1
|
Chapagai D, Strebhardt K, Wyatt MD, McInnes C. Structural regulation of PLK1 activity: implications for cell cycle function and drug discovery. Cancer Gene Ther 2025:10.1038/s41417-025-00907-7. [PMID: 40379873 DOI: 10.1038/s41417-025-00907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/19/2025]
Abstract
Polo Like Kinase 1 (PLK1), a key regulator of mitosis whose overexpression is often associated with poor survival rates in cancer, continues to be widely investigated as an oncology drug target with clinical trials evaluating second and third generation inhibitors. In addition to the conserved N-terminal kinase domain (KD), a unique characteristic of the Polo-Like kinase family is the C-terminal polo-box domain (PBD). The PBD contains a phosphopeptide binding site that recognizes substrates primed by other kinases and furthermore is responsible for subcellular localization of PLK1 to specific sites in the nucleus including centrosomes and kinetochores. Another role of the PBD is its regulatory ability through domain-domain interactions with the KD to maintain an autoinhibited state of PLK1. Insights into post translational modifications and the PBD - KD domain-domain association have been obtained and show that key events in PLK1 regulation include phosphosubstrate binding, T210 phosphorylation and engagement with the Bora protein. These can induce an open and active conformation where the domain-domain inhibitory interactions no longer dominate. Further regulatory events recently described include the interchange between monomeric and dimeric forms, which can also serve to inhibit or activate PLK1 during the cell cycle. Different oligomeric forms of PLK1, existing as homodimers and heterodimers with PLK2, have been identified and likely play context dependent roles. This review provides an overview of recent information describing structural and mechanistic insights into inhibition of PLK1 and the temporal and spatial requirements of its activation and regulation. It also covers recent insights into the conformational regulation of other members of the Polo-Like kinase family. The implications of the conformational regulation of PLK1 with respect to cell cycle function and drug discovery are significant and are therefore discussed in detail.
Collapse
Affiliation(s)
- Danda Chapagai
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, 02129, USA
| | - Klaus Strebhardt
- Department of Gynecology, University Hospital, Goethe University, Theodor-Stern-Kai 7-9, Frankfurt am Main, 60596, Germany
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, 29208, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, 29208, USA.
| |
Collapse
|
2
|
Schweighofer J, Mulay B, Hoffmann I, Vogt D, Pesenti ME, Musacchio A. Interactions with multiple inner kinetochore proteins determine mitotic localization of FACT. J Cell Biol 2025; 224:e202412042. [PMID: 40094435 PMCID: PMC11912937 DOI: 10.1083/jcb.202412042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
The FAcilitates Chromatin Transcription (FACT) complex is a dimeric histone chaperone that operates on chromatin during transcription and replication. FACT also interacts with a specialized centromeric nucleosome containing the histone H3 variant centromere protein A (CENP-A) and with CENP-TW, two subunits of the constitutive centromere-associated network (CCAN), a 16-protein complex associated with CENP-A. The significance of these interactions remains elusive. Here, we show that FACT has multiple additional binding sites on CCAN. The interaction with CCAN is strongly stimulated by casein kinase II phosphorylation of FACT. Mitotic localization of FACT to kinetochores is strictly dependent on specific CCAN subcomplexes. Conversely, CENP-TW requires FACT for stable localization. Unexpectedly, we also find that DNA readily displaces FACT from CCAN, supporting the speculation that FACT becomes recruited through a pool of CCAN that is not stably integrated into chromatin. Collectively, our results point to a potential role of FACT in chaperoning CCAN during transcription or in the stabilization of CCAN at the centromere during the cell cycle.
Collapse
Affiliation(s)
- Julia Schweighofer
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Bhagyashree Mulay
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Doro Vogt
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marion E. Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
| |
Collapse
|
3
|
Luo J, Xu H, Su C, Dong W, Xiao M, Xiao N, Jia Y, Xue Y. Polo-like kinase2 regulates renal tubulointerstitial fibrosis via notch signaling pathway in diabetic kidney disease. FASEB J 2025; 39:e70455. [PMID: 40059448 PMCID: PMC11891471 DOI: 10.1096/fj.202402793r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 05/13/2025]
Abstract
Renal tubulointerstitial fibrosis is considered as an important pathological feature of diabetic kidney disease (DKD). However, the underlying mechanism remains unclear. Polo-like kinase2 (PLK2) is a known player in the regulation of organ fibrosis. Herein, we investigated the expression and function of PLK2 in renal tubular epithelial cells in DKD. Data from the GSE30529 datasets were subjected to analyze the differentially expressed genes (DEGs) in non-diabetic and diabetic renal tubule samples. Molecular docking analysis and Co-IP assay were performed to investigate the interaction between PLK2 and NOTCH1. Immunohistochemistry, immunofluorescent staining, qRT-PCR, and western blot were performed. Our research revealed an increased expression of PLK2 in both DKD mouse kidney tissues and HK-2 cells stimulated by high glucose (HG). Silencing PLK2 remarkably reduced the expression of the renal fibrosis-related markers fibronectin (FN), connective tissue growth factor (CTGF) and alpha smooth muscle actin(αSMA). Furthermore, we verified the interaction between PLK2 and NOTCH1. Silencing PLK2 significantly inhibited the activation of the Notch signaling pathway, and concurrently overexpressing HES1 rescued the downregulation of FN, CTGF, and αSMA induced by transfecting si-PLK2. Finally, we found that treatment with DAPT suppressed the activation of the Notch signaling pathway and reversed the progression of renal fibrosis caused by HG. This study demonstrates that PLK2 mediates renal tubulointerstitial fibrosis in DKD by activating the Notch signaling pathway, suggesting that PLK2 may be a potential therapeutic target for DKD.
Collapse
Affiliation(s)
- Jiayi Luo
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Haibin Xu
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Cailin Su
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wenhui Dong
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Manlu Xiao
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Nan Xiao
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yijie Jia
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Black EM, Ramírez Parrado CA, Trier I, Li W, Joo YK, Pichurin J, Liu Y, Kabeche L. Chk2 sustains PLK1 activity in mitosis to ensure proper chromosome segregation. Nat Commun 2024; 15:10782. [PMID: 39737931 PMCID: PMC11685634 DOI: 10.1038/s41467-024-54922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis. Chk2 directly phosphorylates PLK1 T210, a residue on its T-loop whose phosphorylation is essential for full PLK1 kinase activity. Loss of Chk2-dependent PLK1 activity causes increased mitotic errors, including chromosome misalignment, chromosome missegregation, and cytokinetic defects. Moreover, Chk2 deficiency increases sensitivity to PLK1 inhibitors, suggesting that Chk2 status may be an informative biomarker for PLK1 inhibitor efficacy. This work demonstrates that Chk2 sustains mitotic PLK1 activity and protects genome stability through discrete functions in interphase DNA damage repair and mitotic chromosome segregation.
Collapse
Affiliation(s)
- Elizabeth M Black
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Carlos Andrés Ramírez Parrado
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Isabelle Trier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
- Department of Pharmacology, Yale University, New Haven, CT, 06511, USA
| | - Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Jennifer Pichurin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
- Department of Pharmacology, Yale University, New Haven, CT, 06511, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
5
|
Bel Borja L, Taylor SJP, Soubigou F, Pelisch F. CENP-C-targeted PLK-1 regulates kinetochore function in C. elegans embryos. J Cell Sci 2024; 137:jcs262327. [PMID: 39355896 PMCID: PMC11634037 DOI: 10.1242/jcs.262327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Polo-like kinase 1 (PLK-1) is present in centrosomes, the nuclear envelope and kinetochores and plays a significant role in meiosis and mitosis. PLK-1 depletion or inhibition has severe consequences for spindle assembly, spindle assembly checkpoint (SAC) activation, chromosome segregation and cytokinesis. BUB-1 targets PLK-1 to the outer kinetochore and, in mammals, the inner kinetochore PLK1 targeting is mediated by the constitutive centromere associated network (CCAN). BUB-1-targeted PLK-1 plays a key role in SAC activation and has a SAC-independent role through targeting CDC-20. In contrast, whether there is a specific, non-redundant role for inner kinetochore targeted PLK-1 is unknown. Here, we used the Caenorhabditis elegans embryo to study the role of inner kinetochore PLK-1. We found that CENP-C, the sole CCAN component in C. elegans and other species, targets PLK-1 to the inner kinetochore during prometaphase and metaphase. Disruption of the CENP-C-PLK-1 interaction leads to an imbalance in kinetochore components and a defect in chromosome congression, without affecting CDC-20 recruitment. These findings indicate that PLK-1 kinetochore recruitment by CENP-C has at least partially distinct functions from outer kinetochore PLK-1, providing a platform for a better understanding of the different roles played by PLK-1 during mitosis.
Collapse
Affiliation(s)
- Laura Bel Borja
- Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Samuel J. P. Taylor
- Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Flavie Soubigou
- Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Federico Pelisch
- Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
6
|
Song C, Zhang M, Kruse T, Møller MH, López-Méndez B, Zhang Y, Zhai Y, Wang Y, Lei T, Kettenbach AN, Nilsson J, Zhang G. Self-priming of Plk1 binding to BubR1 ensures accurate mitotic progression. Commun Biol 2024; 7:1473. [PMID: 39516273 PMCID: PMC11549336 DOI: 10.1038/s42003-024-07205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Plk1 is a key mitotic kinase that localizes to distinct subcellular structures to promote accurate mitotic progression. Plk1 recruitment depends on direct interaction between polo-box domain (PBD) on Plk1 and PBD binding motif (PBD BM) on the interactors. However, recent study showed that PBD BM alone is not enough for stable binding between CENP-U and Plk1 highlighting the complexity of the interaction which warrants further investigation. An important interactor for Plk1 during mitosis is the checkpoint protein BubR1. Plk1 bound to BubR1 via PBD interaction with pT620 phosphorylates BubR1 S676/T680 to promote BubR1-PP2A/B56 interaction. The BubR1-PP2A/B56 complex counteracts the destablizing effect on kinetochore-microtubule attachments by mitotic kinases to promote mitotic progression. Here we show that Plk1 phosphorylates T600/T608 on BubR1 and the double phosphorylation is critical for BubR1-Plk1 interaction. A similar mechanism for Plk1-Bub1 interaction also exists indicating a general principle for Plk1 kinetochore recruitment through self-priming. Mechanistically preventing BubR1 T600/T608 phosphorylation impairs chromosome congression and checkpoint silencing by reducing Plk1 and PP2A/B56 binding to BubR1. Increasing the binding affinity towards Plk1 and PP2A/B56 in BubR1 through protein engineering bypasses the requirement of T600/T608 phosphorylation for mitotic progression. These results reveal a new layer of regulation for accurate mitotic progression.
Collapse
Affiliation(s)
- Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Mingzhe Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Harder Møller
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca López-Méndez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yujing Zhai
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Tingting Lei
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Yan L, Yuan X, Liu M, Chen Q, Zhang M, Xu J, Zeng LH, Zhang L, Huang J, Lu W, He X, Yan H, Wang F. A non-canonical role of the inner kinetochore in regulating sister-chromatid cohesion at centromeres. EMBO J 2024; 43:2424-2452. [PMID: 38714893 PMCID: PMC11182772 DOI: 10.1038/s44318-024-00104-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 06/19/2024] Open
Abstract
The 16-subunit Constitutive Centromere-associated Network (CCAN)-based inner kinetochore is well-known for connecting centromeric chromatin to the spindle-binding outer kinetochore. Here, we report a non-canonical role for the inner kinetochore in directly regulating sister-chromatid cohesion at centromeres. We provide biochemical, X-ray crystal structure, and intracellular ectopic localization evidence that the inner kinetochore directly binds cohesin, a ring-shaped multi-subunit complex that holds sister chromatids together from S-phase until anaphase onset. This interaction is mediated by binding of the 5-subunit CENP-OPQUR sub-complex of CCAN to the Scc1-SA2 sub-complex of cohesin. Mutation in the CENP-U subunit of the CENP-OPQUR complex that abolishes its binding to the composite interface between Scc1 and SA2 weakens centromeric cohesion, leading to premature separation of sister chromatids during delayed metaphase. We further show that CENP-U competes with the cohesin release factor Wapl for binding the interface of Scc1-SA2, and that the cohesion-protecting role for CENP-U can be bypassed by depleting Wapl. Taken together, this study reveals an inner kinetochore-bound pool of cohesin, which strengthens centromeric sister-chromatid cohesion to resist metaphase spindle pulling forces.
Collapse
Affiliation(s)
- Lu Yan
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Xueying Yuan
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Mingjie Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qinfu Chen
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Miao Zhang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Junfen Xu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Long Zhang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jun Huang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Weiguo Lu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Haiyan Yan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Fangwei Wang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China.
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Black EM, Ramírez Parrado CA, Trier I, Li W, Joo YK, Pichurin J, Liu Y, Kabeche L. Chk2 sustains PLK1 activity in mitosis to ensure proper chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584115. [PMID: 38559033 PMCID: PMC10979866 DOI: 10.1101/2024.03.08.584115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division. PLK1 activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate PLK1 in mitosis remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis. Chk2 directly phosphorylates PLK1 T210, a residue on its T-loop whose phosphorylation is essential for full PLK1 kinase activity. Loss of Chk2-dependent PLK1 activity causes increased mitotic errors, including chromosome misalignment, chromosome missegregation, and cytokinetic defects. Moreover, Chk2 deficiency increases sensitivity to PLK1 inhibitors, suggesting that Chk2 status may be an informative biomarker for PLK1 inhibitor efficacy. This work demonstrates that Chk2 sustains mitotic PLK1 activity and protects genome stability through discrete functions in interphase DNA damage repair and mitotic chromosome segregation.
Collapse
|
9
|
Park JE, Kim TS, Zeng Y, Mikolaj M, Il Ahn J, Alam MS, Monnie CM, Shi V, Zhou M, Chun TW, Maldarelli F, Narayan K, Ahn J, Ashwell JD, Strebel K, Lee KS. Centrosome amplification and aneuploidy driven by the HIV-1-induced Vpr•VprBP•Plk4 complex in CD4 + T cells. Nat Commun 2024; 15:2017. [PMID: 38443376 PMCID: PMC10914751 DOI: 10.1038/s41467-024-46306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
HIV-1 infection elevates the risk of developing various cancers, including T-cell lymphoma. Whether HIV-1-encoded proteins directly contribute to oncogenesis remains unknown. We observe that approximately 1-5% of CD4+ T cells from the blood of people living with HIV-1 exhibit over-duplicated centrioles, suggesting that centrosome amplification underlies the development of HIV-1-associated cancers by driving aneuploidy. Through affinity purification, biochemical, and cellular analyses, we discover that Vpr, an accessory protein of HIV-1, hijacks the centriole duplication machinery and induces centrosome amplification and aneuploidy. Mechanistically, Vpr forms a cooperative ternary complex with an E3 ligase subunit, VprBP, and polo-like kinase 4 (Plk4). Unexpectedly, however, the complex enhances Plk4's functionality by promoting its relocalization to the procentriole assembly and induces centrosome amplification. Loss of either Vpr's C-terminal 17 residues or VprBP acidic region, the two elements required for binding to Plk4 cryptic polo-box, abrogates Vpr's capacity to induce these events. Furthermore, HIV-1 WT, but not its Vpr mutant, induces multiple centrosomes and aneuploidy in human primary CD4+ T cells. We propose that the Vpr•VprBP•Plk4 complex serves as a molecular link that connects HIV-1 infection to oncogenesis and that inhibiting the Vpr C-terminal motif may reduce the occurrence of HIV-1-associated cancers.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tae-Sung Kim
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Melissa Mikolaj
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christina M Monnie
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ming Zhou
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kyung S Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Gui Y, Ma X, Xiong M, Wen Y, Cao C, Zhang L, Wang X, Liu C, Zhang H, Huang X, Xiong C, Pan F, Yuan S. Transcriptome analysis of meiotic and post-meiotic spermatogenic cells reveals the potential hub genes of aging on the decline of male fertility. Gene 2024; 893:147883. [PMID: 37839768 DOI: 10.1016/j.gene.2023.147883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Genetic and epigenetic changes in sperm caused by male aging may be essential factors affecting semen parameters, but the effects and specific molecular mechanisms of aging on male reproduction have not been fully clarified. In this study, to explore the effect of aging on male fertility and seek the potential molecular etiology, we performed high-throughput RNA-sequencing in isolated spermatogenic cells, including pachytene spermatocytes (marked by the completion of chromosome synapsis) and round spermatids (produced by the separation of sister chromatids) from the elderly and the young men. Functional enrichment analysis of differentially expressed genes (DEGs) in round spermatids between the elderly and young showed that they were significantly enriched in gamete generation, spindle assembly, and cilium movement involved in cell motility. In addition, the expression levels of DEGs in round spermatids (post-meiotic cells) were found to be more susceptible to age. Furthermore, ten genes (AURKA, CCNB1, CDC20, CCNB2, KIF2C, KIAA0101, NR5A1, PLK1, PTTG1, RAD51AP1) were identified to be the hub genes involved in the regulation of sperm quality in the elderly through Protein-Protein Interaction (PPI) network construction and measuring semantic among GO terms and gene products. Our data provide aging-related molecular alterations in meiotic and post-meiotic spermatogenic cells, and the information gained from this study may explain the abnormal aging-related male fertility decline.
Collapse
Affiliation(s)
- Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Liang Zhang
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xunbin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Wuhan Tongji Reproductive Hospital, Wuhan, Hubei 430013, China
| | | | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
11
|
Velez-Aguilera G, Ossareh-Nazari B, Pintard L. Dissecting the Multiple Functions of the Polo-Like Kinase 1 in the C. elegans Zygote. Methods Mol Biol 2024; 2740:63-88. [PMID: 38393469 DOI: 10.1007/978-1-0716-3557-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Plk1 (polo-like kinase 1) is an evolutionarily conserved serine/threonine kinase instrumental for mitotic entry and progression. Beyond these canonical functions, Plk1 also regulates cell polarization and cell fate during asymmetric cell divisions in C. elegans and D. melanogaster. Plk1 contains a specialized phosphoserine-threonine binding domain, the polo-box domain (PBD), which localizes and concentrates the kinase at its various sites of action within the cell in space and time. Here we present protocols to express and purify the C. elegans Plk1 kinase along with biochemical and phosphoproteomic approaches to interrogate the PBD interactome and to dissect Plk1 substrate interactions. These protocols are most suitable for the identification of Plk1 targets in C. elegans embryos but can be easily adapted to identify and study Plk1 substrates from any source."
Collapse
Affiliation(s)
- Griselda Velez-Aguilera
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Programme Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Batool Ossareh-Nazari
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Programme Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Lionel Pintard
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
- Programme Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
12
|
Jin H, Kim J, Lee O, Kim H, No KT. Leveraging the Fragment Molecular Orbital Method to Explore the PLK1 Kinase Binding Site and Polo-Box Domain for Potent Small-Molecule Drug Design. Int J Mol Sci 2023; 24:15639. [PMID: 37958623 PMCID: PMC10650754 DOI: 10.3390/ijms242115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) plays a pivotal role in cell division regulation and emerges as a promising therapeutic target for cancer treatment. Consequently, the development of small-molecule inhibitors targeting PLK1 has become a focal point in contemporary research. The adenosine triphosphate (ATP)-binding site and the polo-box domain in PLK1 present crucial interaction sites for these inhibitors, aiming to disrupt the protein's function. However, designing potent and selective small-molecule inhibitors can be challenging, requiring a deep understanding of protein-ligand interaction mechanisms at these binding sites. In this context, our study leverages the fragment molecular orbital (FMO) method to explore these site-specific interactions in depth. Using the FMO approach, we used the FMO method to elucidate the molecular mechanisms of small-molecule drugs binding to these sites to design PLK1 inhibitors that are both potent and selective. Our investigation further entailed a comparative analysis of various PLK1 inhibitors, each characterized by distinct structural attributes, helping us gain a better understanding of the relationship between molecular structure and biological activity. The FMO method was particularly effective in identifying key binding features and predicting binding modes for small-molecule ligands. Our research also highlighted specific "hot spot" residues that played a critical role in the selective and robust binding of PLK1. These findings provide valuable insights that can be used to design new and effective PLK1 inhibitors, which can have significant implications for developing anticancer therapeutics.
Collapse
Affiliation(s)
- Haiyan Jin
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
| | - Jongwan Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
| | - Onju Lee
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
| | - Hyein Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| |
Collapse
|
13
|
Park JE, Kirsch K, Lee H, Oliva P, Ahn JI, Ravishankar H, Zeng Y, Fox SD, Kirby SA, Badhwar P, Andresson T, Jacobson KA, Lee KS. Specific inhibition of an anticancer target, polo-like kinase 1, by allosterically dismantling its mechanism of substrate recognition. Proc Natl Acad Sci U S A 2023; 120:e2305037120. [PMID: 37603740 PMCID: PMC10629583 DOI: 10.1073/pnas.2305037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is considered an attractive target for anticancer therapy. Over the years, studies on the noncatalytic polo-box domain (PBD) of Plk1 have raised the expectation of generating highly specific protein-protein interaction inhibitors. However, the molecular nature of the canonical PBD-dependent interaction, which requires extensive water network-mediated interactions with its phospholigands, has hampered efforts to identify small molecules suitable for Plk1 PBD drug discovery. Here, we report the identification of the first allosteric inhibitor of Plk1 PBD, called Allopole, a prodrug that can disrupt intracellular interactions between PBD and its cognate phospholigands, delocalize Plk1 from centrosomes and kinetochores, and induce mitotic block and cancer cell killing. At the structural level, its unmasked active form, Allopole-A, bound to a deep Trp-Phe-lined pocket occluded by a latch-like loop, whose adjoining region was required for securely retaining a ligand anchored to the phospho-binding cleft. Allopole-A binding completely dislodged the L2 loop, an event that appeared sufficient to trigger the dissociation of a phospholigand and inhibit PBD-dependent Plk1 function during mitosis. Given Allopole's high specificity and antiproliferative potency, this study is expected to open an unexplored avenue for developing Plk1 PBD-specific anticancer therapeutic agents.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Klara Kirsch
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Hobin Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Paola Oliva
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Harsha Ravishankar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Stephen D. Fox
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD21702
| | - Samuel A. Kirby
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Pooja Badhwar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD21702
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Kyung S. Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| |
Collapse
|
14
|
Il Ahn J, Zhang L, Ravishankar H, Fan L, Kirsch K, Zeng Y, Meng L, Park JE, Yun HY, Ghirlando R, Ma B, Ball D, Ku B, Nussinov R, Schmit JD, Heinz WF, Kim SJ, Karpova T, Wang YX, Lee KS. Architectural basis for cylindrical self-assembly governing Plk4-mediated centriole duplication in human cells. Commun Biol 2023; 6:712. [PMID: 37433832 PMCID: PMC10336005 DOI: 10.1038/s42003-023-05067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Proper organization of intracellular assemblies is fundamental for efficient promotion of biochemical processes and optimal assembly functionality. Although advances in imaging technologies have shed light on how the centrosome is organized, how its constituent proteins are coherently architected to elicit downstream events remains poorly understood. Using multidisciplinary approaches, we showed that two long coiled-coil proteins, Cep63 and Cep152, form a heterotetrameric building block that undergoes a stepwise formation into higher molecular weight complexes, ultimately generating a cylindrical architecture around a centriole. Mutants defective in Cep63•Cep152 heterotetramer formation displayed crippled pericentriolar Cep152 organization, polo-like kinase 4 (Plk4) relocalization to the procentriole assembly site, and Plk4-mediated centriole duplication. Given that the organization of pericentriolar materials (PCM) is evolutionarily conserved, this work could serve as a model for investigating the structure and function of PCM in other species, while offering a new direction in probing the organizational defects of PCM-related human diseases.
Collapse
Affiliation(s)
- Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liang Zhang
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harsha Ravishankar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Klara Kirsch
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingjun Meng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, P R China
| | - David Ball
- Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tatiana Karpova
- Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Kyung S Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Kamakura N, Takahashi M, Jo M. The toxicity of dysregulated Plk1 activity revealed by its suppressor mutations. Genes Cells 2023. [PMID: 37119463 DOI: 10.1111/gtc.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Polo-like kinase 1 (Plk1) is a mitotic kinase that has multiple functions throughout the cell cycle. Catalytic activation of Plk1 is known to be regulated by phosphorylation of the kinase domain, including Thr210, and by releasing the kinase domain from its inhibitory polo-box domain. However, how Plk1 is activated to fulfill its proper roles, in time and space, is not well understood. In this study, we unintentionally found that the expression of a constitutively active form of human Plk1 is toxic to bacterial cells, such that cells contained point mutations that alleviate the kinase activity. Structural prediction revealed that these mutations are adjacent to the amino acids supporting the kinase activity. When human cells express these mutants, we found decreased levels of Plk1's substrate phosphorylation, resulting in mitotic defects. Moreover, unlike in bacterial cells, the expression of activated Plk1 mutants did not affect cell proliferation in human cells unless localized at the right place in mitosis. Our observations identified new suppressor mutations and underscored the importance of spatiotemporal regulation in Plk1, providing a basis for how we might intervene in this kinase for therapeutic purpose in human cells.
Collapse
Affiliation(s)
- Nana Kamakura
- Division of Experimental Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Motoko Takahashi
- Division of Experimental Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Minji Jo
- Division of Experimental Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
16
|
Taylor SJP, Bel Borja L, Soubigou F, Houston J, Cheerambathur DK, Pelisch F. BUB-1 and CENP-C recruit PLK-1 to control chromosome alignment and segregation during meiosis I in C. elegans oocytes. eLife 2023; 12:e84057. [PMID: 37067150 PMCID: PMC10156168 DOI: 10.7554/elife.84057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/14/2023] [Indexed: 04/18/2023] Open
Abstract
Phosphorylation is a key post-translational modification that is utilised in many biological processes for the rapid and reversible regulation of protein localisation and activity. Polo-like kinase 1 (PLK-1) is essential for both mitotic and meiotic cell divisions, with key functions being conserved in eukaryotes. The roles and regulation of PLK-1 during mitosis have been well characterised. However, the discrete roles and regulation of PLK-1 during meiosis have remained obscure. Here, we used Caenorhabditis elegans oocytes to show that PLK-1 plays distinct roles in meiotic spindle assembly and/or stability, chromosome alignment and segregation, and polar body extrusion during meiosis I. Furthermore, by a combination of live imaging and biochemical analysis we identified the chromosomal recruitment mechanisms of PLK-1 during C. elegans oocyte meiosis. The spindle assembly checkpoint kinase BUB-1 directly recruits PLK-1 to the kinetochore and midbivalent while the chromosome arm population of PLK-1 depends on a direct interaction with the centromeric-associated protein CENP-CHCP-4. We found that perturbing both BUB-1 and CENP-CHCP-4 recruitment of PLK-1 leads to severe meiotic defects, resulting in highly aneuploid oocytes. Overall, our results shed light on the roles played by PLK-1 during oocyte meiosis and provide a mechanistic understanding of PLK-1 targeting to meiotic chromosomes.
Collapse
Affiliation(s)
- Samuel JP Taylor
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Laura Bel Borja
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Flavie Soubigou
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jack Houston
- Ludwig Institute for Cancer Research, San Diego BranchLa JollaUnited States
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
17
|
Park JE, Lee H, Oliva P, Kirsch K, Kim B, Ahn JI, Alverez CN, Gaikwad S, Krausz KW, O’Connor R, Rai G, Simeonov A, Mock BA, Gonzalez FJ, Lee KS, Jacobson KA. Structural Optimization and Anticancer Activity of Polo-like Kinase 1 (Plk1) Polo-Box Domain (PBD) Inhibitors and Their Prodrugs. ACS Pharmacol Transl Sci 2023; 6:422-446. [PMID: 36926457 PMCID: PMC10012257 DOI: 10.1021/acsptsci.2c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 02/22/2023]
Abstract
Polo-like kinase 1 (Plk1), a mitotic kinase whose activity is widely upregulated in various human cancers, is considered an attractive target for anticancer drug discovery. Aside from the kinase domain, the C-terminal noncatalytic polo-box domain (PBD), which mediates the interaction with the enzyme's binding targets or substrates, has emerged as an alternative target for developing a new class of inhibitors. Various reported small molecule PBD inhibitors exhibit poor cellular efficacy and/or selectivity. Here, we report structure-activity relationship (SAR) studies on triazoloquinazolinone-derived inhibitors, such as 43 (a 1-thioxo-2,4-dihydrothieno[2,3-e][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one) that effectively block Plk1, but not Plk2 and Plk3 PBDs, with improved affinity and drug-like properties. The range of prodrug moieties needed for thiol group masking of the active drugs has been expanded to increase cell permeability and mechanism-based cancer cell (L363 and HeLa) death. For example, a 5-thio-1-methyl-4-nitroimidazolyl prodrug 80, derived from 43, showed an improved cellular potency (GI50 4.1 μM). As expected, 80 effectively blocked Plk1 from localizing to centrosomes and kinetochores and consequently induced potent mitotic block and apoptotic cell death. Another prodrug 78 containing 9-fluorophenyl in place of the thiophene-containing heterocycle in 80 also induced a comparable degree of anti-Plk1 PBD effect. However, orally administered 78 was rapidly converted in the bloodstream to parent drug 15, which was shown be relatively stable toward in vivo oxidation due to its 9-fluorophenyl group in comparison to unsubstituted phenyl. Further derivatization of these inhibitors, particularly to improve the systemic prodrug stability, could lead to a new class of therapeutics against Plk1-addicted cancers.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hobin Lee
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Paola Oliva
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Klara Kirsch
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bora Kim
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jong Il Ahn
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Celeste N. Alverez
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Snehal Gaikwad
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Kristopher W. Krausz
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert O’Connor
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Ganesha Rai
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Beverly A. Mock
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Frank J. Gonzalez
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung S. Lee
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
18
|
Rizzato M, Mao F, Chardon F, Lai KY, Villalonga-Planells R, Drexler HCA, Pesenti ME, Fiskin M, Roos N, King KM, Li S, Gamez ER, Greune L, Dersch P, Simon C, Masson M, Van Doorslaer K, Campos SK, Schelhaas M. Master mitotic kinases regulate viral genome delivery during papillomavirus cell entry. Nat Commun 2023; 14:355. [PMID: 36683055 PMCID: PMC9868124 DOI: 10.1038/s41467-023-35874-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Mitosis induces cellular rearrangements like spindle formation, Golgi fragmentation, and nuclear envelope breakdown. Similar to certain retroviruses, nuclear delivery during entry of human papillomavirus (HPV) genomes is facilitated by mitosis, during which minor capsid protein L2 tethers viral DNA to mitotic chromosomes. However, the mechanism of viral genome delivery and tethering to condensed chromosomes is barely understood. It is unclear, which cellular proteins facilitate this process or how this process is regulated. This work identifies crucial phosphorylations on HPV minor capsid protein L2 occurring at mitosis onset. L2's chromosome binding region (CBR) is sequentially phosphorylated by the master mitotic kinases CDK1 and PLK1. L2 phosphorylation, thus, regulates timely delivery of HPV vDNA to mitotic chromatin during mitosis. In summary, our work demonstrates a crucial role of mitotic kinases for nuclear delivery of viral DNA and provides important insights into the molecular mechanism of pathogen import into the nucleus during mitosis.
Collapse
Affiliation(s)
- Matteo Rizzato
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Fuxiang Mao
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Florian Chardon
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Kun-Yi Lai
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre 'Cells in Motion' (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
| | | | | | | | - Mert Fiskin
- UMR 7242 Biotechnologie et signalisation cellulaire, CNRS, UdS, ESBS, Illkirch, France
| | - Nora Roos
- Institute of Medical Virology and Epidemiology of Viral Diseases, Tübingen, Germany
| | - Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Eduardo R Gamez
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawai'i at Manoa, Honolulu, Hawaii, 96813-5525, USA
| | - Lilo Greune
- Institute of Infectiology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Petra Dersch
- Institute of Infectiology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Claudia Simon
- Institute of Medical Virology and Epidemiology of Viral Diseases, Tübingen, Germany
| | - Murielle Masson
- UMR 7242 Biotechnologie et signalisation cellulaire, CNRS, UdS, ESBS, Illkirch, France
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
- Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Mario Schelhaas
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany.
- Interfaculty Centre 'Cells in Motion' (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany.
| |
Collapse
|
19
|
Gómez R, Viera A, Moreno-Mármol T, Berenguer I, Guajardo-Grence A, Tóth A, Parra MT, Suja JA. Kinase PLK1 regulates the disassembly of the lateral elements and the assembly of the inner centromere during the diakinesis/metaphase I transition in male mouse meiosis. Front Cell Dev Biol 2023; 10:1069946. [PMID: 36733339 PMCID: PMC9887526 DOI: 10.3389/fcell.2022.1069946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
PLK1 is a serine/threonine kinase with crucial roles during mitosis. However, its involvement during mammalian male meiosis remains largely unexplored. By inhibiting the kinase activity of PLK1 using BI 2536 on organotypic cultures of seminiferous tubules, we found that the disassembly of SYCP3 and HORMAD1 from the lateral elements of the synaptonemal complex during diakinesis is impeded. We also found that the normal recruitment of SYCP3 and HORMAD1 to the inner centromere in prometaphase I spermatocytes did not occur. Additionally, we analyzed the participation of PLK1 in the assembly of the inner centromere by studying its implication in the Bub1-H2AT120ph-dependent recruitment of shugoshin SGO2, and the Haspin-H3T3ph-dependent recruitment of Aurora B/C and Borealin. Our results indicated that both pathways are regulated by PLK1. Altogether, our results demonstrate that PLK1 is a master regulator of the late prophase I/metaphase I transition in mouse spermatocytes.
Collapse
Affiliation(s)
- Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,*Correspondence: Rocío Gómez, ; José A. Suja,
| | - Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Tania Moreno-Mármol
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Berenguer
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,Departamento de Neuropatología Molecular, Centro de Biología Molecular Severo Ochoa, Campus de la Universidad Autónoma de Madrid, Madrid, Spain
| | - Andrea Guajardo-Grence
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - María Teresa Parra
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - José A. Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,*Correspondence: Rocío Gómez, ; José A. Suja,
| |
Collapse
|
20
|
Kalous J, Aleshkina D. Multiple Roles of PLK1 in Mitosis and Meiosis. Cells 2023; 12:cells12010187. [PMID: 36611980 PMCID: PMC9818836 DOI: 10.3390/cells12010187] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
Collapse
|
21
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
22
|
Chiappa M, Petrella S, Damia G, Broggini M, Guffanti F, Ricci F. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front Oncol 2022; 12:903016. [PMID: 35719948 PMCID: PMC9201472 DOI: 10.3389/fonc.2022.903016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Serena Petrella
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Francesca Ricci
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
23
|
Kim T. Recent Progress on the Localization of PLK1 to the Kinetochore and Its Role in Mitosis. Int J Mol Sci 2022; 23:ijms23095252. [PMID: 35563642 PMCID: PMC9102930 DOI: 10.3390/ijms23095252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
The accurate distribution of the replicated genome during cell division is essential for cell survival and healthy organismal development. Errors in this process have catastrophic consequences, such as birth defects and aneuploidy, a hallmark of cancer cells. PLK1 is one of the master kinases in mitosis and has multiple functions, including mitotic entry, chromosome segregation, spindle assembly checkpoint, and cytokinesis. To dissect the role of PLK1 in mitosis, it is important to understand how PLK1 localizes in the specific region in cells. PLK1 localizes at the kinetochore and is essential in spindle assembly checkpoint and chromosome segregation. However, how PLK1 localizes at the kinetochore remains elusive. Here, we review the recent literature on the kinetochore recruitment mechanisms of PLK1 and its roles in spindle assembly checkpoint and attachment between kinetochores and spindle microtubules. Together, this review provides an overview of how the local distribution of PLK1 could regulate major pathways in mitosis.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
24
|
Ryu S, Park JE, Ham YJ, Lim DC, Kwiatkowski NP, Kim DH, Bhunia D, Kim ND, Yaffe MB, Son W, Kim N, Choi TI, Swain P, Kim CH, Lee JY, Gray NS, Lee KS, Sim T. Novel Macrocyclic Peptidomimetics Targeting the Polo-Box Domain of Polo-Like Kinase 1. J Med Chem 2022; 65:1915-1932. [PMID: 35029981 PMCID: PMC10411393 DOI: 10.1021/acs.jmedchem.1c01359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The polo-box domain (PBD) of Plk1 is a promising target for cancer therapeutics. We designed and synthesized novel phosphorylated macrocyclic peptidomimetics targeting PBD based on acyclic phosphopeptide PMQSpTPL. The inhibitory activities of 16e on Plk1-PBD is >30-fold higher than those of PMQSpTPL. Both 16a and 16e possess excellent selectivity for Plk1-PBD over Plk2/3-PBD. Analysis of the cocrystal structure of Plk1-PBD in complex with 16a reveals that the 3-(trifluoromethyl)benzoyl group in 16a interacts with Arg516 through a π-stacking interaction. This π-stacking interaction, which has not been reported previously, provides insight into the design of novel and potent Plk1-PBD inhibitors. Furthermore, 16h, a PEGlyated macrocyclic phosphopeptide derivative, induces Plk1 delocalization and mitotic failure in HeLa cells. Also, the number of phospho-H3-positive cells in a zebrafish embryo increases in proportion to the amount of 16a. Collectively, the novel macrocyclic peptidomimetics should serve as valuable templates for the design of potent and novel Plk1-PBD inhibitors.
Collapse
Affiliation(s)
- SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Young Jin Ham
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Daniel C. Lim
- Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicholas P. Kwiatkowski
- Harvard Medical School, Boston, Massachusetts 02115, United States; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Do-Hee Kim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Debabrata Bhunia
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Nam Doo Kim
- Voronoibio Inc., Incheon 21984, Republic of Korea
| | - Michael B. Yaffe
- Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Woolim Son
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Puspanjali Swain
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of, Health, Bethesda, Maryland 20892, United States
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
25
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
27
|
Chanboonyasitt P, Chan YW. Regulation of mitotic chromosome architecture and resolution of ultrafine anaphase bridges by PICH. Cell Cycle 2021; 20:2077-2090. [PMID: 34530686 PMCID: PMC8565832 DOI: 10.1080/15384101.2021.1970877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
To ensure genome stability, chromosomes need to undergo proper condensation into two linked sister chromatids from prophase to prometaphase, followed by equal segregation at anaphase. Emerging evidence has shown that persistent DNA entanglements connecting the sister chromatids lead to the formation of ultrafine anaphase bridges (UFBs). If UFBs are not resolved soon after anaphase, they can induce chromosome missegregation. PICH (PLK1-interacting checkpoint helicase) is a DNA translocase that localizes on chromosome arms, centromeres and UFBs. It plays multiple essential roles in mitotic chromosome organization and segregation. PICH also recruits other associated proteins to UFBs, and together they mediate UFB resolution. Here, the proposed mechanism behind PICH's functions in chromosome organization and UFB resolution will be discussed. We summarize the regulation of PICH action at chromosome arms and centromeres, how PICH recognizes UFBs and recruits other UFB-associated factors, and finally how PICH promotes UFB resolution together with other DNA processing enzymes.
Collapse
Affiliation(s)
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
28
|
Chen Q, Zhang M, Pan X, Yuan X, Zhou L, Yan L, Zeng LH, Xu J, Yang B, Zhang L, Huang J, Lu W, Fukagawa T, Wang F, Yan H. Bub1 and CENP-U redundantly recruit Plk1 to stabilize kinetochore-microtubule attachments and ensure accurate chromosome segregation. Cell Rep 2021; 36:109740. [PMID: 34551298 DOI: 10.1016/j.celrep.2021.109740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/03/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Bub1 is required for the kinetochore/centromere localization of two essential mitotic kinases Plk1 and Aurora B. Surprisingly, stable depletion of Bub1 by ∼95% in human cells marginally affects whole chromosome segregation fidelity. We show that CENP-U, which is recruited to kinetochores by the CENP-P and CENP-Q subunits of the CENP-O complex, is required to prevent chromosome mis-segregation in Bub1-depleted cells. Mechanistically, Bub1 and CENP-U redundantly recruit Plk1 to kinetochores to stabilize kinetochore-microtubule attachments, thereby ensuring accurate chromosome segregation. Furthermore, unlike its budding yeast homolog, the CENP-O complex does not regulate centromeric localization of Aurora B. Consistently, depletion of Bub1 or CENP-U sensitizes cells to the inhibition of Plk1 but not Aurora B kinase activity. Taken together, our findings provide mechanistic insight into the regulation of kinetochore function, which may have implications for targeted treatment of cancer cells with mutations perturbing kinetochore recruitment of Plk1 by Bub1 or the CENP-O complex.
Collapse
Affiliation(s)
- Qinfu Chen
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Pan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xueying Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Linli Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lu Yan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China
| | - Junfen Xu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Long Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Weiguo Lu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fangwei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Yan
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
29
|
Alvarez-Rodrigo I, Wainman A, Saurya S, Raff JW. Ana1 helps recruit Polo to centrioles to promote mitotic PCM assembly and centriole elongation. J Cell Sci 2021; 134:jcs258987. [PMID: 34156068 PMCID: PMC8325959 DOI: 10.1242/jcs.258987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
Polo kinase (PLK1 in mammals) is a master cell cycle regulator that is recruited to various subcellular structures, often by its polo-box domain (PBD), which binds to phosphorylated S-pS/pT motifs. Polo/PLK1 kinases have multiple functions at centrioles and centrosomes, and we have previously shown that in Drosophila phosphorylated Sas-4 initiates Polo recruitment to newly formed centrioles, while phosphorylated Spd-2 recruits Polo to the pericentriolar material (PCM) that assembles around mother centrioles in mitosis. Here, we show that Ana1 (Cep295 in humans) also helps to recruit Polo to mother centrioles in Drosophila. If Ana1-dependent Polo recruitment is impaired, mother centrioles can still duplicate, disengage from their daughters and form functional cilia, but they can no longer efficiently assemble mitotic PCM or elongate during G2. We conclude that Ana1 helps recruit Polo to mother centrioles to specifically promote mitotic centrosome assembly and centriole elongation in G2, but not centriole duplication, centriole disengagement or cilia assembly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
30
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
31
|
Lin S, Zhao M, Lv Y, Mao G, Ding S, Peng F. The lncRNA GATA3-AS1/miR-495-3p/CENPU axis predicts poor prognosis of breast cancer via the PLK1 signaling pathway. Aging (Albany NY) 2021; 13:13663-13679. [PMID: 33902008 PMCID: PMC8202843 DOI: 10.18632/aging.202909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022]
Abstract
The function of centromere protein U (CENPU) gene in breast cancer has not been well understood. Therefore, we explored the expression profiles of CENPU gene in breast carcinoma to better understand the functions of this gene, as well as the relationship between CENPU expression and the prognosis of breast carcinoma patients. Our results indicate that CENPU was expressed at significantly higher levels in cancerous tissues than in normal tissues. Furthermore, CENPU expression correlated significantly with many clinicopathological characteristics of breast cancer. In addition, we discovered that high levels of CENPU expression predicted poor prognosis in patients with breast cancer. Functional investigation revealed that 180 genes exhibited co-expression with CENPU. Functional annotation indicated that 17 of these genes were involved in the PLK1 signaling pathway, with most of them (16/17) being expressed at significantly higher levels in malignant tissues compared with normal controls and correlating with a poor prognosis. Subsequently, we found that four miRNAs, namely hsa-miR-543, hsa-miR-495-3p, hsa-miR-485-3p, and hsa-miR-337-3p, could be regarded as potential CENPU expression regulators. Then, five lncRNAs were predicted to potentially bind to the four miRNAs. Combination of the results from expression, survival, correlation analysis and functional experiments analysis demonstrated the link between lncRNA GATA3-AS1/miR-495-3p/CENPU axis and prognosis of breast cancer. In conclusion, CENPU could be involved in cell cycle progression through PLK1 signaling pathway.
Collapse
Affiliation(s)
- Shuangyan Lin
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Mingyuan Zhao
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yanbo Lv
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Genxiang Mao
- Department of Geriatrics, Zhejiang Provincial Key Lab of Geriatrics, Hangzhou, Zhejiang, China
| | - Shiping Ding
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fang Peng
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Nguyen AL, Fadel MD, Cheeseman IM. Differential requirements for the CENP-O complex reveal parallel PLK1 kinetochore recruitment pathways. Mol Biol Cell 2021; 32:712-721. [PMID: 33596090 PMCID: PMC8108507 DOI: 10.1091/mbc.e20-11-0751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 01/09/2023] Open
Abstract
Similar to other core biological processes, the vast majority of cell division components are essential for viability across human cell lines. However, recent genome-wide screens have identified a number of proteins that exhibit cell line-specific essentiality. Defining the behaviors of these proteins is critical to our understanding of complex biological processes. Here, we harness differential essentiality to reveal the contributions of the four-subunit centromere-localized CENP-O complex, whose precise function has been difficult to define. Our results support a model in which the CENP-O complex and BUB1 act in parallel pathways to recruit a threshold level of PLK1 to mitotic kinetochores, ensuring accurate chromosome segregation. We demonstrate that targeted changes to either pathway sensitizes cells to the loss of the other component, resulting in cell-state dependent requirements. This approach also highlights the advantage of comparing phenotypes across diverse cell lines to define critical functional contributions and behaviors that could be exploited for the targeted treatment of disease.
Collapse
Affiliation(s)
| | - Marie Diane Fadel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
33
|
Cell-cycle phospho-regulation of the kinetochore. Curr Genet 2021; 67:177-193. [PMID: 33221975 DOI: 10.1007/s00294-020-01127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore is a mega-dalton protein assembly that forms within centromeric regions of chromosomes and directs their segregation during cell division. Here we review cell cycle-mediated phosphorylation events at the kinetochore, with a focus on the budding yeast Saccharomyces cerevisiae and the insight gained from forced associations of kinases and phosphatases. The point centromeres found in the budding yeast S. cerevisiae are one of the simplest such structures found in eukaryotes. The S. cerevisiae kinetochore comprises a single nucleosome, containing a centromere-specific H3 variant Cse4CENP-A, bound to a set of kinetochore proteins that connect to a single microtubule. Despite the simplicity of the budding yeast kinetochore, the proteins are mostly homologous with their mammalian counterparts. In some cases, human proteins can complement their yeast orthologs. Like its mammalian equivalent, the regulation of the budding yeast kinetochore is complex: integrating signals from the cell cycle, checkpoints, error correction, and stress pathways. The regulatory signals from these diverse pathways are integrated at the kinetochore by post-translational modifications, notably phosphorylation and dephosphorylation, to control chromosome segregation. Here we highlight the complex interplay between the activity of the different cell-cycle kinases and phosphatases at the kinetochore, emphasizing how much more we have to understand this essential structure.
Collapse
|
34
|
Navarro AP, Cheeseman IM. Kinetochore assembly throughout the cell cycle. Semin Cell Dev Biol 2021; 117:62-74. [PMID: 33753005 DOI: 10.1016/j.semcdb.2021.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The kinetochore plays an essential role in facilitating chromosome segregation during cell division. This massive protein complex assembles onto the centromere of chromosomes and enables their attachment to spindle microtubules during mitosis. The kinetochore also functions as a signaling hub to regulate cell cycle progression, and is crucial to ensuring the fidelity of chromosome segregation. Despite the fact that kinetochores are large and robust molecular assemblies, they are also highly dynamic structures that undergo structural and organizational changes throughout the cell cycle. This review will highlight our current understanding of kinetochore structure and function, focusing on the dynamic processes that underlie kinetochore assembly.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
35
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
36
|
Geraghty Z, Barnard C, Uluocak P, Gruneberg U. The association of Plk1 with the astrin-kinastrin complex promotes formation and maintenance of a metaphase plate. J Cell Sci 2021; 134:jcs251025. [PMID: 33288550 PMCID: PMC7803464 DOI: 10.1242/jcs.251025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
Errors in mitotic chromosome segregation can lead to DNA damage and aneuploidy, both hallmarks of cancer. To achieve synchronous error-free segregation, mitotic chromosomes must align at the metaphase plate with stable amphitelic attachments to microtubules emanating from opposing spindle poles. The astrin-kinastrin (astrin is also known as SPAG5 and kinastrin as SKAP) complex, also containing DYNLL1 and MYCBP, is a spindle and kinetochore protein complex with important roles in bipolar spindle formation, chromosome alignment and microtubule-kinetochore attachment. However, the molecular mechanisms by which astrin-kinastrin fulfils these diverse roles are not fully understood. Here, we characterise a direct interaction between astrin and the mitotic kinase Plk1. We identify the Plk1-binding site on astrin as well as four Plk1 phosphorylation sites on astrin. Regulation of astrin by Plk1 is dispensable for bipolar spindle formation and bulk chromosome congression, but promotes stable microtubule-kinetochore attachments and metaphase plate maintenance. It is known that Plk1 activity is required for effective microtubule-kinetochore attachment formation, and we suggest that astrin phosphorylation by Plk1 contributes to this process.
Collapse
Affiliation(s)
- Zoë Geraghty
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Christina Barnard
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Pelin Uluocak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
37
|
Singh P, Pesenti ME, Maffini S, Carmignani S, Hedtfeld M, Petrovic A, Srinivasamani A, Bange T, Musacchio A. BUB1 and CENP-U, Primed by CDK1, Are the Main PLK1 Kinetochore Receptors in Mitosis. Mol Cell 2021; 81:67-87.e9. [PMID: 33248027 PMCID: PMC7837267 DOI: 10.1016/j.molcel.2020.10.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 02/02/2023]
Abstract
Reflecting its pleiotropic functions, Polo-like kinase 1 (PLK1) localizes to various sub-cellular structures during mitosis. At kinetochores, PLK1 contributes to microtubule attachments and mitotic checkpoint signaling. Previous studies identified a wealth of potential PLK1 receptors at kinetochores, as well as requirements for various mitotic kinases, including BUB1, Aurora B, and PLK1 itself. Here, we combine ectopic localization, in vitro reconstitution, and kinetochore localization studies to demonstrate that most and likely all of the PLK1 is recruited through BUB1 in the outer kinetochore and centromeric protein U (CENP-U) in the inner kinetochore. BUB1 and CENP-U share a constellation of sequence motifs consisting of a putative PP2A-docking motif and two neighboring PLK1-docking sites, which, contingent on priming phosphorylation by cyclin-dependent kinase 1 and PLK1 itself, bind PLK1 and promote its dimerization. Our results rationalize previous observations and describe a unifying mechanism for recruitment of PLK1 to human kinetochores.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Marion E Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Sara Carmignani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Marius Hedtfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Anupallavi Srinivasamani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
38
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
39
|
Cordeiro MH, Smith RJ, Saurin AT. Kinetochore phosphatases suppress autonomous Polo-like kinase 1 activity to control the mitotic checkpoint. J Cell Biol 2020; 219:e202002020. [PMID: 33125045 PMCID: PMC7608062 DOI: 10.1083/jcb.202002020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Local phosphatase regulation is needed at kinetochores to silence the mitotic checkpoint (a.k.a. spindle assembly checkpoint [SAC]). A key event in this regard is the dephosphorylation of MELT repeats on KNL1, which removes SAC proteins from the kinetochore, including the BUB complex. We show here that PP1 and PP2A-B56 phosphatases are primarily required to remove Polo-like kinase 1 (PLK1) from the BUB complex, which can otherwise maintain MELT phosphorylation in an autocatalytic manner. This appears to be their principal role in the SAC because both phosphatases become redundant if PLK1 is inhibited or BUB-PLK1 interaction is prevented. Surprisingly, MELT dephosphorylation can occur normally under these conditions even when the levels or activities of PP1 and PP2A are strongly inhibited at kinetochores. Therefore, these data imply that kinetochore phosphatase regulation is critical for the SAC, but primarily to restrain and extinguish autonomous PLK1 activity. This is likely a conserved feature of the metazoan SAC, since the relevant PLK1 and PP2A-B56 binding motifs have coevolved in the same region on MADBUB homologues.
Collapse
Affiliation(s)
| | | | - Adrian T. Saurin
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
40
|
Alverez CN, Park JE, Toti KS, Xia Y, Krausz KW, Rai G, Bang JK, Gonzalez FJ, Jacobson KA, Lee KS. Identification of a New Heterocyclic Scaffold for Inhibitors of the Polo-Box Domain of Polo-like Kinase 1. J Med Chem 2020; 63:14087-14117. [PMID: 33175530 PMCID: PMC7769008 DOI: 10.1021/acs.jmedchem.0c01669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a mitotic-specific target widely deregulated in various human cancers, polo-like kinase 1 (Plk1) has been extensively explored for anticancer activity and drug discovery. Although multiple catalytic domain inhibitors were tested in preclinical and clinical studies, their efficacies are limited by dose-limiting cytotoxicity, mainly from off-target cross reactivity. The C-terminal noncatalytic polo-box domain (PBD) of Plk1 has emerged as an attractive target for generating new protein-protein interaction inhibitors. Here, we identified a 1-thioxo-2,4-dihydro-[1,2,4]triazolo[4,3-a]quinazolin-5(1H)-one scaffold that efficiently inhibits Plk1 PBD but not its related Plk2 and Plk3 PBDs. Structure-activity relationship studies led to multiple inhibitors having ≥10-fold higher inhibitory activity than the previously characterized Plk1 PBD-specific phosphopeptide, PLHSpT (Kd ∼ 450 nM). In addition, S-methyl prodrugs effectively inhibited mitotic progression and cell proliferation and their metabolic stability was determined. These data describe a novel class of small-molecule inhibitors that offer a promising avenue for future drug discovery against Plk1-addicted cancers.
Collapse
Affiliation(s)
- Celeste N Alverez
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Jung-Eun Park
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yangliu Xia
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kristopher W Krausz
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Jeong K Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Frank J Gonzalez
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung S Lee
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
41
|
Abstract
The kinetochore is a complex structure whose function is absolutely essential. Unlike the centromere, the kinetochore at first appeared remarkably well conserved from yeast to humans, especially the microtubule-binding outer kinetochore. However, recent efforts towards biochemical reconstitution of diverse kinetochores challenge the notion of a similarly conserved architecture for the constitutively centromere-associated network of the inner kinetochore. This review briefly summarizes the evidence from comparative genomics for interspecific variability in inner kinetochore composition and focuses on novel biochemical evidence indicating that even homologous inner kinetochore protein complexes are put to different uses in different organisms.
Collapse
Affiliation(s)
- G E Hamilton
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - T N Davis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Cunningham CE, MacAuley MJ, Vizeacoumar FS, Abuhussein O, Freywald A, Vizeacoumar FJ. The CINs of Polo-Like Kinase 1 in Cancer. Cancers (Basel) 2020; 12:cancers12102953. [PMID: 33066048 PMCID: PMC7599805 DOI: 10.3390/cancers12102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Many alterations specific to cancer cells have been investigated as targets for targeted therapies. Chromosomal instability is a characteristic of nearly all cancers that can limit response to targeted therapies by ensuring the tumor population is not genetically homogenous. Polo-like Kinase 1 (PLK1) is often up regulated in cancers and it regulates chromosomal instability extensively. PLK1 has been the subject of much pre-clinical and clinical studies, but thus far, PLK1 inhibitors have not shown significant improvement in cancer patients. We discuss the numerous roles and interactions of PLK1 in regulating chromosomal instability, and how these may provide an avenue for identifying targets for targeted therapies. As selective inhibitors of PLK1 showed limited clinical success, we also highlight how genetic interactions of PLK1 may be exploited to tackle these challenges. Abstract Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.
Collapse
Affiliation(s)
- Chelsea E. Cunningham
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Mackenzie J. MacAuley
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Omar Abuhussein
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Franco J. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| |
Collapse
|
43
|
Takeda Y, Yamazaki K, Hashimoto K, Watanabe K, Chinen T, Kitagawa D. The centriole protein CEP76 negatively regulates PLK1 activity in the cytoplasm for proper mitotic progression. J Cell Sci 2020; 133:jcs241281. [PMID: 32878946 DOI: 10.1242/jcs.241281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/24/2020] [Indexed: 08/31/2023] Open
Abstract
Polo-like kinase 1 (PLK1) dynamically changes its localization and plays important roles in proper mitotic progression. In particular, strict control of cytoplasmic PLK1 is needed to prevent mitotic defects. However, the regulation of cytoplasmic PLK1 is not fully understood. In this study, we show that CEP76, a centriolar protein, physically interacts with PLK1 and tightly controls the activation of cytoplasmic PLK1 during mitosis in human cells. We found that removal of centrosomes induced ectopic aggregation of PLK1, which is highly phosphorylated, in the cytoplasm during mitosis. Importantly, a targeted RNAi screen revealed that depletion of CEP76 resulted in a similar phenotype. In addition, depletion of CEP76 caused defective spindle orientation and mitotic delay. Moreover, the formation of ectopic PLK1 aggregates and defective spindle orientation were significantly suppressed by the inhibition of PLK1 kinase activity. Overall, these results demonstrate that CEP76 suppresses the aberrant activation of cytoplasmic PLK1 for proper mitotic progression.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yutaka Takeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kaho Yamazaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kaho Hashimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Koki Watanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Kurasawa Y, An T, Li Z. Polo-like kinase in trypanosomes: an odd member out of the Polo family. Open Biol 2020; 10:200189. [PMID: 33050792 PMCID: PMC7653357 DOI: 10.1098/rsob.200189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are evolutionarily conserved serine/threonine protein kinases playing crucial roles during multiple stages of mitosis and cytokinesis in yeast and animals. Plks are characterized by a unique Polo-box domain, which plays regulatory roles in controlling Plk activation, interacting with substrates and targeting Plk to specific subcellular locations. Plk activity and protein abundance are subject to temporal and spatial control through transcription, phosphorylation and proteolysis. In the early branching protists, Plk orthologues are present in some taxa, such as kinetoplastids and Giardia, but are lost in apicomplexans, such as Plasmodium. Works from characterizing a Plk orthologue in Trypanosoma brucei, a kinetoplastid protozoan, discover its essential roles in regulating the inheritance of flagellum-associated cytoskeleton and the initiation of cytokinesis, but not any stage of mitosis. These studies reveal evolutionarily conserved and species-specific features in the control of Plk activation, substrate recognition and protein abundance, and suggest the divergence of Plk function and regulation for specialized needs in this flagellated unicellular eukaryote.
Collapse
Affiliation(s)
| | | | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
45
|
Ólafsson G, Thorpe PH. Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA. PLoS Genet 2020; 16:e1008990. [PMID: 32810142 PMCID: PMC7455000 DOI: 10.1371/journal.pgen.1008990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/28/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
The kinetochore, a multi-protein complex assembled on centromeres, is essential to segregate chromosomes during cell division. Deficiencies in kinetochore function can lead to chromosomal instability and aneuploidy-a hallmark of cancer cells. Kinetochore function is controlled by recruitment of regulatory proteins, many of which have been documented, however their function often remains uncharacterized and many are yet to be identified. To identify candidates of kinetochore regulation we used a proteome-wide protein association strategy in budding yeast and detected many proteins that are involved in post-translational modifications such as kinases, phosphatases and histone modifiers. We focused on the Polo-like kinase, Cdc5, and interrogated which cellular components were sensitive to constitutive Cdc5 localization. The kinetochore is particularly sensitive to constitutive Cdc5 kinase activity. Targeting Cdc5 to different kinetochore subcomplexes produced diverse phenotypes, consistent with multiple distinct functions at the kinetochore. We show that targeting Cdc5 to the inner kinetochore, the constitutive centromere-associated network (CCAN), increases the levels of centromeric RNA via an SPT4 dependent mechanism.
Collapse
Affiliation(s)
- Guðjón Ólafsson
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Peter H. Thorpe
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| |
Collapse
|
46
|
Landmann C, Pierre-Elies P, Goutte-Gattat D, Montembault E, Claverie MC, Royou A. The Mre11-Rad50-Nbs1 complex mediates the robust recruitment of Polo to DNA lesions during mitosis in Drosophila. J Cell Sci 2020; 133:jcs244442. [PMID: 32487663 DOI: 10.1242/jcs.244442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
The DNA damage sensor Mre11-Rad50-Nbs1 complex and Polo kinase are recruited to DNA lesions during mitosis. However, their mechanism of recruitment is elusive. Here, using live-cell imaging combined with micro-irradiation of single chromosomes, we analyze the dynamics of Polo and Mre11 at DNA lesions during mitosis in Drosophila These two proteins display distinct kinetics. Whereas Polo kinetics at double-strand breaks (DSBs) are Cdk1-driven, Mre11 promptly but briefly associates with DSBs regardless of the phase of mitosis and re-associates with DSBs in the proceeding interphase. Mechanistically, Polo kinase activity is required for its own recruitment and that of the mitotic proteins BubR1 and Bub3 to DSBs. Moreover, depletion of Rad50 severely impaired Polo kinetics at mitotic DSBs. Conversely, ectopic tethering of Mre11 to chromatin was sufficient to recruit Polo. Our study highlights a novel pathway that links the DSB sensor Mre11-Rad50-Nbs1 complex and Polo kinase to initiate a prompt, decisive response to the presence of DNA damage during mitosis.
Collapse
Affiliation(s)
- Cedric Landmann
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Priscillia Pierre-Elies
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Damien Goutte-Gattat
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Emilie Montembault
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Marie-Charlotte Claverie
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Anne Royou
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
47
|
Barbosa J, Conde C, Sunkel C. RZZ-SPINDLY-DYNEIN: you got to keep 'em separated. Cell Cycle 2020; 19:1716-1726. [PMID: 32544383 PMCID: PMC7469663 DOI: 10.1080/15384101.2020.1780382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022] Open
Abstract
To maintain genome stability, chromosomes must be equally distributed among daughter cells at the end of mitosis. The accuracy of chromosome segregation requires sister-kinetochores to stably attach to microtubules emanating from opposite spindle poles. However, initial kinetochore-microtubule interactions are able to turnover so that defective attachment configurations that typically arise during early mitosis may be corrected. Growing evidence supports a role for the RZZ complex in preventing the stabilization of erroneous kinetochore-microtubule attachments. This inhibitory function of RZZ toward end-on attachments is relieved by DYNEIN-mediated transport of the complex as chromosomes congress and appropriate interactions with microtubules are established. However, it remains unclear how DYNEIN is antagonized to prevent premature RZZ removal. We recently described a new mechanism that sheds new light on this matter. We found that POLO kinase phosphorylates the DYNEIN adaptor SPINDLY to promote the uncoupling between RZZ and DYNEIN. Elevated POLO activity during prometaphase ensures that RZZ is retained at kinetochores to allow the dynamic turnover of kinetochore-microtubule interactions and prevent the stabilization of erroneous attachments. Here, we discuss additional interpretations to explain a model for POLO-dependent regulation of the RZZ-SPINDLY-DYNEIN module during mitosis.
Collapse
Affiliation(s)
- João Barbosa
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Claudio Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciência Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| |
Collapse
|
48
|
Kixmoeller K, Allu PK, Black BE. The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biol 2020; 10:200051. [PMID: 32516549 PMCID: PMC7333888 DOI: 10.1098/rsob.200051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic chromosome segregation relies upon specific connections from DNA to the microtubule-based spindle that forms at cell division. The chromosomal locus that directs this process is the centromere, where a structure called the kinetochore forms upon entry into mitosis. Recent crystallography and single-particle electron microscopy have provided unprecedented high-resolution views of the molecular complexes involved in this process. The centromere is epigenetically specified by nucleosomes harbouring a histone H3 variant, CENP-A, and we review recent progress on how it differentiates centromeric chromatin from the rest of the chromosome, the biochemical pathway that mediates its assembly and how two non-histone components of the centromere specifically recognize CENP-A nucleosomes. The core centromeric nucleosome complex (CCNC) is required to recruit a 16-subunit complex termed the constitutive centromere associated network (CCAN), and we highlight recent structures reported of the budding yeast CCAN. Finally, the structures of multiple modular sub-complexes of the kinetochore have been solved at near-atomic resolution, providing insight into how connections are made to the CCAN on one end and to the spindle microtubules on the other. One can now build molecular models from the DNA through to the physical connections to microtubules.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Ehlén Å, Martin C, Miron S, Julien M, Theillet FX, Ropars V, Sessa G, Beaurepere R, Boucherit V, Duchambon P, El Marjou A, Zinn-Justin S, Carreira A. Proper chromosome alignment depends on BRCA2 phosphorylation by PLK1. Nat Commun 2020; 11:1819. [PMID: 32286328 PMCID: PMC7156385 DOI: 10.1038/s41467-020-15689-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
The BRCA2 tumor suppressor protein is involved in the maintenance of genome integrity through its role in homologous recombination. In mitosis, BRCA2 is phosphorylated by Polo-like kinase 1 (PLK1). Here we describe how this phosphorylation contributes to the control of mitosis. We identify a conserved phosphorylation site at T207 of BRCA2 that constitutes a bona fide docking site for PLK1 and is phosphorylated in mitotic cells. We show that BRCA2 bound to PLK1 forms a complex with the phosphatase PP2A and phosphorylated-BUBR1. Reducing BRCA2 binding to PLK1, as observed in BRCA2 breast cancer variants S206C and T207A, alters the tetrameric complex resulting in unstable kinetochore-microtubule interactions, misaligned chromosomes, faulty chromosome segregation and aneuploidy. We thus reveal a role of BRCA2 in the alignment of chromosomes, distinct from its DNA repair function, with important consequences on chromosome stability. These findings may explain in part the aneuploidy observed in BRCA2-mutated tumors.
Collapse
Affiliation(s)
- Åsa Ehlén
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Manon Julien
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
- Department of Biology, École Normale Supérieure, 94230, Cachan, France
| | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Gaetana Sessa
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Romane Beaurepere
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Patricia Duchambon
- Protein Expression and Purification Core Facility, Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
- INSERM U1196, 91405, Orsay, Cedex, France
| | - Ahmed El Marjou
- Protein Expression and Purification Core Facility, Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
- CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France.
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France.
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France.
| |
Collapse
|
50
|
Sharma P, Mahen R, Rossmann M, Stokes JE, Hardwick B, Huggins DJ, Emery A, Kunciw DL, Hyvönen M, Spring DR, McKenzie GJ, Venkitaraman AR. A cryptic hydrophobic pocket in the polo-box domain of the polo-like kinase PLK1 regulates substrate recognition and mitotic chromosome segregation. Sci Rep 2019; 9:15930. [PMID: 31685831 PMCID: PMC6828814 DOI: 10.1038/s41598-019-50702-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/26/2019] [Indexed: 11/25/2022] Open
Abstract
The human polo-like kinase PLK1 coordinates mitotic chromosome segregation by phosphorylating multiple chromatin- and kinetochore-binding proteins. How PLK1 activity is directed to specific substrates via phosphopeptide recognition by its carboxyl-terminal polo-box domain (PBD) is poorly understood. Here, we combine molecular, structural and chemical biology to identify a determinant for PLK1 substrate recognition that is essential for proper chromosome segregation. We show that mutations ablating an evolutionarily conserved, Tyr-lined pocket in human PLK1 PBD trigger cellular anomalies in mitotic progression and timing. Tyr pocket mutations selectively impair PLK1 binding to the kinetochore phosphoprotein substrate PBIP1, but not to the centrosomal substrate NEDD1. Through a structure-guided approach, we develop a small-molecule inhibitor, Polotyrin, which occupies the Tyr pocket. Polotyrin recapitulates the mitotic defects caused by mutations in the Tyr pocket, further evidencing its essential function, and exemplifying a new approach for selective PLK1 inhibition. Thus, our findings support a model wherein substrate discrimination via the Tyr pocket in the human PLK1 PBD regulates mitotic chromosome segregation to preserve genome integrity.
Collapse
Affiliation(s)
- Pooja Sharma
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Jamie E Stokes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Bryn Hardwick
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - David J Huggins
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Amy Emery
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Dominique L Kunciw
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Grahame J McKenzie
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Ashok R Venkitaraman
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom.
| |
Collapse
|