, Moore GA, Mitter R, Lopez Martinez D, Wan L, Dirac Svejstrup AB, Rueda DS, Svejstrup JQ. DNA-directed termination of RNA polymerase II transcription. Mol Cell 2023; 83:3253-3267.e7. [PMID: 37683646 PMCID: PMC7615648 DOI: 10.1016/j.molcel.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
RNA polymerase II (RNAPII) transcription involves initiation from a promoter, transcriptional elongation through the gene, and termination in the terminator region. In bacteria, terminators often contain specific DNA elements provoking polymerase dissociation, but RNAPII transcription termination is thought to be driven entirely by protein co-factors. We used biochemical reconstitution, single-molecule studies, and genome-wide analysis in yeast to study RNAPII termination. Transcription into natural terminators by pure RNAPII results in spontaneous termination at specific sequences containing T-tracts. Single-molecule analysis indicates that termination involves pausing without backtracking. The "torpedo" Rat1-Rai1 exonuclease (XRN2 in humans) greatly stimulates spontaneous termination but is ineffectual on other paused RNAPIIs. By contrast, elongation factor Spt4-Spt5 (DSIF) suppresses termination. Genome-wide analysis further indicates that termination occurs by transcript cleavage at the poly(A) site exposing a new 5' RNA-end that allows Rat1-Rai1 loading, which then catches up with destabilized RNAPII at specific termination sites to end transcription.
Collapse
Affiliation(s)
- Zhong Han
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - George A Moore
- Single Molecule Imaging group, MRC-London Institute of Medical Sciences, and Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Lopez Martinez
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Li Wan
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David S Rueda
- Single Molecule Imaging group, MRC-London Institute of Medical Sciences, and Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
6
|
Hegazy YA, Cloutier SC, Utturkar SM, Das S, Tran E. The genomic region of the 3' untranslated region (3'UTR) of PHO84, rather than the antisense RNA, promotes gene repression. Nucleic Acids Res 2023; 51:7900-7913. [PMID: 37462073 PMCID: PMC10450162 DOI: 10.1093/nar/gkad579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023] Open
Abstract
PHO84 is a budding yeast gene reported to be negatively regulated by its cognate antisense transcripts both in cis and in trans. In this study, we performed Transient-transcriptome sequencing (TT-seq) to investigate the correlation of sense/antisense pairs in a dbp2Δ strain and found over 700 sense/antisense pairs, including PHO84, to be positively correlated, contrasting the prevailing model. To define what mechanism regulates the PHO84 gene and how this regulation could have been originally attributed to repression by the antisense transcript, we conducted a series of molecular biology and genetics experiments. We now report that the 3' untranslated region (3'UTR) of PHO84 plays a repressive role in sense expression, an activity not linked to the antisense transcripts. Moreover, we provide results of a genetic screen for 3'UTR-dependent repression of PHO84 and show that the vast majority of identified factors are linked to negative regulation. Finally, we show that the PHO84 promoter and terminator form gene loops which correlate with transcriptional repression, and that the RNA-binding protein, Tho1, increases this looping and the 3'UTR-dependent repression. Our results negate the current model for antisense non-coding transcripts of PHO84 and suggest that many of these transcripts are byproducts of open chromatin.
Collapse
Affiliation(s)
- Youssef A Hegazy
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
| | - Sara C Cloutier
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
| | - Sagar M Utturkar
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street West Lafayette, IN 47907-2064, USA
| | - Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
| | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street West Lafayette, IN 47907-2064, USA
| |
Collapse
|
7
|
Rodríguez‐Molina JB, Turtola M. Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation. FEBS Open Bio 2023; 13:1140-1153. [PMID: 36416579 PMCID: PMC10315857 DOI: 10.1002/2211-5463.13528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
During their synthesis in the cell nucleus, most eukaryotic mRNAs undergo a two-step 3'-end processing reaction in which the pre-mRNA is cleaved and released from the transcribing RNA polymerase II and a polyadenosine (poly(A)) tail is added to the newly formed 3'-end. These biochemical reactions might appear simple at first sight (endonucleolytic RNA cleavage and synthesis of a homopolymeric tail), but their catalysis requires a multi-faceted enzymatic machinery, the cleavage and polyadenylation complex (CPAC), which is composed of more than 20 individual protein subunits. The activity of CPAC is further orchestrated by Poly(A) Binding Proteins (PABPs), which decorate the poly(A) tail during its synthesis and guide the mRNA through subsequent gene expression steps. Here, we review the structure, molecular mechanism, and regulation of eukaryotic mRNA 3'-end processing machineries with a focus on the polyadenylation step. We concentrate on the CPAC and PABPs from mammals and the budding yeast, Saccharomyces cerevisiae, because these systems are the best-characterized at present. Comparison of their functions provides valuable insights into the principles of mRNA 3'-end processing.
Collapse
Affiliation(s)
| | - Matti Turtola
- Department of Life TechnologiesUniversity of TurkuFinland
| |
Collapse
|
8
|
Liang D, Tatomer DC, Wilusz JE. Use of circular RNAs as markers of readthrough transcription to identify factors regulating cleavage/polyadenylation events. Methods 2021; 196:121-128. [PMID: 33882363 DOI: 10.1016/j.ymeth.2021.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs with covalently linked ends are generated from many eukaryotic protein-coding genes when the pre-mRNA splicing machinery backsplices. These mature transcripts are resistant to digestion by exonucleases and typically have much longer half-lives than their associated linear mRNAs. Circular RNAs thus have great promise as sensitive biomarkers, including for detection of transcriptional activity. Here, we show that circular RNAs can serve as markers of readthrough transcription events in Drosophila and human cells, thereby revealing mechanistic insights into RNA polymerase II transcription termination as well as pre-mRNA 3' end processing. We describe methods that take advantage of plasmids that generate a circular RNA when an upstream polyadenylation signal fails to be used and/or RNA polymerase II fails to terminate. As a proof-of-principle, we show that RNAi-mediated depletion of well-established transcription termination factors, including the RNA endonuclease Cpsf73, results in increased circular RNA output from these plasmids in Drosophila and human cells. This method is generalizable as a circular RNA can be easily encoded downstream of any genomic region of interest. Circular RNA biomarkers, therefore, have great promise for identifying novel cellular factors and conditions that impact transcription termination processes.
Collapse
Affiliation(s)
- Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Lee SD, Liu HY, Graber JH, Heller-Trulli D, Kaczmarek Michaels K, Cerezo JF, Moore CL. Regulation of the Ysh1 endonuclease of the mRNA cleavage/polyadenylation complex by ubiquitin-mediated degradation. RNA Biol 2020; 17:689-702. [PMID: 32009536 PMCID: PMC7237158 DOI: 10.1080/15476286.2020.1724717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mutation of the essential yeast protein Ipa1 has previously been demonstrated to cause defects in pre-mRNA 3' end processing and growth, but the mechanism underlying these defects was not clear. In this study, we show that the ipa1-1 mutation causes a striking depletion of Ysh1, the evolutionarily conserved endonuclease subunit of the 19-subunit mRNA Cleavage/Polyadenylation (C/P) complex, but does not decrease other C/P subunits. YSH1 overexpression rescues both the growth and 3' end processing defects of the ipa1-1 mutant. YSH1 mRNA level is unchanged in ipa1-1 cells, and proteasome inactivation prevents Ysh1 loss and causes accumulation of ubiquitinated Ysh1. Ysh1 ubiquitination is mediated by the Ubc4 ubiquitin-conjugating enzyme and Mpe1, which in addition to its function in C/P, is also a RING ubiquitin ligase. In summary, Ipa1 affects mRNA processing by controlling the availability of the C/P endonuclease and may represent a regulatory mechanism that could be rapidly deployed to facilitate reprogramming of cellular responses.
Collapse
Affiliation(s)
- Susan D. Lee
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Hui-Yun Liu
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Joel H. Graber
- Computational Biology and Bioinformatics Core, Mount Desert Island Biological Laboratory, Bar Harbor, ME, USA
| | - Daniel Heller-Trulli
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Katarzyna Kaczmarek Michaels
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | | | - Claire L. Moore
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
11
|
Yu J, Lu W, Ge T, Huang R, Chen B, Ye M, Bai Y, Shi G, Songyang Z, Ma W, Huang J. Interaction Between Sympk and Oct4 Promotes Mouse Embryonic Stem Cell Proliferation. Stem Cells 2019; 37:743-753. [PMID: 30801858 DOI: 10.1002/stem.2992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
The scaffold protein Symplekin (Sympk) is involved in cytoplasmic RNA polyadenylation, transcriptional modulation, and the regulation of epithelial differentiation and proliferation via tight junctions. It is highly expressed in embryonic stem cells (ESCs), in which its role remains unknown. In this study, we found Sympk overexpression in mouse ESCs significantly increased colony formation, and Sympk deletion via CRISPR/Cas9 decreased colony formation. Sympk promoted ESC growth and its overexpression sustained ESC pluripotency, as assessed by teratoma and chimeric mouse formation. Genomic stability was preserved in these cells after long-term passage. The domain of unknown function 3453 (DUF3453) in Sympk was required for its interaction with the key pluripotent factor Oct4, and its depletion led to impaired colony formation. Sympk activated proliferation-related genes and suppressed differentiation-related genes. Our results indicate that Sympk interacts with Oct4 to promote self-renewal and pluripotency in ESCs and preserves genome integrity; accordingly, it has potential value for stem cell therapies. Stem Cells 2019;37:743-753.
Collapse
Affiliation(s)
- Jianping Yu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tianyu Ge
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Rui Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Bohong Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Miaoman Ye
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Yaofu Bai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Kecman T, Kuś K, Heo DH, Duckett K, Birot A, Liberatori S, Mohammed S, Geis-Asteggiante L, Robinson CV, Vasiljeva L. Elongation/Termination Factor Exchange Mediated by PP1 Phosphatase Orchestrates Transcription Termination. Cell Rep 2018; 25:259-269.e5. [PMID: 30282034 PMCID: PMC6180485 DOI: 10.1016/j.celrep.2018.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/27/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022] Open
Abstract
Termination of RNA polymerase II (Pol II) transcription is a key step that is important for 3' end formation of functional mRNA, mRNA release, and Pol II recycling. Even so, the underlying termination mechanism is not yet understood. Here, we demonstrate that the conserved and essential termination factor Seb1 is found on Pol II near the end of the RNA exit channel and the Rpb4/7 stalk. Furthermore, the Seb1 interaction surface with Pol II largely overlaps with that of the elongation factor Spt5. Notably, Seb1 co-transcriptional recruitment is dependent on Spt5 dephosphorylation by the conserved PP1 phosphatase Dis2, which also dephosphorylates threonine 4 within the Pol II heptad repeated C-terminal domain. We propose that Dis2 orchestrates the transition from elongation to termination phase during the transcription cycle by mediating elongation to termination factor exchange and dephosphorylation of Pol II C-terminal domain.
Collapse
Affiliation(s)
- Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Krzysztof Kuś
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Dong-Hyuk Heo
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Katie Duckett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Adrien Birot
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Department of Chemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
13
|
Casañal A, Kumar A, Hill CH, Easter AD, Emsley P, Degliesposti G, Gordiyenko Y, Santhanam B, Wolf J, Wiederhold K, Dornan GL, Skehel M, Robinson CV, Passmore LA. Architecture of eukaryotic mRNA 3'-end processing machinery. Science 2017; 358:1056-1059. [PMID: 29074584 PMCID: PMC5788269 DOI: 10.1126/science.aao6535] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
Abstract
Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3' ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four β propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3'-end processing.
Collapse
Affiliation(s)
- Ana Casañal
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Chris H Hill
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Paul Emsley
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Yuliya Gordiyenko
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | - Jana Wolf
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
14
|
Richard P, Vethantham V, Manley JL. Roles of Sumoylation in mRNA Processing and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:15-33. [PMID: 28197904 DOI: 10.1007/978-3-319-50044-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMO has gained prominence as a regulator in a number of cellular processes. The roles of sumoylation in RNA metabolism, however, while considerable, remain less well understood. In this chapter we have assembled data from proteomic analyses, localization studies and key functional studies to extend SUMO's role to the area of mRNA processing and metabolism. Proteomic analyses have identified multiple putative sumoylation targets in complexes functioning in almost all aspects of mRNA metabolism, including capping, splicing and polyadenylation of mRNA precursors. Possible regulatory roles for SUMO have emerged in pre-mRNA 3' processing, where SUMO influences the functions of polyadenylation factors and activity of the entire complex. SUMO is also involved in regulating RNA editing and RNA binding by hnRNP proteins, and recent reports have suggested the involvement of the SUMO pathway in mRNA export. Together, these reports suggest that SUMO is involved in regulation of many aspects of mRNA metabolism and hold the promise for exciting future studies.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | | | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
15
|
Verheyen T, Görnemann J, Verbinnen I, Boens S, Beullens M, Van Eynde A, Bollen M. Genome-wide promoter binding profiling of protein phosphatase-1 and its major nuclear targeting subunits. Nucleic Acids Res 2015; 43:5771-84. [PMID: 25990731 PMCID: PMC4499128 DOI: 10.1093/nar/gkv500] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase-1 (PP1) is a key regulator of transcription and is targeted to promoter regions via associated proteins. However, the chromatin binding sites of PP1 have never been studied in a systematic and genome-wide manner. Methylation-based DamID profiling in HeLa cells has enabled us to map hundreds of promoter binding sites of PP1 and three of its major nuclear interactors, i.e. RepoMan, NIPP1 and PNUTS. Our data reveal that the α, β and γ isoforms of PP1 largely bind to distinct subsets of promoters and can also be differentiated by their promoter binding pattern. PP1β emerged as the major promoter-associated isoform and shows an overlapping binding profile with PNUTS at dozens of active promoters. Surprisingly, most promoter binding sites of PP1 are not shared with RepoMan, NIPP1 or PNUTS, hinting at the existence of additional, largely unidentified chromatin-targeting subunits. We also found that PP1 is not required for the global chromatin targeting of RepoMan, NIPP1 and PNUTS, but alters the promoter binding specificity of NIPP1. Our data disclose an unexpected specificity and complexity in the promoter binding of PP1 isoforms and their chromatin-targeting subunits.
Collapse
Affiliation(s)
- Toon Verheyen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Janina Görnemann
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Shannah Boens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
16
|
Di Giammartino DC, Manley JL. New links between mRNA polyadenylation and diverse nuclear pathways. Mol Cells 2014; 37:644-9. [PMID: 25081038 PMCID: PMC4179132 DOI: 10.14348/molcells.2014.0177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 11/27/2022] Open
Abstract
The 3' ends of most eukaryotic messenger RNAs must undergo a maturation step that includes an endonuc-leolytic cleavage followed by addition of a polyadenylate tail. While this reaction is catalyzed by the action of only two enzymes it is supported by an unexpectedly large number of proteins. This complexity reflects the necessity of coordinating this process with other nuclear events, and growing evidence indicates that even more factors than previously thought are necessary to connect 3' processing to additional cellular pathways. In this review we summarize the current understanding of the molecular machinery involved in this step of mRNA maturation, focusing on new core and auxiliary proteins that connect polyadenylation to splicing, DNA damage, transcription and cancer.
Collapse
Affiliation(s)
| | - James L Manley
- Columbia University, Department of Biological Sciences, New York NY, 10027, USA
| |
Collapse
|
17
|
Efficient mRNA polyadenylation requires a ubiquitin-like domain, a zinc knuckle, and a RING finger domain, all contained in the Mpe1 protein. Mol Cell Biol 2014; 34:3955-67. [PMID: 25135474 DOI: 10.1128/mcb.00077-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Almost all eukaryotic mRNAs must be polyadenylated at their 3' ends to function in protein synthesis. This modification occurs via a large nuclear complex that recognizes signal sequences surrounding a poly(A) site on mRNA precursor, cleaves at that site, and adds a poly(A) tail. While the composition of this complex is known, the functions of some subunits remain unclear. One of these is a multidomain protein called Mpe1 in the yeast Saccharomyces cerevisiae and RBBP6 in metazoans. The three conserved domains of Mpe1 are a ubiquitin-like (UBL) domain, a zinc knuckle, and a RING finger domain characteristic of some ubiquitin ligases. We show that mRNA 3'-end processing requires all three domains of Mpe1 and that more than one region of Mpe1 is involved in contact with the cleavage/polyadenylation factor in which Mpe1 resides. Surprisingly, both the zinc knuckle and the RING finger are needed for RNA-binding activity. Consistent with a role for Mpe1 in ubiquitination, mutation of Mpe1 decreases the association of ubiquitin with Pap1, the poly(A) polymerase, and suppressors of mpe1 mutants are linked to ubiquitin ligases. Furthermore, an inhibitor of ubiquitin-mediated interactions blocks cleavage, demonstrating for the first time a direct role for ubiquitination in mRNA 3'-end processing.
Collapse
|
18
|
Schreieck A, Easter AD, Etzold S, Wiederhold K, Lidschreiber M, Cramer P, Passmore LA. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nat Struct Mol Biol 2014; 21:175-179. [PMID: 24413056 PMCID: PMC3917824 DOI: 10.1038/nsmb.2753] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
At the 3′ end of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine (Tyr1) residues of its C-terminal domain (CTD). In addition, the associated cleavage and polyadenylation (pA) factor (CPF) cleaves the transcript and adds a polyA tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood. Here we show that CPF from Saccharomyces cerevisiae is a Pol II CTD phosphatase and that the CPF subunit Glc7 dephosphorylates Tyr1 in vitro. In vivo, the activity of Glc7 is required for normal Tyr1 dephosphorylation at the pA site, for recruitment of termination factors Pcf11 and Rtt103, and for normal Pol II termination. These results show that transcription termination involves Tyr1 dephosphorylation of the CTD and indicate that pre-mRNA processing by CPF and transcription termination are coupled via Glc7-dependent Pol II Tyr1 dephosphorylation.
Collapse
Affiliation(s)
- Amelie Schreieck
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ashley D Easter
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Stefanie Etzold
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Wiederhold
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Michael Lidschreiber
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Patrick Cramer
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lori A Passmore
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
19
|
Ghosh A, Cannon JF. Analysis of protein phosphatase-1 and aurora protein kinase suppressors reveals new aspects of regulatory protein function in Saccharomyces cerevisiae. PLoS One 2013; 8:e69133. [PMID: 23894419 PMCID: PMC3718817 DOI: 10.1371/journal.pone.0069133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/01/2013] [Indexed: 01/31/2023] Open
Abstract
Protein phosphatase-1 (PP1) controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates.
Collapse
Affiliation(s)
- Anuprita Ghosh
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - John F. Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
Systemic response to DNA damage and other stresses is a complex process that includes changes in the regulation and activity of nearly all stages of gene expression. One gene regulatory mechanism used by eukaryotes is selection among alternative transcript isoforms that differ in polyadenylation [poly(A)] sites, resulting in changes either to the coding sequence or to portions of the 3' UTR that govern translation, stability, and localization. To determine the extent to which this means of regulation is used in response to DNA damage, we conducted a global analysis of poly(A) site usage in Saccharomyces cerevisiae after exposure to the UV mimetic, 4-nitroquinoline 1-oxide (4NQO). Two thousand thirty-one genes were found to have significant variation in poly(A) site distributions following 4NQO treatment, with a strong bias toward loss of short transcripts, including many with poly(A) sites located within the protein coding sequence (CDS). We further explored one possible mechanism that could contribute to the widespread differences in mRNA isoforms. The change in poly(A) site profile was associated with an inhibition of cleavage and polyadenylation in cell extract and a decrease in the levels of several key subunits in the mRNA 3'-end processing complex. Sequence analysis identified differences in the cis-acting elements that flank putatively suppressed and enhanced poly(A) sites, suggesting a mechanism that could discriminate between variable and constitutive poly(A) sites. Our analysis indicates that variation in mRNA length is an important part of the regulatory response to DNA damage.
Collapse
|
21
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
22
|
Ezeokonkwo C, Ghazy MA, Zhelkovsky A, Yeh PC, Moore C. Novel interactions at the essential N-terminus of poly(A) polymerase that could regulate poly(A) addition in Saccharomyces cerevisiae. FEBS Lett 2012; 586:1173-8. [PMID: 22575652 DOI: 10.1016/j.febslet.2012.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Addition of poly(A) to the 3' ends of cleaved pre-mRNA is essential for mRNA maturation and is catalyzed by Pap1 in yeast. We have previously shown that a non-viable Pap1 mutant lacking the first 18 amino acids is fully active for polyadenylation of oligoA, but defective for pre-mRNA polyadenylation, suggesting that interactions at the N-terminus are important for enzyme function in the processing complex. We have now identified proteins that interact specifically with this region. Cft1 and Pta1 are subunits of the cleavage/polyadenylation factor, in which Pap1 resides, and Nab6 and Sub1 are nucleic-acid binding proteins with known links to 3' end processing. Our results suggest a novel mechanism for controlling Pap1 activity, and possible models invoking these newly-discovered interactions are discussed.
Collapse
Affiliation(s)
- Chukwudi Ezeokonkwo
- Tufts School of Medicine and the Sackler Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
23
|
Zhang DW, Mosley AL, Ramisetty SR, Rodríguez-Molina JB, Washburn MP, Ansari AZ. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J Biol Chem 2012; 287:8541-51. [PMID: 22235117 DOI: 10.1074/jbc.m111.335687] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) serves an important role in coordinating stage-specific recruitment and release of cellular machines during transcription. Dynamic placement and removal of phosphorylation marks on different residues of a repeating heptapeptide (YSPTSPS) of the CTD underlies the engagement of relevant cellular machinery. Whereas sequential placement of phosphorylation marks is well explored, genome-wide engagement of phosphatases that remove these CTD marks is poorly understood. In particular, identifying the enzyme that erases phospho-Ser7 (Ser7-P) marks is especially important, because we find that substituting this residue with a glutamate, a phospho-mimic, is lethal. Our observations implicate Ssu72 as a Ser7-P phosphatase. We report that removal of all phospho-CTD marks during transcription termination is mechanistically coupled. An inability to remove these marks prevents Pol II from terminating efficiently and will likely impede subsequent assembly into the pre-initiation complex.
Collapse
Affiliation(s)
- David W Zhang
- Department of Biochemistry and The Genome Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ghazy MA, Gordon JMB, Lee SD, Singh BN, Bohm A, Hampsey M, Moore C. The interaction of Pcf11 and Clp1 is needed for mRNA 3'-end formation and is modulated by amino acids in the ATP-binding site. Nucleic Acids Res 2011; 40:1214-25. [PMID: 21993299 PMCID: PMC3273803 DOI: 10.1093/nar/gkr801] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polyadenylation of eukaryotic mRNAs contributes to stability, transport and translation, and is catalyzed by a large complex of conserved proteins. The Pcf11 subunit of the yeast CF IA factor functions as a scaffold for the processing machinery during the termination and polyadenylation of transcripts. Its partner, Clp1, is needed for mRNA processing, but its precise molecular role has remained enigmatic. We show that Clp1 interacts with the Cleavage–Polyadenylation Factor (CPF) through its N-terminal and central domains, and thus provides cross-factor connections within the processing complex. Clp1 is known to bind ATP, consistent with the reported RNA kinase activity of human Clp1. However, substitution of conserved amino acids in the ATP-binding site did not affect cell growth, suggesting that the essential function of yeast Clp1 does not involve ATP hydrolysis. Surprisingly, non-viable mutations predicted to displace ATP did not affect ATP binding but disturbed the Clp1–Pcf11 interaction. In support of the importance of this interaction, a mutation in Pcf11 that disrupts the Clp1 contact caused defects in growth, 3′-end processing and transcription termination. These results define Clp1 as a bridge between CF IA and CPF and indicate that the Clp1–Pcf11 interaction is modulated by amino acids in the conserved ATP-binding site of Clp1.
Collapse
Affiliation(s)
- Mohamed A Ghazy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ezeokonkwo C, Zhelkovsky A, Lee R, Bohm A, Moore CL. A flexible linker region in Fip1 is needed for efficient mRNA polyadenylation. RNA (NEW YORK, N.Y.) 2011; 17:652-664. [PMID: 21282348 PMCID: PMC3062176 DOI: 10.1261/rna.2273111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
Synthesis of the poly(A) tail of mRNA in Saccharomyces cerevisiae requires recruitment of the polymerase Pap1 to the 3' end of cleaved pre-mRNA. This is made possible by the tethering of Pap1 to the Cleavage/Polyadenylation Factor (CPF) by Fip1. We have recently reported that Fip1 is an unstructured protein in solution, and proposed that it might maintain this conformation as part of CPF, when bound to Pap1. However, the role that this feature of Fip1 plays in 3' end processing has not been investigated. We show here that Fip1 has a flexible linker in the middle of the protein, and that removal or replacement of the linker affects the efficiency of polyadenylation. However, the point of tethering is not crucial, as a fusion protein of Pap1 and Fip1 is fully functional in cells lacking genes encoding the essential individual proteins, and directly tethering Pap1 to RNA increases the rate of poly(A) addition. We also find that the linker region of Fip1 provides a platform for critical interactions with other parts of the processing machinery. Our results indicate that the Fip1 linker, through its flexibility and protein/protein interactions, allows Pap1 to reach the 3' end of the cleaved RNA and efficiently initiate poly(A) addition.
Collapse
Affiliation(s)
- Chukwudi Ezeokonkwo
- Department of Biochemistry, Tufts University School of Medicine and the Sackler Graduate School of Biomedical Sciences, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
26
|
Cannon JF. Function of protein phosphatase-1, Glc7, in Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2010; 73:27-59. [PMID: 20800758 DOI: 10.1016/s0065-2164(10)73002-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Budding yeast, Saccharomyces cerevisiae, and its close relatives are unique among eukaryotes in having a single gene, GLC7, encoding protein phosphatase-1 (PP1). This enzyme with a highly conserved amino acid sequence controls many processes in all eukaryotic cells. Therefore, the study of Glc7 function offers a unique opportunity to gain a comprehensive understanding of this critical regulatory enzyme. This review summarizes our current knowledge of how Glc7 function modulates processes in the cytoplasm and nucleus. Additionally, global Glc7 regulation is described.
Collapse
Affiliation(s)
- John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
27
|
Chan S, Choi EA, Shi Y. Pre-mRNA 3'-end processing complex assembly and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:321-35. [PMID: 21957020 DOI: 10.1002/wrna.54] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 3'-ends of almost all eukaryotic mRNAs are formed in a two-step process, an endonucleolytic cleavage followed by polyadenylation (the addition of a poly-adenosine or poly(A) tail). These reactions take place in the pre-mRNA 3' processing complex, a macromolecular machinery that consists of more than 20 proteins. A general framework for how the pre-mRNA 3' processing complex assembles and functions has emerged from extensive studies over the past several decades using biochemical, genetic, computational, and structural approaches. In this article, we review what we have learned about this important cellular machine and discuss the remaining questions and future challenges.
Collapse
Affiliation(s)
- Serena Chan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
28
|
Polidoros AN, Mylona PV, Arnholdt-Schmitt B. Aox gene structure, transcript variation and expression in plants. PHYSIOLOGIA PLANTARUM 2009; 137:342-53. [PMID: 19781002 DOI: 10.1111/j.1399-3054.2009.01284.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alternative oxidase (Aox) has been proposed as a functional marker for breeding stress tolerant plant varieties. This requires presence of polymorphic Aox allele sequences in plants that affect plant phenotype in a recognizable way. In this review, we examine the hypothesis that organization of genomic Aox sequences and gene expression patterns are highly variable in relation to the possibility that such a variation may allow development of Aox functional markers in plants. Aox is encoded by a small multigene family, typically with four to five members in higher plants. The predominant structure of genomic Aox sequences is that of four exons interrupted by three introns at well conserved positions. Evolutionary intron loss and gain has resulted in the variation of intron numbers in some Aox members that may harbor two to four introns and three to five exons in their sequence. Accumulating evidence suggests that Aox gene structure is polymorphic enough to allow development of Aox markers in many plant species. However, the functional significance of Aox structural variation has not been examined exhaustively. Aox expression patterns display variability and typically Aox genes fall into two discrete subfamilies, Aox1 and Aox2, the former being present in all plants and the latter restricted in eudicot species. Typically, although not exclusively, the Aox1-type genes are induced by many different kinds of stress, whereas Aox2-type genes are expressed in a constitutive or developmentally regulated way. Specific Aox alleles are among the first and most intensively stress-induced genes in several experimental systems involving oxidative stress. Differential response of Aox genes to stress may provide a flexible plan of plant defense where an energy-dissipating system in mitochondria is involved. Evidence to link structural variation and differential allele expression patterns is scarce. Much research is still required to understand the significance of polymorphisms within AOX gene sequences for gene regulation and its potential for breeding on important agronomic traits. Association studies and mapping approaches will be helpful to advance future perspectives for application more efficiently.
Collapse
Affiliation(s)
- Alexios N Polidoros
- Department of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | |
Collapse
|
29
|
Kennedy SA, Frazier ML, Steiniger M, Mast AM, Marzluff WF, Redinbo MR. Crystal structure of the HEAT domain from the Pre-mRNA processing factor Symplekin. J Mol Biol 2009; 392:115-28. [PMID: 19576221 PMCID: PMC2748850 DOI: 10.1016/j.jmb.2009.06.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/15/2009] [Accepted: 06/25/2009] [Indexed: 11/20/2022]
Abstract
The majority of eukaryotic pre-mRNAs are processed by 3'-end cleavage and polyadenylation, although in metazoa the replication-dependent histone mRNAs are processed by 3'-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the approximately 1160-residue protein Symplekin. Secondary-structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 A resolution with single-wavelength anomalous dispersion phasing methods. The structure exhibits five canonical HEAT repeats along with an extended 31-amino-acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3'-end processing. Together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process.
Collapse
Affiliation(s)
- Sarah A. Kennedy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Monica L. Frazier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Mindy Steiniger
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ann M. Mast
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
30
|
Assembly of an export-competent mRNP is needed for efficient release of the 3'-end processing complex after polyadenylation. Mol Cell Biol 2009; 29:5327-38. [PMID: 19635808 DOI: 10.1128/mcb.00468-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Before polyadenylated mRNA is exported from the nucleus, the 3'-end processing complex is removed by a poorly described mechanism. In this study, we asked whether factors involved in mRNP maturation and export are also required for disassembly of the cleavage and polyadenylation complex. An RNA immunoprecipitation assay monitoring the amount of the cleavage factor (CF) IA component Rna15p associated with poly(A)(+) RNA reveals defective removal of Rna15p in mutants of the nuclear export receptor Mex67p as well as other factors important for assembly of an export-competent mRNP. In contrast, Rna15p is not retained in mutants of export factors that function primarily on the cytoplasmic side of the nuclear pore. Consistent with a functional interaction between Mex67p and the 3'-end processing complex, a mex67 mutant accumulates unprocessed SSA4 transcripts and exhibits a severe growth defect when this mutation is combined with mutation of Rna15p or another CF IA subunit, Rna14p. RNAs that become processed in a mex67 mutant have longer poly(A) tails both in vivo and in vitro. This influence of Mex67p on 3'-end processing is conserved, as depletion of its human homolog, TAP/NXF1, triggers mRNA hyperadenylation. Our results indicate a function for nuclear mRNP assembly factors in releasing the 3'-end processing complex once polyadenylation is complete.
Collapse
|
31
|
Aging defined by a chronologic–replicative protein network in Saccharomyces cerevisiae: An interactome analysis. Mech Ageing Dev 2009; 130:444-60. [DOI: 10.1016/j.mad.2009.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/20/2009] [Accepted: 04/30/2009] [Indexed: 11/18/2022]
|
32
|
Giacometti R, Kronberg F, Biondi RM, Passeron S. Catalytic isoforms Tpk1 and Tpk2 of Candida albicans PKA have non-redundant roles in stress response and glycogen storage. Yeast 2009; 26:273-85. [PMID: 19391100 DOI: 10.1002/yea.1665] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Candida albicans cAMP-dependent protein kinase (PKA) is coded by two catalytic subunits (TPK1 and TPK2) and one regulatory subunit (BCY1). In this organism the cAMP/PKA signalling pathway mediates basic cellular processes, such as the yeast-to-hyphae transition and cell cycle regulation. In the present study, we investigated the role of C. albicans PKA in response to saline, heat and oxidative stresses as well as in glycogen storage. To fine-tune the analysis, we performed the studies on several C. albicans PKA mutants having heterozygous or homozygous deletions of TPK1 and/or TPK2 in a different BCY1 genetic background. We observed that tpk1Delta/tpk1Delta strains developed a lower tolerance to saline exposure, heat shock and oxidative stress, while wild-type and tpk2Delta/tpk2Delta mutants were resistant to these stresses, indicating that both isoforms play different roles in the stress response pathway. We also found that regardless of the TPK background, heterozygous and homozygous BCY1 mutants were highly sensitive to heat treatment. Surprisingly, we observed that those strains devoid of one or both TPK1 alleles were defective in glycogen storage, while strains lacking Tpk2 accumulated higher levels of the polysaccharide, indicating that Tpk1 and Tpk2 have opposite roles in carbohydrate metabolism.
Collapse
Affiliation(s)
- Romina Giacometti
- Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, IBYF-CONICET, Avda. San Martín 4453, C1417DSE Buenos Aires, Argentina
| | | | | | | |
Collapse
|
33
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
34
|
Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries. Mol Cell Biol 2009; 29:2925-34. [PMID: 19332564 DOI: 10.1128/mcb.01655-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a reiterated heptad sequence (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7) that plays a key role in the transcription cycle, coordinating the exchange of transcription and RNA processing factors. The structure of the CTD is flexible and undergoes conformational changes in response to serine phosphorylation and proline isomerization. Here we report that the Ess1 peptidyl prolyl isomerase functionally interacts with the transcription initiation factor TFIIB and with the Ssu72 CTD phosphatase and Pta1 components of the CPF 3'-end processing complex. The ess1(A144T) and ess1(H164R) mutants, initially described by Hanes and coworkers (Yeast 5:55-72, 1989), accumulate the pSer5 phosphorylated form of Pol II; confer phosphate, galactose, and inositol auxotrophies; and fail to activate PHO5, GAL10, and INO1 reporter genes. These mutants are also defective for transcription termination, but in vitro experiments indicate that this defect is not caused by altering the processing efficiency of the cleavage/polyadenylation machinery. Consistent with a role in initiation and termination, Ess1 associates with the promoter and terminator regions of the PMA1 and PHO5 genes. We propose that Ess1 facilitates pSer5-Pro6 dephosphorylation by generating the CTD structural conformation recognized by the Ssu72 phosphatase and that pSer5 dephosphorylation affects both early and late stages of the transcription cycle.
Collapse
|
35
|
Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR, Frank J, Manley JL. Molecular architecture of the human pre-mRNA 3' processing complex. Mol Cell 2009; 33:365-76. [PMID: 19217410 DOI: 10.1016/j.molcel.2008.12.028] [Citation(s) in RCA: 446] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/24/2008] [Accepted: 12/12/2008] [Indexed: 01/17/2023]
Abstract
Pre-mRNA 3' end formation is an essential step in eukaryotic gene expression. Over half of human genes produce alternatively polyadenylated mRNAs, suggesting that regulated polyadenylation is an important mechanism for posttranscriptional gene control. Although a number of mammalian mRNA 3' processing factors have been identified, the full protein composition of the 3' processing machinery has not been determined, and its structure is unknown. Here we report the purification and subsequent proteomic and structural characterization of human mRNA 3' processing complexes. Remarkably, the purified 3' processing complex contains approximately 85 proteins, including known and new core 3' processing factors and over 50 proteins that may mediate crosstalk with other processes. Electron microscopic analyses show that the core 3' processing complex has a distinct "kidney" shape and is approximately 250 A in length. Together, our data has revealed the complexity and molecular architecture of the pre-mRNA 3' processing complex.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
The essential N terminus of the Pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensable for pre-mRNA 3'-end processing. Mol Cell Biol 2009; 29:2296-307. [PMID: 19188448 DOI: 10.1128/mcb.01514-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae Pta1 is a component of the cleavage/polyadenylation factor (CPF) 3'-end processing complex and functions in pre-mRNA cleavage, poly(A) addition, and transcription termination. In this study, we investigated the role of the N-terminal region of Pta1 in transcription and processing. We report that a deletion of the first 75 amino acids (pta1-Delta75) causes thermosensitive growth, while the deletion of an additional 25 amino acids is lethal. The pta1-Delta75 mutant is defective for snoRNA termination, RNA polymerase II C-terminal domain Ser5-P dephosphorylation, and gene looping but is fully functional for mRNA 3'-end processing. Furthermore, different regions of Pta1 interact with the CPF subunits Ssu72, Pti1, and Ysh1, supporting the idea that Pta1 acts as a scaffold to organize CPF. The first 300 amino acids of Pta1 are sufficient for interactions with Ssu72, which is needed for pre-mRNA cleavage. By the degron-mediated depletion of Pta1, we show that the removal of this essential region leads to a loss of Ssu72, yet surprisingly, in vitro cleavage and polyadenylation remain efficient. In addition, a fragment containing amino acids 1 to 300 suppresses 3'-end processing in wild-type extracts. These findings suggest that the amino terminus of Pta1 has an inhibitory effect and that this effect can be neutralized through the interaction with Ssu72.
Collapse
|
37
|
Dermody JL, Dreyfuss JM, Villén J, Ogundipe B, Gygi SP, Park PJ, Ponticelli AS, Moore CL, Buratowski S, Bucheli ME. Unphosphorylated SR-like protein Npl3 stimulates RNA polymerase II elongation. PLoS One 2008; 3:e3273. [PMID: 18818768 PMCID: PMC2538588 DOI: 10.1371/journal.pone.0003273] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 09/01/2008] [Indexed: 01/04/2023] Open
Abstract
The production of a functional mRNA is regulated at every step of transcription. An area not well-understood is the transition of RNA polymerase II from elongation to termination. The S. cerevisiae SR-like protein Npl3 functions to negatively regulate transcription termination by antagonizing the binding of polyA/termination proteins to the mRNA. In this study, Npl3 is shown to interact with the CTD and have a direct stimulatory effect on the elongation activity of the polymerase. The interaction is inhibited by phosphorylation of Npl3. In addition, Casein Kinase 2 was found to be required for the phosphorylation of Npl3 and affect its ability to compete against Rna15 (Cleavage Factor I) for binding to polyA signals. Our results suggest that phosphorylation of Npl3 promotes its dissociation from the mRNA/RNAP II, and contributes to the association of the polyA/termination factor Rna15. This work defines a novel role for Npl3 in elongation and its regulation by phosphorylation.
Collapse
Affiliation(s)
- Jessica L. Dermody
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan M. Dreyfuss
- Harvard-Partners Center for Genetics and Genomics, Boston, Massachusetts, United States of America
| | - Judit Villén
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Babatunde Ogundipe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter J. Park
- Harvard-Partners Center for Genetics and Genomics, Boston, Massachusetts, United States of America
| | - Alfred S. Ponticelli
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, United States of America
| | - Claire L. Moore
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Miriam E. Bucheli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Saccharomyces cerevisiae Afr1 protein is a protein phosphatase 1/Glc7-targeting subunit that regulates the septin cytoskeleton during mating. EUKARYOTIC CELL 2008; 7:1246-55. [PMID: 18552279 DOI: 10.1128/ec.00024-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glc7, the type1 serine/threonine phosphatase in the yeast Saccharomyces cerevisiae, is targeted by auxiliary subunits to numerous locations in the cell, where it regulates a range of physiological pathways. We show here that the accumulation of Glc7 at mating projections requires Afr1, a protein required for the formation of normal projections. AFR1-null mutants fail to target Glc7 to projections, and an Afr1 variant specifically defective in binding to Glc7 [Afr1(V546A F548A)] forms aberrant projections. The septin filaments in mating projections of AFR1 mutants initiate normally but then rearrange asymmetrically as the projection develops, suggesting that the Afr1-Glc7 holoenzyme may regulate the maintenance of septin complexes during mating. These results demonstrate a previously unknown role for Afr1 in targeting Glc7 to mating projections and in regulating the septin architecture during mating.
Collapse
|
39
|
Meinke G, Ezeokonkwo C, Balbo P, Stafford W, Moore C, Bohm A. Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein. Biochemistry 2008; 47:6859-69. [PMID: 18537269 DOI: 10.1021/bi800204k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In yeast, the mRNA processing enzyme poly(A) polymerase is tethered to the much larger 3'-end processing complex via Fip1, a 36 kDa protein of unknown structure. We report the 2.6 A crystal structure of yeast poly(A) polymerase in complex with a peptide containing residues 80-105 of Fip1. The Fip1 peptide binds to the outside surface of the C-terminal domain of the polymerase. On the basis of this structure, we designed a mutant of the polymerase (V498Y, C485R) that is lethal to yeast. The mutant is unable to bind Fip1 but retains full polymerase activity. Fip1 is found in all eukaryotes and serves to connect poly(A) polymerase to pre-mRNA processing complexes in yeast, plants, and mammals. However, the Fip1 sequence is highly divergent, and residues on both Pap1 and Fip1 at the observed interaction surface are poorly conserved. Herein we demonstrate using analytical ultracentrifugation, circular dichroism, proteolytic studies, and other techniques that, in the absence of Pap1, Fip1 is largely, if not completely, unfolded. We speculate that flexibility may be important for Fip1's function as a molecular scaffold.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Biochemistry, Tufts University, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
40
|
Nedea E, Nalbant D, Xia D, Theoharis NT, Suter B, Richardson CJ, Tatchell K, Kislinger T, Greenblatt JF, Nagy PL. The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes. Mol Cell 2008; 29:577-87. [PMID: 18342605 DOI: 10.1016/j.molcel.2007.12.031] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/01/2007] [Accepted: 12/15/2007] [Indexed: 10/22/2022]
Abstract
Glc7, the yeast protein phosphatase 1, is a component of the cleavage and polyadenylation factor (CPF). Here we show that downregulation of Glc7, or its dissociation from CPF in the absence of CPF subunits Ref2 or Swd2, results in similar snoRNA termination defects. Overexpressing a C-terminal fragment of Sen1, a superfamily I helicase required for snoRNA termination, suppresses the growth and termination defects associated with loss of Swd2 or Ref2, but not Glc7. Suppression by Sen1 requires nuclear localization and direct interaction with Glc7, which can dephosphorylate Sen1 in vitro. The suppressing fragment, and in a similar manner full-length Sen1, copurifies with the snoRNA termination factors Nrd1 and Nab3, suggesting loss of Glc7 from CPF can be compensated by recruiting Glc7 to Nrd1-Nab3 through Sen1. Swd2 is also a subunit of the Set1c histone H3K4 methyltransferase complex and is required for its stability and optimal methyltransferase activity.
Collapse
Affiliation(s)
- Eduard Nedea
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Most eukaryotic mRNA precursors (premRNAs) must undergo extensive processing, including cleavage and polyadenylation at the 3'-end. Processing at the 3'-end is controlled by sequence elements in the pre-mRNA (cis elements) as well as protein factors. Despite the seeming biochemical simplicity of the processing reactions, more than 14 proteins have been identified for the mammalian complex, and more than 20 proteins have been identified for the yeast complex. The 3'-end processing machinery also has important roles in transcription and splicing. The mammalian machinery contains several sub-complexes, including cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Additional protein factors include poly(A) polymerase, poly(A)-binding protein, symplekin, and the C-terminal domain of RNA polymerase II largest subunit. The yeast machinery includes cleavage factor IA, cleavage factor IB, and cleavage and polyadenylation factor.
Collapse
Affiliation(s)
- C. R. Mandel
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Y. Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - L. Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
42
|
Finishing touches: post-translational modification of protein factors involved in mammalian pre-mRNA 3' end formation. Int J Biochem Cell Biol 2008; 40:2384-96. [PMID: 18468939 DOI: 10.1016/j.biocel.2008.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 11/27/2022]
Abstract
In eukaryotes, a pre-messenger RNA (pre-mRNA) must undergo several processing reactions before it is exported to the cytoplasm for translation. One of these reactions, endonucleolytic 3' cleavage at the polyadenylation site, prepares the pre-mRNA for addition of the poly(A) tail and defines the 3' untranslated region (UTR), which typically contains important gene expression regulatory sequences. While the protein factors responsible for the endonucleolytic cleavage have been largely identified, the means by which their action is limited to the 3' end of the transcription unit and coordinated with other co-transcriptional events remains unclear. In this review, we summarize and review recent findings revealing that the mammalian 3' cleavage factors undergo extensive post-translational modification. These modifications include: arginine methylation, lysine sumoylation, lysine acetylation, and the phosphorylation of serine, threonine and tyrosine residues. Every cleavage factor, though not every subunit, is affected. Human Fip1 and the 59 kDa subunit of cleavage factor I emerge as the most frequently modified core cleavage factor subunits. We outline and compare the various proteomic methods that have uncovered these modifications, and review emerging hypotheses concerning their function. The roles of these covalent but reversible modifications in other systems suggest that 3' end formation in mammals relies upon post-translational modification for proper function and regulation.
Collapse
|
43
|
Bharucha JP, Larson JR, Gao L, Daves LK, Tatchell K. Ypi1, a positive regulator of nuclear protein phosphatase type 1 activity in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:1032-45. [PMID: 18172024 DOI: 10.1091/mbc.e07-05-0499] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The catalytic subunit of protein phosphatase type 1 (PP1) has an essential role in mitosis, acting in opposition to the Ipl1/Aurora B protein kinase to ensure proper kinetochore-microtubule interactions. However, the regulatory subunit(s) that completes the PP1 holoenzyme that functions in this capacity is not known. We show here that the budding yeast Ypi1 protein is a nuclear protein that functions with PP1 (Glc7) in this mitotic role. Depletion of cellular Ypi1 induces mitotic arrest due to activation of the spindle checkpoint. Ypi1 depletion is accompanied by a reduction of nuclear PP1 and by loss of nuclear Sds22, a Glc7 binding partner that is found in a ternary complex with Ypi1 and Glc7. Expression of a Ypi1 variant that binds weakly to PP1 also activates the spindle checkpoint and suppresses the temperature sensitivity of an ipl1-2 mutant. These results, together with genetic interactions among YPI1, GLC7, and SDS22 mutants, indicate that Ypi1 and Sds22 are positive regulators of the nuclear Glc7 activity that is required for mitosis.
Collapse
Affiliation(s)
- Jennifer P Bharucha
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
44
|
Zeng G, Huang B, Neo SP, Wang J, Cai M. Scd5p mediates phosphoregulation of actin and endocytosis by the type 1 phosphatase Glc7p in yeast. Mol Biol Cell 2007; 18:4885-98. [PMID: 17898076 PMCID: PMC2096580 DOI: 10.1091/mbc.e07-06-0607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pan1p plays essential roles in both actin and endocytosis in yeast. It interacts with, and regulates the function of, multiple endocytic proteins and actin assembly machinery. Phosphorylation of Pan1p by the kinase Prk1p down-regulates its activity, resulting in disassembly of the endocytic vesicle coat complex and termination of vesicle-associated actin polymerization. In this study, we focus on the mechanism that acts to release Pan1p from phosphorylation inhibition. We show that Pan1p is dephosphorylated by the phosphatase Glc7p, and the dephosphorylation is dependent on the Glc7p-targeting protein Scd5p, which itself is a phosphorylation target of Prk1p. Scd5p links Glc7p to Pan1p in two ways: directly by interacting with Pan1p and indirectly by interacting with the Pan1p-binding protein End3p. Depletion of Glc7p from the cells causes defects in cell growth, actin organization, and endocytosis, all of which can be partially suppressed by deletion of the PRK1 gene. These results suggest that Glc7p antagonizes the activity of the Prk1p kinase in regulating the functions of Pan1p and possibly other actin- and endocytosis-related proteins.
Collapse
Affiliation(s)
- Guisheng Zeng
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| | - Bo Huang
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| | - Suat Peng Neo
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| | - Junxia Wang
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| | - Mingjie Cai
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| |
Collapse
|
45
|
Ryan K. Pre-mRNA 3' cleavage is reversibly inhibited in vitro by cleavage factor dephosphorylation. RNA Biol 2007; 4:26-33. [PMID: 17585202 PMCID: PMC4851251 DOI: 10.4161/rna.4.1.4365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During 3' end formation most pre-mRNAs undergo endonucleolytic cleavage and polyadenylation in the 3' untranslated region. Very little is known concerning the role that post-translational modifications play in the function and regulation of the factors required for 3' cleavage. Using the reconstituted pre-mRNA cleavage reaction, we find that non-specific dephosphorylation of HeLa cell nuclear extract leads to the loss of 3' cleavage activity. A variety of serine/threonine phosphatases inhibited cleavage activity, while a tyrosine phosphatase did not. When the three major cleavage factor activities-CPSF, CstF and CF(m) (containing CFI(m) and CFII(m))-were separated and dephosphorylated individually, only CF(m) was found to lose activity, indicating that the target of dephosphorylation resides within this fraction. In accordance with this result, only CF(m) was able to restore cleavage activity to HeLa nuclear extract whose 3' cleavage activity had been completely inactivated by dephosphorylation. We conclude that at least one subunit of either CFI(m) or CFII(m) requires serine or threonine phosphorylation to function during 3' cleavage. Our data suggest that cleavage factor phosphorylation may serve as a regulatory on/off switch to control pre-mRNA 3' end formation.
Collapse
Affiliation(s)
- Kevin Ryan
- Department of Chemistry, City College of New York, New York, New York 10031 USA.
| |
Collapse
|
46
|
Zhelkovsky A, Tacahashi Y, Nasser T, He X, Sterzer U, Jensen TH, Domdey H, Moore C. The role of the Brr5/Ysh1 C-terminal domain and its homolog Syc1 in mRNA 3'-end processing in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2006; 12:435-45. [PMID: 16431986 PMCID: PMC1383582 DOI: 10.1261/rna.2267606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The cleavage/polyadenylation factor (CPF) of Saccharomyces cerevisiae is thought to provide the catalytic activities of the mRNA 3'-end processing machinery, which include endonucleolytic cleavage at the poly(A) site, followed by synthesis of an adenosine polymer onto the new 3'-end by the CPF subunit Pap1. Because of similarity to other nucleases in the metallo-beta-lactamase family, the Brr5/Ysh1 subunit has been proposed to be the endonuclease. The C-terminal domain of Brr5 lies outside of beta-lactamase homology, and its function has not been elucidated. We show here that this region of Brr5 is necessary for cell viability and mRNA 3'-end processing. It is highly homologous to another CPF subunit, Syc1. Syc1 is not essential, but its removal improves the growth of other processing mutants at restrictive temperatures and restores in vitro processing activity to cleavage/ polyadenylation-defective brr5-1 extract. Our findings suggest that Syc1, by mimicking the essential Brr5 C-terminus, serves as a negative regulator of mRNA 3'-end formation.
Collapse
Affiliation(s)
- Alexander Zhelkovsky
- Department of Molecular Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zieliński R, Hellman U, Kubiński K, Szyszka R. Fip1--an essential component of the Saccharomyces cerevisiae polyadenylation machinery is phosophorylated by protein kinase CK2. Mol Cell Biochem 2006; 286:191-7. [PMID: 16496213 DOI: 10.1007/s11010-005-9104-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 12/05/2005] [Indexed: 11/29/2022]
Abstract
Since Fip1 is phosphoprotein we investigated whether it is a substrate for protein kinase CK2. According to the amino acid sequence Fip1 harbours twenty putative CK2 phosphorylation sites. Here we have report characterization of Fip1 as a substrate for both forms of CK2. Fip1 serves as a substrate for both the recombinant CK2alpha ' (Km 1.28 microM) and holoenzyme (Km 1.4 microM) but not for CK1. By MALDI-MS we identified the two serine residues at positions 73 and 77 as the possible in vitro phosphorylation sites. These data may help to elucidate the role of Fip1 in the mRNA 3'-OH polyadenylation process and the involvement of CK2 mediated phosphorylation in regulation of interactions and activity members of cleavage/polyadenylation factor (CPF) complex.
Collapse
Affiliation(s)
- Rafał Zieliński
- Department of Molecular Biology, Environmental Protection Institute, Catholic University of Lublin, Kraśnicka Av. 102, 20-718 Lublin, Poland
| | | | | | | |
Collapse
|
48
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|