1
|
Koscielniak D, Wons E, Wilkowska K, Sektas M. Non-programmed transcriptional frameshifting is common and highly RNA polymerase type-dependent. Microb Cell Fact 2018; 17:184. [PMID: 30474557 PMCID: PMC6260861 DOI: 10.1186/s12934-018-1034-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Background The viral or host systems for a gene expression assume repeatability of the process and high quality of the protein product. Since level and fidelity of transcription primarily determines the overall efficiency, all factors contributing to their decrease should be identified and optimized. Among many observed processes, non-programmed insertion/deletion (indel) of nucleotide during transcription (slippage) occurring at homopolymeric A/T sequences within a gene can considerably impact its expression. To date, no comparative study of the most utilized Escherichia coli and T7 bacteriophage RNA polymerases (RNAP) propensity for this type of erroneous mRNA synthesis has been reported. To address this issue we evaluated the influence of shift-prone A/T sequences by assessing indel-dependent phenotypic changes. RNAP-specific expression profile was examined using two of the most potent promoters, ParaBAD of E. coli and φ10 of phage T7. Results Here we report on the first systematic study on requirements for efficient transcriptional slippage by T7 phage and cellular RNAPs considering three parameters: homopolymer length, template type, and frameshift directionality preferences. Using a series of out-of-frame gfp reporter genes fused to a variety of A/T homopolymeric sequences we show that T7 RNAP has an exceptional potential for generating frameshifts and is capable of slipping on as few as three adenine or four thymidine residues in a row, in a flanking sequence-dependent manner. In contrast, bacterial RNAP exhibits a relatively low ability to baypass indel mutations and requires a run of at least 7 tymidine and even more adenine residues. This difference comes from involvement of various intrinsic proofreading properties. Our studies demonstrate distinct preference towards a specific homopolymer in slippage induction. Whereas insertion slippage performed by T7 RNAP (but not deletion) occurs tendentiously on poly(A) rather than on poly(T) runs, strong bias towards poly(T) for the host RNAP is observed. Conclusions Intrinsic RNAP slippage properties involve trade-offs between accuracy, speed and processivity of transcription. Viral T7 RNAP manifests far greater inclinations to the transcriptional slippage than E. coli RNAP. This possibly plays an important role in driving bacteriophage adaptation and therefore could be considered as beneficial. However, from biotechnological and experimental viewpoint, this might create some problems, and strongly argues for employing bacterial expression systems, stocked with proofreading mechanisms. Electronic supplementary material The online version of this article (10.1186/s12934-018-1034-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dawid Koscielniak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Wilkowska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Marian Sektas
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
2
|
Unarta IC, Zhu L, Tse CKM, Cheung PPH, Yu J, Huang X. Molecular mechanisms of RNA polymerase II transcription elongation elucidated by kinetic network models. Curr Opin Struct Biol 2018; 49:54-62. [PMID: 29414512 DOI: 10.1016/j.sbi.2018.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Abstract
Transcription elongation cycle (TEC) of RNA polymerase II (Pol II) is a process of adding a nucleoside triphosphate to the growing messenger RNA chain. Due to the long timescale events in Pol II TEC, an advanced computational technique, such as Markov State Model (MSM), is needed to provide atomistic mechanism and reaction rates. The combination of MSM and experimental results can be used to build a kinetic network model (KNM) of the whole TEC. This review provides a brief protocol to build MSM and KNM of the whole TEC, along with the latest findings of MSM and other computational studies of Pol II TEC. Lastly, we offer a perspective on potentially using a sequence dependent KNM to predict genome-wide transcription error.
Collapse
Affiliation(s)
- Ilona Christy Unarta
- Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong
| | - Lizhe Zhu
- Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong; Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Carmen Ka Man Tse
- Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong; Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Peter Pak-Hang Cheung
- Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing 100084, China
| | - Xuhui Huang
- Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong; Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.
| |
Collapse
|
3
|
Genome-Wide Spectra of Transcription Insertions and Deletions Reveal That Slippage Depends on RNA:DNA Hybrid Complementarity. mBio 2017; 8:mBio.01230-17. [PMID: 28851848 PMCID: PMC5574713 DOI: 10.1128/mbio.01230-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Advances in sequencing technologies have enabled direct quantification of genome-wide errors that occur during RNA transcription. These errors occur at rates that are orders of magnitude higher than rates during DNA replication, but due to technical difficulties such measurements have been limited to single-base substitutions and have not yet quantified the scope of transcription insertions and deletions. Previous reporter gene assay findings suggested that transcription indels are produced exclusively by elongation complex slippage at homopolymeric runs, so we enumerated indels across the protein-coding transcriptomes of Escherichia coli and Buchnera aphidicola, which differ widely in their genomic base compositions and incidence of repeat regions. As anticipated from prior assays, transcription insertions prevailed in homopolymeric runs of A and T; however, transcription deletions arose in much more complex sequences and were rarely associated with homopolymeric runs. By reconstructing the relocated positions of the elongation complex as inferred from the sequences inserted or deleted during transcription, we show that continuation of transcription after slippage hinges on the degree of nucleotide complementarity within the RNA:DNA hybrid at the new DNA template location. The high level of mistakes generated during transcription can result in the accumulation of malfunctioning and misfolded proteins which can alter global gene regulation and in the expenditure of energy to degrade these nonfunctional proteins. The transcriptome-wide occurrence of base substitutions has been elucidated in bacteria, but information on transcription insertions and deletions—errors that potentially have more dire effects on protein function—is limited to reporter gene constructs. Here, we capture the transcriptome-wide spectrum of insertions and deletions in Escherichia coli and Buchnera aphidicola and show that they occur at rates approaching those of base substitutions. Knowledge of the full extent of sequences subject to transcription indels supports a new model of bacterial transcription slippage, one that relies on the number of complementary bases between the transcript and the DNA template to which it slipped.
Collapse
|
4
|
Kotkowiak W, Pasternak A, Kierzek R. Studies on Transcriptional Incorporation of 5'-N-Triphosphates of 5'-Amino-5'-Deoxyribonucleosides. PLoS One 2016; 11:e0148282. [PMID: 26829482 PMCID: PMC4735469 DOI: 10.1371/journal.pone.0148282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/16/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, several RNA polymerases were used for the first time to examine the possibility of transcriptional incorporation of 5’-N-triphosphates of 5’-amino-5’-deoxyribonucleosides (5’NH NTPs). The T3, T7, Sp6 and T7 Y639F RNA polymerases were employed to show that the full-length transcript cannot be synthesized. The results suggest that the application of 5’NH NTPs could decrease transcription reaction rates. What is more, the modification of transcription conditions had no influence on the rate of 5’NH NTPs incorporation. Based on experimental data it is postulated that 5’NH NTPs can be used as potential transcription inhibitors. Our findings expand the knowledge on suitable uses of the 5’-N-triphosphates of 5’-amino-5’-deoxyribonucleoside and the exact mechanism of transcriptional inhibition.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- * E-mail:
| |
Collapse
|
5
|
Xu L, Wang W, Chong J, Shin JH, Xu J, Wang D. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Crit Rev Biochem Mol Biol 2015; 50:503-19. [PMID: 26392149 DOI: 10.3109/10409238.2015.1087960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress toward understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation.
Collapse
Affiliation(s)
- Liang Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Wei Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jenny Chong
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Ji Hyun Shin
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jun Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Dong Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
6
|
Park J, Kang M, Kim M. Unraveling the mechanistic features of RNA polymerase II termination by the 5'-3' exoribonuclease Rat1. Nucleic Acids Res 2015; 43:2625-37. [PMID: 25722373 PMCID: PMC4357727 DOI: 10.1093/nar/gkv133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Within a complex with Rai1, the 5′-3′ exoribonuclease Rat1 promotes termination of RNA polymerase II (RNAPII) on protein-coding genes, but its underlying molecular mechanism is still poorly understood. Using in vitro transcription termination assays, we have found that RNAPII is prone to more effective termination by Rat1/Rai1 when its catalytic site is disrupted due to NTP misincorporation, implying that paused RNAPII, which is often found in vivo near termination sites, could adopt a similar configuration to Rat1/Rai1 and trigger termination. Intriguingly, yeast Rat1/Rai1 does not terminate Escherichia coli RNAP, implying that a specific interaction between Rat1/Rai1 and RNAPII may be required for termination. Furthermore, the efficiency of termination increases as the RNA transcript undergoing degradation by Rat1 gets longer, which suggests that Rat1 may generate a driving force for dissociating RNAPII from the template while degrading the nascent transcripts to catch up to the polymerase. These results indicate that multiple mechanistic features contribute to Rat1-mediated termination of RNAPII.
Collapse
Affiliation(s)
- Jieun Park
- Center for RNA Research, Institute for Basic Science and Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-Ro, Gwanakgu, Seoul, 151-742, South Korea
| | - Myungjin Kang
- Center for RNA Research, Institute for Basic Science and Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-Ro, Gwanakgu, Seoul, 151-742, South Korea
| | - Minkyu Kim
- Center for RNA Research, Institute for Basic Science and Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-Ro, Gwanakgu, Seoul, 151-742, South Korea
| |
Collapse
|
7
|
Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions. Proc Natl Acad Sci U S A 2015; 112:E410-9. [PMID: 25605892 DOI: 10.1073/pnas.1415186112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In human cells, the oxidative DNA lesion 8,5'-cyclo-2'-deoxyadenosine (CydA) induces prolonged stalling of RNA polymerase II (Pol II) followed by transcriptional bypass, generating both error-free and mutant transcripts with AMP misincorporated immediately downstream from the lesion. Here, we present biochemical and crystallographic evidence for the mechanism of CydA recognition. Pol II stalling results from impaired loading of the template base (5') next to CydA into the active site, leading to preferential AMP misincorporation. Such predominant AMP insertion, which also occurs at an abasic site, is unaffected by the identity of the 5'-templating base, indicating that it derives from nontemplated synthesis according to an A rule known for DNA polymerases and recently identified for Pol II bypass of pyrimidine dimers. Subsequent to AMP misincorporation, Pol II encounters a major translocation block that is slowly overcome. Thus, the translocation block combined with the poor extension of the dA.rA mispair reduce transcriptional mutagenesis. Moreover, increasing the active-site flexibility by mutation in the trigger loop, which increases the ability of Pol II to accommodate the bulky lesion, and addition of transacting factor TFIIF facilitate CydA bypass. Thus, blocking lesion entry to the active site, translesion A rule synthesis, and translocation block are common features of transcription across different bulky DNA lesions.
Collapse
|
8
|
A genetic assay for transcription errors reveals multilayer control of RNA polymerase II fidelity. PLoS Genet 2014; 10:e1004532. [PMID: 25232834 PMCID: PMC4168980 DOI: 10.1371/journal.pgen.1004532] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 06/11/2014] [Indexed: 11/19/2022] Open
Abstract
We developed a highly sensitive assay to detect transcription errors in vivo. The assay is based on suppression of a missense mutation in the active site tyrosine in the Cre recombinase. Because Cre acts as tetramer, background from translation errors are negligible. Functional Cre resulting from rare transcription errors that restore the tyrosine codon can be detected by Cre-dependent rearrangement of reporter genes. Hence, transient transcription errors are captured as stable genetic changes. We used this Cre-based reporter to screen for mutations of Saccharomyces cerevisiae RPB1 (RPO21) that increase the level of misincorporation during transcription. The mutations are in three domains of Rpb1, the trigger loop, the bridge helix, and in sites involved in binding to TFIIS. Biochemical characterization demonstrates that these variants have elevated misincorporation, and/or ability to extend mispaired bases, or defects in TFIIS mediated editing.
Collapse
|
9
|
Imashimizu M, Oshima T, Lubkowska L, Kashlev M. Direct assessment of transcription fidelity by high-resolution RNA sequencing. Nucleic Acids Res 2013; 41:9090-104. [PMID: 23925128 PMCID: PMC3799451 DOI: 10.1093/nar/gkt698] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cancerous and aging cells have long been thought to be impacted by transcription errors that cause genetic and epigenetic changes. Until now, a lack of methodology for directly assessing such errors hindered evaluation of their impact to the cells. We report a high-resolution Illumina RNA-seq method that can assess noncoded base substitutions in mRNA at 10−4–10−5 per base frequencies in vitro and in vivo. Statistically reliable detection of changes in transcription fidelity through ∼103 nt DNA sites assures that the RNA-seq can analyze the fidelity in a large number of the sites where errors occur. A combination of the RNA-seq and biochemical analyses of the positions for the errors revealed two sequence-specific mechanisms that increase transcription fidelity by Escherichia coli RNA polymerase: (i) enhanced suppression of nucleotide misincorporation that improves selectivity for the cognate substrate, and (ii) increased backtracking of the RNA polymerase that decreases a chance of error propagation to the full-length transcript after misincorporation and provides an opportunity to proofread the error. This method is adoptable to a genome-wide assessment of transcription fidelity.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA and Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | |
Collapse
|
10
|
Abstract
Synthetic nucleic acid analogues have profoundly advanced our knowledge of DNA and RNA, as well as the complex biological processes that involve nucleic acids. As a pivotal enzyme, eukaryotic RNA polymerase II (Pol II) is responsible for transcribing DNA into messenger RNA, which serves as a template to direct protein synthesis. Chemically modified nucleic acid analogues have greatly facilitated the structural elucidation of RNA Pol II elongation complex and understanding the key chemical interactions governing RNA Pol II transcriptional fidelity. This review addresses major progress in RNA polymerase II mechanistic studies using modified nucleic acid analogues in recent years.
Collapse
Affiliation(s)
- Su Zhang
- University of California, San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences
| | - Dong Wang
- University of California, San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences
| |
Collapse
|
11
|
Zhang Q, Wang Y, Meng X, Dhar R, Huang H. Triple-stranded DNA containing 8-oxo-7,8-dihydro-2'-deoxyguanosine: implication in the design of selective aptamer sensors for 8-oxo-7,8-dihydroguanine. Anal Chem 2012; 85:201-7. [PMID: 23237478 DOI: 10.1021/ac3033323] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
8-Oxo-7,8-dihydroguanine (8-oxoG, or OG) as a free base has been widely considered as a biomarker for DNA oxidative damage. Currently no fluorescence sensor has been developed to directly detect 8-oxoG less than 100 nM. In this study, two triple-stranded DNAs were selected as the scaffolds to rationally design DNA aptamer sensors for 8-oxoG. The cavity was created by deleting the 8-oxodG nucleoside in a triplex containing an A·OG-C triad or a C·OG-A triad. The results showed that the fluorescence of both sensors were completely quenched by 8-oxoG. The detection ranges of the two sensors were different, while the combined range was comparable to the detection range of an antibody-based method. This result is expected to enable a fast, low-cost, and reusable method to measure 8-oxoG concentration.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, United States
| | | | | | | | | |
Collapse
|
12
|
Nakanishi N, Fukuoh A, Kang D, Iwai S, Kuraoka I. Effects of DNA lesions on the transcription reaction of mitochondrial RNA polymerase: implications for bypass RNA synthesis on oxidative DNA lesions. Mutagenesis 2012; 28:117-23. [PMID: 23053822 DOI: 10.1093/mutage/ges060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Oxidative DNA lesions inhibit the transcription of RNA polymerase II, but in the presence of transcription elongation factors, the transcription can bypass the lesions. Single-subunit mitochondrial RNA polymerase (mtRNAP) catalyses the synthesis of essential transcripts in mitochondria where reactive oxidative species (ROS) are generated as by-products. The occurrence of RNA synthesis by mtRNAP at oxidative DNA lesions remains unknown. Purified mtRNAP and a complex of RNA primer/DNA template containing a single DNA lesion, such as ROS-induced 8-oxoguanine (8-oxoG), two isomeric thymine glycols (5R-Tg or 5S-Tg), the UV-induced cis-syn cyclobutane pyrimidine dimer (CPD) and the pyrimidine(6-4)pyrimidone photoproduct (6-4pp), or a spontaneous common DNA lesion, a base-loss-induced apurinic/apyrimidinic (AP) site, were used for in vitro RNA synthesis assays. In this report, we show that mtRNAP bypassed the oxidative DNA lesions of non-bulky 8-oxoG and 5R-Tg and 5S-Tg with pausing sites but did not bypass the UV-induced DNA lesions and the AP site. The bacteriophage T7 phage RNA polymerase, which is homologous to mtRNAP, bypassed 8-oxoG but stalled at 5R-Tg and 5S-Tg. As expected, although translesion RNA synthesis in 8-oxoG on the DNA templates generated incorrect transcripts with a G:C to T:A transversion, the synthesis in Tg could lead to the correct transcripts with no transcriptional mutagenesis. Collectively, these data suggest that mtRNAP may tolerate the mitochondrial genome containing oxidative DNA lesions induced by ROS from the side effects of an ATP generation reaction.
Collapse
Affiliation(s)
- Nozomi Nakanishi
- Graduate School of Engineering Science, Osaka University Graduate School of Engineering Science, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | |
Collapse
|
13
|
Kellinger MW, Ulrich S, Chong J, Kool ET, Wang D. Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity. J Am Chem Soc 2012; 134:8231-40. [PMID: 22509745 DOI: 10.1021/ja302077d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of "hydrogen bond deficient" nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson-Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3'-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3'-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.
Collapse
Affiliation(s)
- Matthew W Kellinger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, California 92093-0625, United States
| | | | | | | | | |
Collapse
|
14
|
Imashimizu M, Tanaka K, Shimamoto N. Comparative Study of Cyanobacterial and E. coli RNA Polymerases: Misincorporation, Abortive Transcription, and Dependence on Divalent Cations. GENETICS RESEARCH INTERNATIONAL 2011; 2011:572689. [PMID: 22567357 PMCID: PMC3335489 DOI: 10.4061/2011/572689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/31/2011] [Indexed: 11/20/2022]
Abstract
If Mg2+ ion is replaced by Mn2+ ion, RNA polymerase tends to misincorporate noncognate nucleotide, which is thought to be one of the reasons for the toxicity of Mn2+ ion. Therefore, most cells have Mn2+ ion at low intracellular concentrations, but cyanobacteria need the ion at a millimolar concentration to maintain photosynthetic machinery. To analyse the mechanism for resistance against the abundant Mn2+ ion, we compared the properties of cyanobacterial and E. coli RNA polymerases. The cyanobacterial enzyme showed a lower level of abortive transcription and less misincorporation than the E. coli enzyme. Moreover, the cyanobacterial enzyme showed a slower rate of the whole elongation by an order of magnitude, paused more frequently, and cleaved its transcript faster in the absence of NTPs. In conclusion, cyanobacterial RNA polymerase maintains the fidelity of transcription against Mn2+ ion by deliberate incorporation of a nucleotide at the cost of the elongation rate. The cyanobacterial and the E. coli enzymes showed different sensitivities to Mg2+ ion, and the physiological role of the difference is also discussed.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
15
|
Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription. Proc Natl Acad Sci U S A 2011; 108:6079-84. [PMID: 21447716 DOI: 10.1073/pnas.1011274108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The regulation of RNA synthesis by RNA polymerase (RNAP) is essential for proper gene expression. Crystal structures of RNAP reveal two channels: the main channel that contains the downstream DNA and a secondary channel that leads directly to the catalytic site. Although nucleoside triphosphates (NTPs) have been seen only in the catalytic site and the secondary channel in these structures, several models of transcription elongation, based on biochemical studies, propose that template-dependent binding of NTPs in the main channel regulates RNA synthesis. These models, however, remain controversial. We used transient state kinetics and a mutant of RNAP to investigate the role of the main channel in regulating nucleotide incorporation. Our data indicate that a NTP specific for the i + 2 template position can bind to a noncatalytic site and increase the rate of RNA synthesis and that the NTP bound to this site can be shuttled directly into the catalytic site. We also identify fork loop 2, which lies across from the downstream DNA, as a functional component of this site. Taken together, our data support the existence of a noncatalytic template-specific NTP binding site in the main channel that is involved in the regulation of nucleotide incorporation. NTP binding to this site could promote high-fidelity processive synthesis under a variety of environmental conditions and allow DNA sequence-mediated regulatory signals to be communicated to the active site.
Collapse
|
16
|
Pupov DV, Kulbachinskiy AV. Structural dynamics of the active center of multisubunit RNA polymerases during RNA synthesis and proofreading. Mol Biol 2010. [DOI: 10.1134/s0026893310040023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Yuzenkova Y, Zenkin N. Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis. Proc Natl Acad Sci U S A 2010; 107:10878-83. [PMID: 20534498 PMCID: PMC2890756 DOI: 10.1073/pnas.0914424107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The active center of RNA polymerase can hydrolyze phosphodiester bonds in nascent RNA, a reaction thought to be important for proofreading of transcription. The reaction proceeds via a general two Mg(2+) mechanism and is assisted by the 3' end nucleotide of the transcript. Here, by using Thermus aquaticus RNA polymerase, we show that the reaction also requires the flexible domain of the active center, the trigger loop (TL). We show that the invariant histidine (beta' His1242) of the TL is essential for hydrolysis/proofreading and participates in the reaction in two distinct ways: by positioning the 3' end nucleotide of the transcript that assists catalysis and/or by directly participating in the reaction as a general base. We also show that participation of the beta' His1242 of the TL in phosphodiester bond hydrolysis does not depend on the extent of elongation complex backtracking. We obtained similar results with Escherichia coli RNA polymerase, indicating that the function of the TL in phosphodiester bond hydrolysis is conserved among bacteria.
Collapse
Affiliation(s)
- Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| |
Collapse
|
18
|
Transcript Slippage and Recoding. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2010. [DOI: 10.1007/978-0-387-89382-2_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Sydow JF, Cramer P. RNA polymerase fidelity and transcriptional proofreading. Curr Opin Struct Biol 2009; 19:732-9. [PMID: 19914059 DOI: 10.1016/j.sbi.2009.10.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 02/06/2023]
Abstract
Whereas mechanisms underlying the fidelity of DNA polymerases (DNAPs) have been investigated in detail, RNA polymerase (RNAP) fidelity mechanisms remained poorly understood. New functional and structural studies now suggest how RNAPs select the correct nucleoside triphosphate (NTP) substrate to prevent transcription errors, and how the enzymes detect and remove a misincorporated nucleotide during proofreading. Proofreading begins with fraying of the misincorporated nucleotide away from the DNA template, which pauses transcription. Subsequent backtracking of RNAP by one position enables nucleolytic cleavage of an RNA dinucleotide that contains the misincorporated nucleotide. Since cleavage occurs at the same active site that is used for polymerization, the RNAP proofreading mechanism differs from that used by DNAPs, which contain a distinct nuclease specific active site.
Collapse
Affiliation(s)
- Jasmin F Sydow
- Gene Center Munich and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
20
|
Damsma GE, Cramer P. Molecular basis of transcriptional mutagenesis at 8-oxoguanine. J Biol Chem 2009; 284:31658-63. [PMID: 19758983 DOI: 10.1074/jbc.m109.022764] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Structure-function analysis has revealed the mechanism of yeast RNA polymerase II transcription at 8-oxoguanine (8-oxoG), the major DNA lesion resulting from oxidative stress. When polymerase II encounters 8-oxoG in the DNA template strand, it can misincorporate adenine, which forms a Hoogsteen bp with 8-oxoG at the active center. This requires rotation of the 8-oxoG base from the standard anti- to an uncommon syn-conformation, which likely occurs during 8-oxoG loading into the active site. The misincorporated adenine escapes intrinsic proofreading, resulting in transcriptional mutagenesis that is observed directly by mass spectrometric RNA analysis.
Collapse
Affiliation(s)
- Gerke E Damsma
- Gene Center and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | |
Collapse
|
21
|
Sydow JF, Brueckner F, Cheung ACM, Damsma GE, Dengl S, Lehmann E, Vassylyev D, Cramer P. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol Cell 2009; 34:710-21. [PMID: 19560423 DOI: 10.1016/j.molcel.2009.06.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/05/2009] [Accepted: 06/05/2009] [Indexed: 11/17/2022]
Abstract
We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNARNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a TU mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal ion and misaligns the RNA 3' end. The mismatch can also stabilize a paused state of Pol II with a frayed RNA 3' nucleotide. The frayed nucleotide binds in the Pol II pore either parallel or perpendicular to the DNA-RNA hybrid axis (fraying sites I and II, respectively) and overlaps the nucleoside triphosphate (NTP) site, explaining how it halts transcription during proofreading, before backtracking and RNA cleavage.
Collapse
Affiliation(s)
- Jasmin F Sydow
- Department of Chemistry and Biochemistry, Gene Center Munich and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kamiya H, Suzuki A, Yamaguchi Y, Handa H, Harashima H. Incorporation of 8-hydroxyguanosine (8-oxo-7,8-dihydroguanosine) 5'-triphosphate by bacterial and human RNA polymerases. Free Radic Biol Med 2009; 46:1703-7. [PMID: 19362141 DOI: 10.1016/j.freeradbiomed.2009.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/24/2009] [Accepted: 04/04/2009] [Indexed: 10/20/2022]
Abstract
Oxidized RNA precursors formed in the nucleotide pool may be incorporated into RNA. In this study, the incorporation of 8-hydroxyguanosine 5'-triphosphate (8-OH-GTP; 8-oxo-7,8-dihydroguanosine 5'-triphosphate) into RNA by Escherichia coli RNA polymerase was examined in vitro, using a primer RNA and a template DNA with defined sequences. 8-OH-GTP was incorporated opposite C and A in the template DNA. Surprisingly, 8-OH-GTP was quite efficiently incorporated by the bacterial RNA polymerase, in contrast to the incorporation of the 2'-deoxyribo counterpart by DNA polymerases, as indicated by the kinetic parameters. The primer was further extended by the addition of a ribonucleotide complementary to the nucleobase adjacent to C or A (the nucleobase opposite which 8-OH-GTP was inserted). Thus, the incorporation of 8-OH-GTP did not completely inhibit further RNA chain elongation. 8-OH-GTP was also incorporated opposite C and A by human RNA polymerase II. These results suggest that 8-OH-GTP in the nucleotide pool can cause the formation of oxidized RNA and disturb the transmittance of genetic information.
Collapse
Affiliation(s)
- Hiroyuki Kamiya
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | |
Collapse
|
23
|
Walmacq C, Kireeva ML, Irvin J, Nedialkov Y, Lubkowska L, Malagon F, Strathern JN, Kashlev M. Rpb9 subunit controls transcription fidelity by delaying NTP sequestration in RNA polymerase II. J Biol Chem 2009; 284:19601-12. [PMID: 19439405 DOI: 10.1074/jbc.m109.006908] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rpb9 is a small non-essential subunit of yeast RNA polymerase II located on the surface on the enzyme. Deletion of the RPB9 gene shows synthetic lethality with the low fidelity rpb1-E1103G mutation localized in the trigger loop, a mobile element of the catalytic Rpb1 subunit, which has been shown to control transcription fidelity. Similar to the rpb1-E1103G mutation, the RPB9 deletion substantially enhances NTP misincorporation and increases the rate of mismatch extension with the next cognate NTP in vitro. Using pre-steady state kinetic analysis, we show that RPB9 deletion promotes sequestration of NTPs in the polymerase active center just prior to the phosphodiester bond formation. We propose a model in which the Rpb9 subunit controls transcription fidelity by delaying the closure of the trigger loop on the incoming NTP via interaction between the C-terminal domain of Rpb9 and the trigger loop. Our findings reveal a mechanism for regulation of transcription fidelity by protein factors located at a large distance from the active center of RNA polymerase II.
Collapse
Affiliation(s)
- Celine Walmacq
- NCI Center for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gordon AJE, Halliday JA, Blankschien MD, Burns PA, Yatagai F, Herman C. Transcriptional infidelity promotes heritable phenotypic change in a bistable gene network. PLoS Biol 2009; 7:e44. [PMID: 19243224 PMCID: PMC2652393 DOI: 10.1371/journal.pbio.1000044] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 01/12/2009] [Indexed: 01/11/2023] Open
Abstract
Bistable epigenetic switches are fundamental for cell fate determination in unicellular and multicellular organisms. Regulatory proteins associated with bistable switches are often present in low numbers and subject to molecular noise. It is becoming clear that noise in gene expression can influence cell fate. Although the origins and consequences of noise have been studied, the stochastic and transient nature of RNA errors during transcription has not been considered in the origin or modeling of noise nor has the capacity for such transient errors in information transfer to generate heritable phenotypic change been discussed. We used a classic bistable memory module to monitor and capture transient RNA errors: the lac operon of Escherichia coli comprises an autocatalytic positive feedback loop producing a heritable all-or-none epigenetic switch that is sensitive to molecular noise. Using single-cell analysis, we show that the frequency of epigenetic switching from one expression state to the other is increased when the fidelity of RNA transcription is decreased due to error-prone RNA polymerases or to the absence of auxiliary RNA fidelity factors GreA and GreB (functional analogues of eukaryotic TFIIS). Therefore, transcription infidelity contributes to molecular noise and can effect heritable phenotypic change in genetically identical cells in the same environment. Whereas DNA errors allow genetic space to be explored, RNA errors may allow epigenetic or expression space to be sampled. Thus, RNA infidelity should also be considered in the heritable origin of altered or aberrant cell behaviour.
Collapse
Affiliation(s)
- Alasdair J. E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Matthew D Blankschien
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Philip A Burns
- Pathology and Tumour Biology, Leeds Institute for Molecular Medicine, St James's University Hospital, Leeds, United Kingdom
| | - Fumio Yatagai
- Molecular Imaging Program, RIKEN Institute, Wako-shi, Saitama, Japan
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Kent T, Kashkina E, Anikin M, Temiakov D. Maintenance of RNA-DNA hybrid length in bacterial RNA polymerases. J Biol Chem 2009; 284:13497-13504. [PMID: 19321439 DOI: 10.1074/jbc.m901898200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During transcription elongation the nascent RNA remains base-paired to the template strand of the DNA before it is displaced and the two strands of the DNA reanneal, resulting in the formation of a transcription "bubble" of approximately 10 bp. To examine how the length of the RNA-DNA hybrid is maintained, we assembled transcription elongation complexes on synthetic nucleic acid scaffolds that mimic the situation in which transcript displacement is compromised and the polymerase synthesizes an extended hybrid. We found that in such complexes bacterial RNA polymerase exhibit an intrinsic endonucleolytic cleavage activity that restores the hybrid to its normal length. Mutations in the region of the RNA polymerase near the site of RNA-DNA separation result in altered RNA displacement and translocation functions and as a consequence in different patterns of proofreading activities. Our data corroborate structural findings concerning the elements involved in the maintenance of the length of the RNA-DNA hybrid and suggest interplay between polymerase translocation, DNA strand separation, and intrinsic endonucleolytic activity.
Collapse
Affiliation(s)
- Tatyana Kent
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084
| | - Ekaterina Kashkina
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084
| | - Michael Anikin
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084
| | - Dmitry Temiakov
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084.
| |
Collapse
|
26
|
Abstract
RNA polymerase (RNAP) is a complex molecular machine that governs gene expression and its regulation in all cellular organisms. To accomplish its function of accurately producing a full-length RNA copy of a gene, RNAP performs a plethora of chemical reactions and undergoes multiple conformational changes in response to cellular conditions. At the heart of this machine is the active center, the engine, which is composed of distinct fixed and moving parts that serve as the ultimate acceptor of regulatory signals and as the target of inhibitory drugs. Recent advances in the structural and biochemical characterization of RNAP explain the active center at the atomic level and enable new approaches to understanding the entire transcription mechanism, its exceptional fidelity and control.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
27
|
Cheng TF, Hu X, Gnatt A, Brooks PJ. Differential blocking effects of the acetaldehyde-derived DNA lesion N2-ethyl-2'-deoxyguanosine on transcription by multisubunit and single subunit RNA polymerases. J Biol Chem 2008; 283:27820-27828. [PMID: 18669632 DOI: 10.1074/jbc.m804086200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetaldehyde, the first metabolite of ethanol, reacts with DNA to form adducts, including N(2)-ethyl-2'-deoxyguanosine (N(2)-Et-dG). Although the effects of N(2)-Et-dG on DNA polymerases have been well studied, nothing is known about possible effects of this lesion on transcription by RNA polymerases (RNAPs). Using primer extension assays in vitro, we found that a single N(2)-Et-dG lesion is a strong block to both mammalian RNAPII and two other multisubunit RNAPs, (yeast RNAPII and Escherichia coli RNAP), as well as to T7 RNAP. However, the mechanism of transcription blockage appears to differ between the multisubunit RNAPs and T7 RNAP. Specifically, all three of the multisubunit RNAPs can incorporate a single rNTP residue opposite the lesion, whereas T7 RNAP is essentially unable to do so. Using the mammalian RNAPII, we found that CMP is exclusively incorporated opposite the N(2)-Et-dG lesion. In addition, we also show that the accessory transcription factor TFIIS does not act as a lesion bypass factor, as it does for other nonbulky DNA lesions; instead, it stimulates the polymerase to remove the CMP incorporated opposite the lesion by mammalian RNAPII. We also include models of the N(2)-Et-dG within the active site of yeast RNAPII, which are compatible with our observations.
Collapse
Affiliation(s)
- Tsu-Fan Cheng
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892
| | - Xiaopeng Hu
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Averell Gnatt
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Philip J Brooks
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892.
| |
Collapse
|
28
|
Kireeva ML, Nedialkov YA, Cremona GH, Purtov YA, Lubkowska L, Malagon F, Burton ZF, Strathern JN, Kashlev M. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol Cell 2008; 30:557-66. [PMID: 18538654 PMCID: PMC7243879 DOI: 10.1016/j.molcel.2008.04.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 03/05/2008] [Accepted: 04/28/2008] [Indexed: 11/28/2022]
Abstract
To study fidelity of RNA polymerase II (Pol II), we analyzed properties of the 6-azauracil-sensitive and TFIIS-dependent E1103G mutant of rbp1 (rpo21), the gene encoding the catalytic subunit of Pol II in Saccharomyces cerevisiae. Using an in vivo retrotransposition-based transcription fidelity assay, we observed that rpb1-E1103G causes a 3-fold increase in transcription errors. This mutant showed a 10-fold decrease in fidelity of transcription elongation in vitro. The mutation does not appear to significantly affect translocation state equilibrium of Pol II in a stalled elongation complex. Primarily, it promotes NTP sequestration in the polymerase active center. Furthermore, pre-steady-state analyses revealed that the E1103G mutation shifted the equilibrium between the closed and the open active center conformations toward the closed form. Thus, open conformation of the active center emerges as an intermediate essential for preincorporation fidelity control. Similar mechanisms may control fidelity of DNA-dependent DNA polymerases and RNA-dependent RNA polymerases.
Collapse
Affiliation(s)
| | - Yuri A. Nedialkov
- NCI Center for Cancer Research, Frederick, MD 21702, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Present address: Department of Biochemistry, NYU School of Medicine, New York, NY 10016, USA
| | - Gina H. Cremona
- NCI Center for Cancer Research, Frederick, MD 21702, USA
- Present address: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuri A. Purtov
- NCI Center for Cancer Research, Frederick, MD 21702, USA
| | | | - Francisco Malagon
- NCI Center for Cancer Research, Frederick, MD 21702, USA
- Present address: Institute of Molecular Biology, Aarhus University, 8000 Århus C, Denmark
| | - Zachary F. Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
29
|
Damsma GE, Alt A, Brueckner F, Carell T, Cramer P. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat Struct Mol Biol 2007; 14:1127-33. [PMID: 17994106 DOI: 10.1038/nsmb1314] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/18/2007] [Indexed: 11/09/2022]
Abstract
The anticancer drug cisplatin forms 1,2-d(GpG) DNA intrastrand cross-links (cisplatin lesions) that stall RNA polymerase II (Pol II) and trigger transcription-coupled DNA repair. Here we present a structure-function analysis of Pol II stalling at a cisplatin lesion in the DNA template. Pol II stalling results from a translocation barrier that prevents delivery of the lesion to the active site. AMP misincorporation occurs at the barrier and also at an abasic site, suggesting that it arises from nontemplated synthesis according to an 'A-rule' known for DNA polymerases. Pol II can bypass a cisplatin lesion that is artificially placed beyond the translocation barrier, even in the presence of a G.A mismatch. Thus, the barrier prevents transcriptional mutagenesis. The stalling mechanism differs from that of Pol II stalling at a photolesion, which involves delivery of the lesion to the active site and lesion-templated misincorporation that blocks transcription.
Collapse
Affiliation(s)
- Gerke E Damsma
- Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
30
|
Kashkina EA, Anikin MV, McAllister WT, Kochetkov N, Temyakov DE. Determination of the melting site of the DNA duplex in the active center of bacterial RNA-polymerase by fluorescence quenching technique. DOKL BIOCHEM BIOPHYS 2007; 416:285-9. [PMID: 18064834 DOI: 10.1134/s160767290705016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- E A Kashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow, 117984, Russia
| | | | | | | | | |
Collapse
|
31
|
Kashkina E, Anikin M, Brueckner F, Lehmann E, Kochetkov SN, McAllister WT, Cramer P, Temiakov D. Multisubunit RNA polymerases melt only a single DNA base pair downstream of the active site. J Biol Chem 2007; 282:21578-82. [PMID: 17526498 DOI: 10.1074/jbc.c700098200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To extend the nascent transcript, RNA polymerases must melt the DNA duplex downstream from the active site to expose the next acceptor base for substrate binding and incorporation. A number of mechanisms have been proposed to account for the manner in which the correct substrate is selected, and these differ in their predictions as to how far the downstream DNA is melted. Using fluorescence quenching experiments, we provide evidence that cellular RNA polymerases from bacteria and yeast melt only one DNA base pair downstream from the active site. These data argue against a model in which multiple NTPs are lined up downstream of the active site.
Collapse
Affiliation(s)
- Ekaterina Kashkina
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Arraiano CM, Bamford J, Brüssow H, Carpousis AJ, Pelicic V, Pflüger K, Polard P, Vogel J. Recent advances in the expression, evolution, and dynamics of prokaryotic genomes. J Bacteriol 2007; 189:6093-100. [PMID: 17601780 PMCID: PMC1951890 DOI: 10.1128/jb.00612-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Cecilia M Arraiano
- ITQB-Instituto de Tecnologia Química e Biológical/Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Meyer PR, Rutvisuttinunt W, Matsuura SE, So AG, Scott WA. Stable complexes formed by HIV-1 reverse transcriptase at distinct positions on the primer-template controlled by binding deoxynucleoside triphosphates or foscarnet. J Mol Biol 2007; 369:41-54. [PMID: 17400246 PMCID: PMC1986715 DOI: 10.1016/j.jmb.2007.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/28/2007] [Accepted: 03/02/2007] [Indexed: 11/30/2022]
Abstract
Binding of the next complementary dNTP by the binary complex containing HIV-1 reverse transcriptase (RT) and primer-template induces conformational changes that have been implicated in catalytic function of RT. We have used DNase I footprinting, gel electrophoretic mobility shift, and exonuclease protection assays to characterize the interactions between HIV-1 RT and chain-terminated primer-template in the absence and presence of various ligands. Distinguishable stable complexes were formed in the presence of foscarnet (an analog of pyrophosphate), the dNTP complementary to the first (+1) templating nucleotide or the dNTP complementary to the second (+2) templating nucleotide. The position of HIV-1 RT on the primer-template in each of these complexes is different. RT is located upstream in the foscarnet complex, relative to the +1 complex, and downstream in the +2 complex. These results suggest that HIV-1 RT can translocate along the primer-template in the absence of phosphodiester bond formation. The ability to form a specific foscarnet complex might explain the inhibitory properties of this compound. The ability to recognize the second templating nucleotide has implications for nucleotide misincorporation.
Collapse
Affiliation(s)
- Peter R Meyer
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | | | |
Collapse
|
34
|
Brulliard M, Lorphelin D, Collignon O, Lorphelin W, Thouvenot B, Gothié E, Jacquenet S, Ogier V, Roitel O, Monnez JM, Vallois P, Yen FT, Poch O, Guenneugues M, Karcher G, Oudet P, Bihain BE. Nonrandom variations in human cancer ESTs indicate that mRNA heterogeneity increases during carcinogenesis. Proc Natl Acad Sci U S A 2007; 104:7522-7. [PMID: 17452638 PMCID: PMC1855071 DOI: 10.1073/pnas.0611076104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virtually all cancer biological attributes are heterogeneous. Because of this, it is currently difficult to reconcile results of cancer transcriptome and proteome experiments. It is also established that cancer somatic mutations arise at rates higher than suspected, but yet are insufficient to explain all cancer cell heterogeneity. We have analyzed sequence variations of 17 abundantly expressed genes in a large set of human ESTs originating from either normal or cancer samples. We show that cancer ESTs have greater variations than normal ESTs for >70% of the tested genes. These variations cannot be explained by known and putative SNPs. Furthermore, cancer EST variations were not random, but were determined by the composition of the substituted base (b0) as well as that of the bases located upstream (up to b - 4) and downstream (up to b + 3) of the substitution event. The replacement base was also not randomly selected but corresponded in most cases (73%) to a repetition of b - 1 or of b + 1. Base substitutions follow a specific pattern of affected bases: A and T substitutions were preferentially observed in cancer ESTs. In contrast, cancer somatic mutations [Sjoblom T, et al. (2006) Science 314:268-274] and SNPs identified in the genes of the current study occurred preferentially with C and G. On the basis of these observations, we developed a working hypothesis that cancer EST heterogeneity results primarily from increased transcription infidelity.
Collapse
Affiliation(s)
- Marie Brulliard
- *JE2482 Lipidomix, Institut National Polytechnique de Lorraine, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
| | - Dalia Lorphelin
- Genclis SAS, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
| | - Olivier Collignon
- Genclis SAS, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
- Institut Elie Cartan, Université Henri Poincaré, BP 239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Walter Lorphelin
- Genclis SAS, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
| | - Benoit Thouvenot
- Genclis SAS, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
| | - Emmanuel Gothié
- Genclis SAS, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
| | - Sandrine Jacquenet
- Genclis SAS, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
| | - Virginie Ogier
- Genclis SAS, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
| | - Olivier Roitel
- Genclis SAS, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
| | - Jean-Marie Monnez
- Institut Elie Cartan, Université Henri Poincaré, BP 239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Pierre Vallois
- Institut Elie Cartan, Université Henri Poincaré, BP 239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Frances T. Yen
- *JE2482 Lipidomix, Institut National Polytechnique de Lorraine, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
| | - Olivier Poch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, Rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | - Marc Guenneugues
- Cancéropôle du Grand Est, Hôpital de Hautepierre, 1, Avenue Molière, 67200 Strasbourg, France; and
| | - Gilles Karcher
- Centre Hospitalier Universitaire de Nancy, 5, Allée du Morvan, 54500 Vandoeuvre-lès-Nancy, France
| | - Pierre Oudet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, Rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
- Cancéropôle du Grand Est, Hôpital de Hautepierre, 1, Avenue Molière, 67200 Strasbourg, France; and
| | - Bernard E. Bihain
- Genclis SAS, 15, Rue du Bois de la Champelle, 54500 Vandoeuvre-lès-Nancy, France
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Pomerantz RT, Temiakov D, Anikin M, Vassylyev DG, McAllister WT. A mechanism of nucleotide misincorporation during transcription due to template-strand misalignment. Mol Cell 2006; 24:245-55. [PMID: 17052458 PMCID: PMC2810628 DOI: 10.1016/j.molcel.2006.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/15/2006] [Accepted: 08/17/2006] [Indexed: 12/22/2022]
Abstract
Transcription errors by T7 RNA polymerase (RNAP) may occur as the result of a mechanism in which the template base two positions downstream of the 3' end of the RNA (the TSn+1 base) is utilized during two consecutive nucleotide-addition cycles. In the first cycle, misalignment of the template strand leads to incorporation of a nucleotide that is complementary to the TSn+1 base. In the second cycle, the template is realigned and the mismatched primer is efficiently extended, resulting in a substitution error. Proper organization of the transcription bubble is required for maintaining the correct register of the DNA template, as the presence of a complementary nontemplate strand opposite the TSn+1 base suppresses template misalignment. Our findings for T7 RNAP are in contrast to related DNA polymerases of the Pol I type, which fail to extend mismatches efficiently and generate predominantly deletion errors as a result of template-strand misalignment.
Collapse
Affiliation(s)
- Richard T. Pomerantz
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, New York 11203, USA
- Graduate Program in Molecular and Cellular Biology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, New York 11203, USA
| | - Dmitry Temiakov
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, 42 East Laurel Road, Stratford, New Jersey 08084, USA
| | - Michael Anikin
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, 42 East Laurel Road, Stratford, New Jersey 08084, USA
| | - Dmitry G. Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 434 Kaul Genetics Building, 720 20 Street South, Birmingham, AL 35294, USA
| | - William T. McAllister
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, 42 East Laurel Road, Stratford, New Jersey 08084, USA
| |
Collapse
|