1
|
Dabo AJ, Ezegbunam W, Wyman AE, Moon J, Railwah C, Lora A, Majka SM, Geraghty P, Foronjy RF. Targeting c-Src Reverses Accelerated GPX-1 mRNA Decay in Chronic Obstructive Pulmonary Disease Airway Epithelial Cells. Am J Respir Cell Mol Biol 2020; 62:598-607. [PMID: 31801023 DOI: 10.1165/rcmb.2019-0177oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enhanced expression of the cellular antioxidant glutathione peroxidase (GPX)-1 prevents cigarette smoke-induced lung inflammation and tissue destruction. Subjects with chronic obstructive pulmonary disease (COPD), however, have decreased airway GPX-1 levels, rendering them more susceptible to disease onset and progression. The mechanisms that downregulate GPX-1 in the airway epithelium in COPD remain unknown. To ascertain these factors, analyses were conducted using human airway epithelial cells isolated from healthy subjects and human subjects with COPD and lung tissue from control and cigarette smoke-exposed A/J mice. Tyrosine phosphorylation modifies GPX-1 expression and cigarette smoke activates the tyrosine kinase c-Src. Therefore, studies were conducted to evaluate the role of c-Src on GPX-1 levels in COPD. These studies identified accelerated GPX-1 mRNA decay in COPD airway epithelial cells. Targeting the tyrosine kinase c-Src with siRNA inhibited GPX-1 mRNA degradation and restored GPX-1 protein levels in human airway epithelial cells. In contrast, silencing the tyrosine kinase c-Abl, or the transcriptional activator Nrf2, had no effect on GPX-1 mRNA stability. The chemical inhibitors for c-Src (saracatinib and dasanitib) restored GPX-1 mRNA levels and GPX-1 activity in COPD airway cells in vitro. Similarly, saracatinib prevented the loss of lung Gpx-1 expression in response to chronic smoke exposure in vivo. Thus, this study establishes that the decreased GPX-1 expression that occurs in COPD lungs is at least partially due to accelerated mRNA decay. Furthermore, these findings show that targeting c-Src represents a potential therapeutic approach to augment GPX-1 responses and counter smoke-induced lung disease.
Collapse
Affiliation(s)
- Abdoulaye J Dabo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| | - Wendy Ezegbunam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Anne E Wyman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Jane Moon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Christopher Railwah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Alnardo Lora
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Susan M Majka
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| | - Robert F Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| |
Collapse
|
2
|
Mascarenhas R, Dougherty JA, Schoenberg DR. SMG6 cleavage generates metastable decay intermediates from nonsense-containing β-globin mRNA. PLoS One 2013; 8:e74791. [PMID: 24086375 PMCID: PMC3783490 DOI: 10.1371/journal.pone.0074791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/07/2013] [Indexed: 12/24/2022] Open
Abstract
mRNAs targeted by endonuclease decay generally disappear without detectable decay intermediates. The exception to this is nonsense-containing human β-globin mRNA, where the destabilization of full-length mRNA is accompanied by the cytoplasmic accumulation of 5′-truncated transcripts in erythroid cells of transgenic mice and in transfected erythroid cell lines. The relationship of the shortened RNAs to the decay process was characterized using an inducible erythroid cell system and an assay for quantifying full-length mRNA and a truncated RNA missing 169 nucleotides from the 5′ end. In cells knocked down for Upf1 a reciprocal increase in full-length and decrease in shortened RNA confirmed the role of NMD in this process. Kinetic analysis demonstrated that the 5′-truncated RNAs are metastable intermediates generated during the decay process. SMG6 previously was identified as an endonuclease involved in NMD. Consistent with involvement of SMG6 in the decay process full-length nonsense-containing β-globin mRNA was increased and the Δ169 decay intermediate was decreased in cells knocked down for SMG6. This was reversed by complementation with siRNA-resistant SMG6, but not by SMG6 with inactivating PIN domain mutations. Importantly, none of these altered the phosphorylation state of Upf1. These data provide the first proof for accumulation of stable NMD products by SMG6 endonuclease cleavage.
Collapse
Affiliation(s)
- Roshan Mascarenhas
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Julie A. Dougherty
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel R. Schoenberg
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
3
|
Gu SQ, Bakthavachalu B, Han J, Patil DP, Otsuka Y, Guda C, Schoenberg DR. Identification of the human PMR1 mRNA endonuclease as an alternatively processed product of the gene for peroxidasin-like protein. RNA (NEW YORK, N.Y.) 2012; 18:1186-1196. [PMID: 22543864 PMCID: PMC3358641 DOI: 10.1261/rna.031369.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
The PMR1 endonuclease was discovered in Xenopus liver and identified as a member of the large and diverse peroxidase gene family. The peroxidase genes arose from multiple duplication and rearrangement events, and their high degree of sequence similarity confounded attempts to identify human PMR1. The functioning of PMR1 in mRNA decay depends on the phosphorylation of a tyrosine in the C-terminal polysome targeting domain by c-Src. The sequences of regions that are required for c-Src binding and phosphorylation of Xenopus PMR1 were used to inform a bioinformatics search that identified two related genes as potential candidates for human PMR1: peroxidasin homolog (PXDN) and peroxidasin homolog-like (PXDNL) protein. Although each of these genes is predicted to encode a large, multidomain membrane-bound peroxidase, alternative splicing of PXDNL pre-mRNA yields a transcript whose predicted product is a 57-kDa protein with 42% sequence identity to Xenopus PMR1. Results presented here confirm the existence of the predicted 57-kDa protein, show this is the only form of PXDNL detected in any of the human cell lines examined, and confirm its identity as human PMR1. Like the Xenopus protein, human PMR1 binds to c-Src, is tyrosine phosphorylated, sediments on polysomes, and catalyzes the selective decay of a PMR1 substrate mRNA. Importantly, the expression of human PMR1 stimulates cell motility in a manner similar to that of the Xenopus PMR1 expressed in human cells, thus providing definitive evidence linking endonuclease decay to the regulation of cell motility.
Collapse
Affiliation(s)
- Shan-Qing Gu
- Center for RNA Biology
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210-1218, USA
| | - Baskar Bakthavachalu
- Center for RNA Biology
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210-1218, USA
| | - Joonhee Han
- Center for RNA Biology
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210-1218, USA
| | - Deepak P. Patil
- Center for RNA Biology
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210-1218, USA
| | - Yuichi Otsuka
- Center for RNA Biology
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210-1218, USA
| | - Chittibabu Guda
- Center for Bioinformatics and Systems Biology, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68118-5145, USA
| | - Daniel R. Schoenberg
- Center for RNA Biology
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210-1218, USA
| |
Collapse
|
4
|
Abstract
Discoveries made over the past 20 years highlight the importance of mRNA decay as a means of modulating gene expression and thereby protein production. Up until recently, studies largely focused on identifying cis-acting sequences that serve as mRNA stability or instability elements, the proteins that bind these elements, how the process of translation influences mRNA decay and the ribonucleases that catalyse decay. Now, current studies have begun to elucidate how the decay process is regulated. This Review examines our current understanding of how mammalian cell mRNA decay is controlled by different signalling pathways and lays out a framework for future research.
Collapse
|
5
|
Kim WC, Berquist BR, Chohan M, Uy C, Wilson DM, Lee CH. Characterization of the endoribonuclease active site of human apurinic/apyrimidinic endonuclease 1. J Mol Biol 2011; 411:960-71. [PMID: 21762700 PMCID: PMC4598366 DOI: 10.1016/j.jmb.2011.06.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 11/17/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in DNA base excision repair that cleaves the DNA phosphodiester backbone immediately 5' to abasic sites. Recently, we identified APE1 as an endoribonuclease that cleaves a specific coding region of c-myc mRNA in vitro, regulating c-myc mRNA level and half-life in cells. Here, we further characterized the endoribonuclease activity of APE1, focusing on the active-site center of the enzyme previously defined for DNA nuclease activities. We found that most site-directed APE1 mutant proteins (N68A, D70A, Y171F, D210N, F266A, D308A, and H309S), which target amino acid residues constituting the abasic DNA endonuclease active-site pocket, showed significant decreases in endoribonuclease activity. Intriguingly, the D283N APE1 mutant protein retained endoribonuclease and abasic single-stranded RNA cleavage activities, with concurrent loss of apurinic/apyrimidinic (AP) site cleavage activities on double-stranded DNA and single-stranded DNA (ssDNA). The mutant proteins bound c-myc RNA equally well as wild-type (WT) APE1, with the exception of H309N, suggesting that most of these residues contributed primarily to RNA catalysis and not to RNA binding. Interestingly, both the endoribonuclease and the ssRNA AP site cleavage activities of WT APE1 were present in the absence of Mg(2+), while ssDNA AP site cleavage required Mg(2+) (optimally at 0.5-2.0 mM). We also found that a 2'-OH on the sugar moiety was absolutely required for RNA cleavage by WT APE1, consistent with APE1 leaving a 3'-PO(4)(2-) group following cleavage of RNA. Altogether, our data support the notion that a common active site is shared for the endoribonuclease and other nuclease activities of APE1; however, we provide evidence that the mechanisms for cleaving RNA, abasic single-stranded RNA, and abasic DNA by APE1 are not identical, an observation that has implications for unraveling the endoribonuclease function of APE1 in vivo.
Collapse
Affiliation(s)
- Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada
| | - Brian R. Berquist
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Manbir Chohan
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada
| | - Christopher Uy
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Chow H. Lee
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada
| |
Collapse
|
6
|
Schoenberg DR. Mechanisms of endonuclease-mediated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:582-600. [PMID: 21957046 DOI: 10.1002/wrna.78] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endonuclease cleavage was one of the first identified mechanisms of mRNA decay but until recently it was thought to play a minor role to the better-known processes of deadenylation, decapping, and exonuclease-catalyzed decay. Most of the early examples of endonuclease decay came from studies of a particular mRNA whose turnover changed in response to hormone, cytokine, developmental, or nutritional stimuli. Only a few of these examples of endonuclease-mediated mRNA decay progressed to the point where the enzyme responsible for the initiating event was identified and studied in detail. The discovery of microRNAs and RISC-catalyzed endonuclease cleavage followed by the identification of PIN (pilT N-terminal) domains that impart endonuclease activity to a number of the proteins involved in mRNA decay has led to a resurgence of interest in endonuclease-mediated mRNA decay. PIN domains show no substrate selectivity and their involvement in a number of decay pathways highlights a recurring theme that the context in which an endonuclease function is a primary factor in determining whether any given mRNA will be targeted for decay by this or the default exonuclease-mediated decay processes.
Collapse
Affiliation(s)
- Daniel R Schoenberg
- Center for RNA Biology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Tomecki R, Dziembowski A. Novel endoribonucleases as central players in various pathways of eukaryotic RNA metabolism. RNA (NEW YORK, N.Y.) 2010; 16:1692-1724. [PMID: 20675404 PMCID: PMC2924532 DOI: 10.1261/rna.2237610] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For a long time it has been assumed that the decay of RNA in eukaryotes is mainly carried out by exoribonucleases, which is in contrast to bacteria, where endoribonucleases are well documented to initiate RNA degradation. In recent years, several as yet unknown endonucleases have been described, which has changed our view on eukaryotic RNA metabolism. Most importantly, it was shown that the primary eukaryotic 3' --> 5' exonuclease, the exosome complex has the ability to endonucleolytically cleave its physiological RNA substrates, and novel endonucleases involved in both nuclear and cytoplasmic RNA surveillance pathways were discovered concurrently. In addition, endoribonucleases responsible for long-known processing steps in the maturation pathways of various RNA classes were recently identified. Moreover, one of the most intensely studied RNA decay pathways--RNAi--is controlled and stimulated by the action of different endonucleases. Furthermore, endoribonucleolytic cleavages executed by various enzymes are also the hallmark of RNA degradation and processing in plant chloroplasts. Finally, multiple context-specific endoribonucleases control qualitative and/or quantitative changes of selected transcripts under particular conditions in different eukaryotic organisms. The aim of this review is to discuss the impact of all of these discoveries on our current understanding of eukaryotic RNA metabolism.
Collapse
Affiliation(s)
- Rafal Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, University of Warsaw, 02-106 Warsaw, Poland
| | | |
Collapse
|
8
|
Abstract
The efficient turnover of messenger RNA represents an important mechanism that allows the cell to control gene expression. Until recently, the mechanism of mRNA decay was mainly attributed to exonucleases, comprising enzymes that degrade RNAs from the ends of the molecules. This article summarizes the endoribonucleases, comprising enzymes that cleave RNA molecules internally, which were identified in more recent years in eukaryotic mRNA metabolism. Endoribonucleases have received little attention in the past, based on the difficulty in their identification and a lack of understanding of their physiological significance. This review aims to compare the similarities and differences among this group of enzymes, as well as their known cellular functions. Despite the many differences in protein structure, and thus difficulties in identifying them based on amino acid sequence, most endoribonucleases possess essential cellular functions and have been shown to play an important role in mRNA turnover.
Collapse
Affiliation(s)
- Wai Ming Li
- Chemistry Program, University of Northern British Columbia, Prince George, BC, Canada
| | | | | |
Collapse
|
9
|
Nechama M, Peng Y, Bell O, Briata P, Gherzi R, Schoenberg DR, Naveh-Many T. KSRP-PMR1-exosome association determines parathyroid hormone mRNA levels and stability in transfected cells. BMC Cell Biol 2009; 10:70. [PMID: 19775426 PMCID: PMC2759919 DOI: 10.1186/1471-2121-10-70] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 09/23/2009] [Indexed: 11/29/2022] Open
Abstract
Background Parathyroid hormone (PTH) gene expression is regulated post-transcriptionally through the binding of the trans-acting proteins AU rich binding factor 1 (AUF1), Upstream of N-ras (Unr) and KH-type splicing regulatory protein (KSRP) to an AU rich element (ARE) in PTH mRNA 3'-UTR. AUF1 and Unr stabilize PTH mRNA while KSRP, recruiting the exoribonucleolytic complex exosome, promotes PTH mRNA decay. Results PTH mRNA is cleaved by the endoribonuclease polysomal ribonuclease 1 (PMR1) in an ARE-dependent manner. Moreover, PMR1 co-immunoprecipitates with PTH mRNA, the exosome and KSRP. Knock-down of either exosome components or KSRP by siRNAs prevents PMR1-mediated cleavage of PTH mRNA. Conclusion PTH mRNA is a target for the endonuclease PMR1. The PMR1 mediated decrease in PTH mRNA levels involves the PTH mRNA 3'-UTR ARE, KSRP and the exosome. This represents an unanticipated mechanism by which the decay of an ARE-containing mRNA is facilitated by KSRP and is dependent on both the exosome and an endoribonuclease.
Collapse
Affiliation(s)
- Morris Nechama
- Minerva Center for Calcium and Bone Metabolism, Nephrology Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
10
|
The virion-packaged endoribonuclease of herpes simplex virus 1 cleaves mRNA in polyribosomes. Proc Natl Acad Sci U S A 2009; 106:12139-44. [PMID: 19584246 DOI: 10.1073/pnas.0905828106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The virion host shutoff protein product of the U(L)41 gene of herpes simplex virus 1 is an endoribonuclease that selectively degrades mRNAs during the first hours after infection. Specifically, in contrast to the events in uninfected cells or cells infected with a mutant lacking the RNase, in wild-type virus-infected cells mRNA of housekeeping genes exemplified by GAPDH is degraded rapidly, whereas mRNAs containing AU elements are cleaved and the 5' cleavage product of these RNAs persists for many hours. We report that in wild-type virus-infected cells there was a rapid increase in the number and size of processing bodies (P-bodies). These P-bodies were also preset in cycloheximide (CHX)-treated cells but not in either treated or untreated uninfected cells or cells infected with the RNase minus mutant. Additional studies revealed that polyribosomes extracted from cytoplasm of wild-type virus-infected cells treated with CHX and displayed in sucrose gradients contained ribosome-loaded, truncated AU-rich mRNAs lacking the 3' UTR and poly(A) tails. The results suggest that the virion RNase is bound to polyribosomes by virtue of the reported association with translation machinery and cleaves the RNAs 5' to the AU elements. In contrast to the slow degradation of the of the residual 5' domain, the 3' UTR of the AU-rich mRNA and the GAPDH mRNA are rapidly degraded in wild-type virus-infected cells.
Collapse
|
11
|
Kim WC, Lee CH. The role of mammalian ribonucleases (RNases) in cancer. Biochim Biophys Acta Rev Cancer 2009; 1796:99-113. [PMID: 19463900 DOI: 10.1016/j.bbcan.2009.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023]
Abstract
Ribonucleases (RNases) are a group of enzymes that cleave RNAs at phosphodiester bonds resulting in remarkably diverse biological consequences. This review focuses on mammalian RNases that are capable of, or potentially capable of, cleaving messenger RNA (mRNA) as well as other RNAs in cells and play roles in the development of human cancers. The aims of this review are to provide an overview of the roles of currently known mammalian RNases, and the evidence that associate them as regulators of tumor development. The roles of these RNases as oncoproteins and/or tumor suppressors in influencing cell growth, apoptosis, angiogenesis, and other cellular hallmarks of cancer will be presented and discussed. The RNases under discussion include RNases from the conventional mRNA decay pathways, RNases that are activated under cellular stress, RNases from the miRNA pathway, and RNases with multifunctional activity.
Collapse
Affiliation(s)
- Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9
| | | |
Collapse
|
12
|
Peng Y, Murray EL, Sarkar M, Liu X, Schoenberg DR. The cytoskeleton-associated Ena/VASP proteins are unanticipated partners of the PMR1 mRNA endonuclease. RNA (NEW YORK, N.Y.) 2009; 15:576-87. [PMID: 19223443 PMCID: PMC2661838 DOI: 10.1261/rna.1206209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The PMR1 mRNA endonuclease catalyzes the selective decay of a limited number of mRNAs. It participates in multiple complexes, including one containing c-Src, its activating kinase, and one containing its substrate mRNA. This study used tandem affinity purification (TAP) chromatography to identify proteins in HeLa cell S100 associated with the mature 60-kDa form of Xenopus PMR1 (xPMR60). Unexpectedly, this identified a number of cytoskeleton-associated proteins, most notably the Ena family proteins mammalian Enabled (Mena) and vasodilator-stimulated phosphoprotein (VASP). These are regulators of actin dynamics that distribute throughout the cytoplasm and concentrate along the leading edge of the cell. xPMR60 interacts with Mena and VASP in vivo, overexpression of Mena has no impact on mRNA decay, and Mena and VASP are recovered together with xPMR60 in each of the major complexes of PMR1-mRNA decay. In a wound-healing experiment induced expression of active xPMR60 in stably transfected cells resulted in a twofold increase in cell motility compared with uninduced cells or cells expressing inactive xPMR60 degrees . Under these conditions xPMR60 colocalizes with VASP along one edge of the cell.
Collapse
Affiliation(s)
- Yong Peng
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, 43210, USA
| | | | | | | | | |
Collapse
|
13
|
Peng Y, Liu X, Schoenberg DR. The 90-kDa heat shock protein stabilizes the polysomal ribonuclease 1 mRNA endonuclease to degradation by the 26S proteasome. Mol Biol Cell 2008; 19:546-52. [PMID: 18045990 PMCID: PMC2230583 DOI: 10.1091/mbc.e07-08-0774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/01/2007] [Accepted: 11/15/2007] [Indexed: 11/11/2022] Open
Abstract
The polysomal ribonuclease 1 (PMR1) mRNA endonuclease forms a selective complex with its translating substrate mRNAs where it is activated to initiate mRNA decay. Previous work showed tyrosine phosphorylation is required for PMR1 targeting to this polysome-bound complex, and it identified c-Src as the responsible kinase. c-Src phosphorylation occurs in a distinct complex, and the current study shows that 90-kDa heat shock protein (Hsp90) is also recovered with PMR1 and c-Src. Hsp90 binding to PMR1 is inhibited by geldanamycin, and geldanamycin stabilizes substrate mRNA to PMR1-mediated decay. PMR1 is inherently unstable and geldanamycin causes PMR1 to rapidly disappear in a process that is catalyzed by the 26S proteasome. We present a model where Hsp90 interacts transiently to stabilize PMR1 in a manner similar to its interaction with c-Src, thus facilitating the tyrosine phosphorylation and targeting of PMR1 to polysomes.
Collapse
Affiliation(s)
- Yong Peng
- Department of Molecular and Cellular Biochemistry, RNA Group and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Xiaoqiang Liu
- Department of Molecular and Cellular Biochemistry, RNA Group and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Daniel R. Schoenberg
- Department of Molecular and Cellular Biochemistry, RNA Group and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Chapter 5. In vivo analysis of the decay of transcripts generated by cytoplasmic RNA viruses. Methods Enzymol 2008; 449:97-123. [PMID: 19215755 DOI: 10.1016/s0076-6879(08)02405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The field of RNA decay has grown extensively over the last few years and numerous decay pathways have been identified and characterized. This is a truly powerful machinery for both regulation and quality control of gene expression. It is very likely that the transcripts of RNA viruses must successfully confront this arsenal of enzymes and RNA binding factors in order to establish a productive infection. This interface is an understudied branch of virology that needs to be explored if we are to fully comprehend the molecular biology of virus-cell interactions. Research in this area has the potential to increase our understanding of the fundamentals of both mRNA stability and viral biology, perhaps leading to novel antiviral approaches. This chapter discusses methods for examining the half-lives of viral RNAs during natural infection, including purification of the viral transcripts and subsequent analysis of both deadenylation and decay. Additionally, a hybrid selection protocol for identifying viral-specific small RNAs that are generated during infection by the RNAi branch of the cellular RNA decay machinery is described.
Collapse
|
15
|
Abstract
Although most eukaryotic mRNAs are degraded by exonucleases acting on either end of the molecule, a subset of mRNAs undergo endonuclease cleavage within the mRNA body. Endonuclease cleavage can be activated by cellular stress, extracellular signals, or by ribosome stalling, as might occur at a premature termination codon. Only a few eukaryotic mRNA endonucleases have been identified, and of these, polysomal ribonuclease 1 (PMR1) is the best characterized. A notable feature of PMR1-mediated mRNA decay is that it acts on specific mRNAs while they are engaged by translating ribosomes. This chapter begins with several procedures used to characterize in vivo endonuclease cleavage of any mRNA by any endonuclease. These include approaches for identifying the 5'-end(s) downstream of an endonuclease cleavage site (S1 nuclease protection and primer extension), and a ligation-mediated RT-PCR approach developed in our laboratory for identifying the 3'-ends upstream of a cleavage site. We then describe a number of approaches used to characterize PMR1-mediated mRNA decay in cultured cells. PMR1 participates in a number of different complexes. We show several approaches for studying these complexes, and we describe techniques for isolating and characterizing PMR1-interacting proteins and its target mRNAs. Although the various techniques described here have proven their usefulness in studying PMR1, they can be generalized to studying decay by any other mRNA endonuclease.
Collapse
Affiliation(s)
- Yuichi Otsuka
- Department of Molecular and Cellular Biochemistry and the RNA Group, The Ohio State University, Columbus, OH 43210-1218
| | - Daniel R. Schoenberg
- Department of Molecular and Cellular Biochemistry and the RNA Group, The Ohio State University, Columbus, OH 43210-1218
| |
Collapse
|
16
|
The 3' untranslated region of sindbis virus represses deadenylation of viral transcripts in mosquito and Mammalian cells. J Virol 2007; 82:880-92. [PMID: 17977976 DOI: 10.1128/jvi.01205-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5' cap and a 3' poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 (Aedes albopictus) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3' untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3' UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors-including a 38-kDa protein-were implicated in the repression of deadenylation mediated by the SINV 3' UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3' UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay.
Collapse
|
17
|
Abstract
Many oncogenes, growth factor, cytokine and cell-cycle genes are regulated post-transcriptionally. The major mechanism is by controlling the rate of mRNA turnover for transcripts bearing destabilizing cis-elements. To date, only a handful of regulatory factors have been identified that appear to control a large pool of target mRNAs, suggesting that a slight perturbation in the control mechanism may generate wide-ranging effects that could contribute to the development of a complex disorder such as cancer. In support of this view, mRNA turnover responds to signalling pathways that are often overactive in cancer, suggesting a post-transcriptional component in addition to the well-recognised transcriptional aspect of oncogenesis. Here the authors review examples of deregulated post-transcriptional control in oncogenesis, discuss post-transcriptionally regulated transcripts of oncologic significance, and consider the key role of signalling pathways in linking both processes and as an enticing therapeutic prospect.
Collapse
Affiliation(s)
- Don Benjamin
- Institute for Medical Microbiology, Petersplatz 10, 4001 Basel, Switzerland.
| | | |
Collapse
|