1
|
Huo J, Wei A, Guo N, Wang R, Bi X. The Yeast HMGB Protein Hmo1 Is a Multifaceted Regulator of DNA Damage Tolerance. Int J Mol Sci 2025; 26:3255. [PMID: 40244093 PMCID: PMC11989408 DOI: 10.3390/ijms26073255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The Saccharomyces cerevisiae chromosomal architectural protein Hmo1 is categorized as an HMGB protein, as it contains two HMGB motifs that bind DNA in a structure-specific manner. However, Hmo1 has a basic C-terminal domain (CTD) that promotes DNA bending instead of an acidic one found in a canonical HMGB protein. Hmo1 has diverse functions in genome maintenance and gene regulation. It is implicated in DNA damage tolerance (DDT) that enables DNA replication to bypass lesions on the template. Hmo1 is believed to direct DNA lesions to the error-free template switching (TS) pathway of DDT and to aid in the formation of the key TS intermediate sister chromatid junction (SCJ), but the underlying mechanisms have yet to be resolved. In this work, we used genetic and molecular biology approaches to further investigate the role of Hmo1 in DDT. We found extensive functional interactions of Hmo1 with components of the genome integrity network in cellular response to the genotoxin methyl methanesulfonate (MMS), implicating Hmo1 in the execution or regulation of homology-directed DNA repair, replication-coupled chromatin assembly, and the DNA damage checkpoint. Notably, our data pointed to a role for Hmo1 in directing SCJ to the nuclease-mediated resolution pathway instead of the helicase/topoisomerase mediated dissolution pathway for processing/removal. They also suggested that Hmo1 modulates both the recycling of parental histones and the deposition of newly synthesized histones on nascent DNA at the replication fork to ensure proper chromatin formation. We found evidence that Hmo1 counteracts the function of histone H2A variant H2A.Z (Htz1 in yeast) in DDT possibly due to their opposing effects on DNA resection. We showed that Hmo1 promotes DNA negative supercoiling as a proxy of chromatin structure and MMS-induced DNA damage checkpoint signaling, which is independent of the CTD of Hmo1. Moreover, we obtained evidence indicating that whether the CTD of Hmo1 contributes to its function in DDT is dependent on the host's genetic background. Taken together, our findings demonstrated that Hmo1 can contribute to, or regulate, multiple processes of DDT via different mechanisms.
Collapse
Affiliation(s)
- Jinlong Huo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Anhui Wei
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
- Institute of Frontier Medical Sciences, Jilin University, Changchun 130021, China
| | - Na Guo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruotong Wang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
| | - Xin Bi
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
| |
Collapse
|
2
|
Hu Y, Liu K, Bai X, Chen P, Zhang K, Xiang S. Rad5 and Ubc4 directly ubiquitinate PCNA at Lys164 in vitro. J Biol Chem 2025; 301:108192. [PMID: 39826694 PMCID: PMC11871451 DOI: 10.1016/j.jbc.2025.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Ubiquitination of the proliferating cell nuclear antigen (PCNA) by the budding yeast protein Rad5 have important functions in replication stress responses. Rad5 together with the Ubc13-Mms2 complex attaches Lys63-linked ubiquitin chain to a highly conserved Lys164 residue in PCNA. The reaction requires prior PCNA monoubiquitination by the Rad6-Rad18 complex and signals for error-free DNA damage tolerance responses. Cellular studies suggested that Rad5 also cooperates with Ubc4 to catalyze PCNA ubiquitination in response to Okazaki fragment ligation defects, but biochemical evidence of this reaction is lacking. Here, we reconstituted this reaction and studied its biochemical properties. We found that Rad5 and Ubc4 directly ubiquitinate PCNA and the reaction requires a coordination of Rad5's HIRAN and RING domains. Most interestingly, we found that the reaction ubiquitinates PCNA at multiple sites among which Lys164 is a major ubiquitination site. These findings suggest that Rad5 may contribute to replication stress responses through a novel mechanism by directly ubiquitinating Lys164 in PCNA.
Collapse
Affiliation(s)
- Yixiong Hu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China
| | - Kaiyang Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China
| | - Pu Chen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China.
| |
Collapse
|
3
|
Li L, Scott WS, Khristich AN, Armenia JF, Mirkin SM. Recurrent DNA nicks drive massive expansions of (GAA) n repeats. Proc Natl Acad Sci U S A 2024; 121:e2413298121. [PMID: 39585990 PMCID: PMC11626148 DOI: 10.1073/pnas.2413298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Over 50 hereditary degenerative disorders are caused by expansions of short tandem DNA repeats (STRs). (GAA)n repeat expansions are responsible for Friedreich's ataxia as well as late-onset cerebellar ataxias (LOCAs). Thus, the mechanisms of (GAA)n repeat expansions attract broad scientific attention. To investigate the role of DNA nicks in this process, we utilized a CRISPR-Cas9 nickase system to introduce targeted nicks adjacent to the (GAA)n repeat tract. We found that DNA nicks 5' of the (GAA)100 run led to a dramatic increase in both the rate and scale of its expansion in dividing cells. Strikingly, they also promoted large-scale expansions of carrier- and large normal-size (GAA)n repeats, recreating, in a model system, the expansion events that occur in human pedigrees. DNA nicks 3' of the (GAA)100 repeat led to a smaller but significant increase in the expansion rate as well. Our genetic analysis implies that in dividing cells, conversion of nicks into double-strand breaks (DSBs) during DNA replication followed by DSB or fork repair leads to repeat expansions. Finally, we showed that 5' GAA-strand nicks increase expansion frequency in nondividing yeast cells, albeit to a lesser extent than in dividing cells.
Collapse
Affiliation(s)
- Liangzi Li
- Department of Biology, Tufts University, Medford, MA02155
| | - W. Shem Scott
- Department of Biology, Tufts University, Medford, MA02155
| | | | | | | |
Collapse
|
4
|
Elfar G, Aning O, Ngai T, Yeo P, Chan J, Sim S, Goh L, Yuan J, Phua C, Yeo J, Mak S, Goh B, Chow PH, Tam W, Ho Y, Cheok C. p53-dependent crosstalk between DNA replication integrity and redox metabolism mediated through a NRF2-PARP1 axis. Nucleic Acids Res 2024; 52:12351-12377. [PMID: 39315696 PMCID: PMC11551750 DOI: 10.1093/nar/gkae811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Mechanisms underlying p53-mediated protection of the replicating genome remain elusive, despite the quintessential role of p53 in maintaining genomic stability. Here, we uncover an unexpected function of p53 in curbing replication stress by limiting PARP1 activity and preventing the unscheduled degradation of deprotected stalled forks. We searched for p53-dependent factors and elucidated RRM2B as a prime factor. Deficiency in p53/RRM2B results in the activation of an NRF2 antioxidant transcriptional program, with a concomitant elevation in basal PARylation in cells. Dissecting the consequences of p53/RRM2B loss revealed a crosstalk between redox metabolism and genome integrity that is negotiated through a hitherto undescribed NRF2-PARP1 axis, and pinpoint G6PD as a primary oxidative stress-induced NRF2 target and activator of basal PARylation. This study elucidates how loss of p53 could be destabilizing for the replicating genome and, importantly, describes an unanticipated crosstalk between redox metabolism, PARP1 and p53 tumor suppressor pathway that is broadly relevant in cancers and can be leveraged therapeutically.
Collapse
Affiliation(s)
- Gamal Ahmed Elfar
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Obed Aning
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Tsz Wai Ngai
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Pearlyn Yeo
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Joel Wai Kit Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shang Hong Sim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Leonard Goh
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Ju Yuan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joanna Zhen Zhen Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shi Ya Mak
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian Kim Poh Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
- Surgery Academic ClinicalProgramme, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chit Fang Cheok
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| |
Collapse
|
5
|
Adolph MB, Cortez D. Mechanisms and regulation of replication fork reversal. DNA Repair (Amst) 2024; 141:103731. [PMID: 39089193 PMCID: PMC11877614 DOI: 10.1016/j.dnarep.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
6
|
Meyer D, Ceballos SJ, Gore S, Liu J, Reginato G, Cano-Linares MI, Maslowska KH, Villafañez F, Ede C, Pagès V, Prado F, Cejka P, Heyer WD. Rad51 determines pathway usage in post-replication repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599120. [PMID: 38915629 PMCID: PMC11195247 DOI: 10.1101/2024.06.14.599120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Stalled replication forks can be processed by several distinct mechanisms collectively called post-replication repair which includes homologous recombination, fork regression, and translesion DNA synthesis. However, the regulation of the usage between these pathways is not fully understood. The Rad51 protein plays a pivotal role in maintaining genomic stability through its roles in HR and in protecting stalled replication forks from degradation. We report the isolation of separation-of-function mutations in Saccharomyces cerevisiae Rad51 that retain their recombination function but display a defect in fork protection leading to a shift in post-replication repair pathway usage from HR to alternate pathways including mutagenic translesion synthesis. Rad51-E135D and Rad51-K305N show normal in vivo and in vitro recombination despite changes in their DNA binding profiles, in particular to dsDNA, with a resulting effect on their ATPase activities. The mutants lead to a defect in Rad51 recruitment to stalled forks in vivo as well as a defect in the protection of dsDNA from degradation by Dna2-Sgs1 and Exo1 in vitro . A high-resolution cryo-electron microscopy structure of the Rad51-ssDNA filament at 2.4 Å resolution provides a structural basis for a mechanistic understanding of the mutant phenotypes. Together, the evidence suggests a model in which Rad51 binding to duplex DNA is critical to control pathway usage at stalled replication forks.
Collapse
|
7
|
Li BZ, Kolodner RD, Putnam CD. Identification of different classes of genome instability suppressor genes through analysis of DNA damage response markers. G3 (BETHESDA, MD.) 2024; 14:jkae064. [PMID: 38526099 PMCID: PMC11152081 DOI: 10.1093/g3journal/jkae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Cellular pathways that detect DNA damage are useful for identifying genes that suppress DNA damage, which can cause genome instability and cancer predisposition syndromes when mutated. We identified 199 high-confidence and 530 low-confidence DNA damage-suppressing (DDS) genes in Saccharomyces cerevisiae through a whole-genome screen for mutations inducing Hug1 expression, a focused screen for mutations inducing Ddc2 foci, and data from previous screens for mutations causing Rad52 foci accumulation and Rnr3 induction. We also identified 286 high-confidence and 394 low-confidence diverse genome instability-suppressing (DGIS) genes through a whole-genome screen for mutations resulting in increased gross chromosomal rearrangements and data from previous screens for mutations causing increased genome instability as assessed in a diversity of genome instability assays. Genes that suppress both pathways (DDS+ DGIS+) prevent or repair DNA replication damage and likely include genes preventing collisions between the replication and transcription machineries. DDS+ DGIS- genes, including many transcription-related genes, likely suppress damage that is normally repaired properly or prevent inappropriate signaling, whereas DDS- DGIS+ genes, like PIF1, do not suppress damage but likely promote its proper, nonmutagenic repair. Thus, induction of DNA damage markers is not a reliable indicator of increased genome instability, and the DDS and DGIS categories define mechanistically distinct groups of genes.
Collapse
Affiliation(s)
- Bin-Zhong Li
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093-0669, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093-0669, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0669, USA
- Moores-UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0669, USA
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093-0669, USA
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093-0669, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0669, USA
| |
Collapse
|
8
|
Piguet B, Houseley J. Transcription as source of genetic heterogeneity in budding yeast. Yeast 2024; 41:171-185. [PMID: 38196235 DOI: 10.1002/yea.3926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription presents challenges to genome stability both directly, by altering genome topology and exposing single-stranded DNA to chemical insults and nucleases, and indirectly by introducing obstacles to the DNA replication machinery. Such obstacles include the RNA polymerase holoenzyme itself, DNA-bound regulatory factors, G-quadruplexes and RNA-DNA hybrid structures known as R-loops. Here, we review the detrimental impacts of transcription on genome stability in budding yeast, as well as the mitigating effects of transcription-coupled nucleotide excision repair and of systems that maintain DNA replication fork processivity and integrity. Interactions between DNA replication and transcription have particular potential to induce mutation and structural variation, but we conclude that such interactions must have only minor effects on DNA replication by the replisome with little if any direct mutagenic outcome. However, transcription can significantly impair the fidelity of replication fork rescue mechanisms, particularly Break Induced Replication, which is used to restart collapsed replication forks when other means fail. This leads to de novo mutations, structural variation and extrachromosomal circular DNA formation that contribute to genetic heterogeneity, but only under particular conditions and in particular genetic contexts, ensuring that the bulk of the genome remains extremely stable despite the seemingly frequent interactions between transcription and DNA replication.
Collapse
|
9
|
Muellner J, Schmidt KH. Helicase activities of Rad5 and Rrm3 genetically interact in the prevention of recombinogenic DNA lesions in Saccharomyces cerevisiae. DNA Repair (Amst) 2023; 126:103488. [PMID: 37054652 PMCID: PMC10399609 DOI: 10.1016/j.dnarep.2023.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The genome must be monitored to ensure its duplication is completed accurately to prevent genome instability. In Saccharomyces cerevisiae, the 5' to 3' DNA helicase Rrm3, a member of the conserved PIF1 family, facilitates replication fork progression through an unknown mechanism. Disruption of Rrm3 helicase activity leads to increased replication fork pausing throughout the yeast genome. Here, we show that Rrm3 contributes to replication stress tolerance in the absence of the fork reversal activity of Rad5, defined by its HIRAN domain and DNA helicase activity, but not in the absence of Rad5's ubiquitin ligase activity. The Rrm3 and Rad5 helicase activities also interact in the prevention of recombinogenic DNA lesions, and DNA lesions that accumulate in their absence need to be salvaged by a Rad59-dependent recombination pathway. Disruption of the structure-specific endonuclease Mus81 leads to accumulation of recombinogenic DNA lesions and chromosomal rearrangements in the absence of Rrm3, but not Rad5. Thus, at least two mechanisms exist to overcome fork stalling at replication barriers, defined by Rad5-mediated fork reversal and Mus81-mediated cleavage, and contribute to the maintenance of chromosome stability in the absence of Rrm3.
Collapse
Affiliation(s)
- Julius Muellner
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, United States; Graduate program in Cell and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Kristina H Schmidt
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, United States; Graduate program in Cell and Molecular Biology, University of South Florida, Tampa, FL 33620, United States; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
10
|
Zhuk AS, Lada AG, Pavlov YI. Polymorphism of Saccharomyces cerevisiae Strains in DNA Metabolism Genes. Int J Mol Sci 2023; 24:ijms24097795. [PMID: 37175502 PMCID: PMC10178279 DOI: 10.3390/ijms24097795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Baker's yeast, S. cerevisiae, is an excellent model organism exploited for molecular genetic studies of the mechanisms of genome stability in eukaryotes. Genetic peculiarities of commonly used yeast strains impact the processes of DNA replication, repair, and recombination (RRR). We compared the genomic DNA sequence variation of the five strains that are intensively used for RRR studies. We used yeast next-generation sequencing data to detect the extent and significance of variation in 183 RRR genes. We present a detailed analysis of the differences that were found even in closely related strains. Polymorphisms of common yeast strains should be considered when interpreting the outcomes of genome stability studies, especially in cases of discrepancies between laboratories describing the same phenomena.
Collapse
Affiliation(s)
- Anna S Zhuk
- Institute of Applied Computer Science, ITMO University, 191002 St. Petersburg, Russia
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Artem G Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Youri I Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Ling JA, Gildenberg MS, Honda M, Kondratick CM, Spies M, Washington MT. Fork-Remodeling Helicase Rad5 Preferentially Reverses Replication Forks with Gaps in the Leading Strand. J Mol Biol 2023; 435:167946. [PMID: 36623584 PMCID: PMC9915103 DOI: 10.1016/j.jmb.2023.167946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
DNA damage bypass pathways promote the replication of damaged DNA when replication forks stall at sites of DNA damage. Template switching is a DNA damage bypass pathway in which fork-reversal helicases convert stalled replication forks into four-way DNA junctions called chicken foot intermediates, which are subsequently extended by replicative DNA polymerases. In yeast, fork-reversal is carried out by the Rad5 helicase using an unknown mechanism. To better understand the mechanism of Rad5 and its specificity for different fork DNA substrates, we used a FRET-based assay to observe fork reversal in real time. We examined the ability of Rad5 to bind and catalyze the reversal of various fork DNA substrates in the presence of short gaps in the leading or lagging strand as well as in the presence or absence of RPA and RNA primers in the lagging strand. We found that Rad5 preferentially reverses fork DNA substrates with short gaps (10 to 30 nt.) in the leading strand. Thus, Rad5 preferentially reverses fork DNA substrates that form chicken foot intermediates with 5' overhangs that can be extended by replicative DNA polymerases during the subsequent steps of template switching.
Collapse
Affiliation(s)
- Justin A Ling
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States. https://twitter.com/Biochem_Ling
| | - Melissa S Gildenberg
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States. https://twitter.com/MGild01
| | - Masayoshi Honda
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States
| | - Christine M Kondratick
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States
| | - Maria Spies
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States. https://twitter.com/maria_spies
| | - M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States.
| |
Collapse
|
12
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
13
|
Ho YC, Ku CS, Tsai SS, Shiu JL, Jiang YZ, Miriam HE, Zhang HW, Chen YT, Chiu WT, Chang SB, Shen CH, Myung K, Chi P, Liaw H. PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair. PLoS Genet 2022; 18:e1010545. [PMID: 36512630 PMCID: PMC9794062 DOI: 10.1371/journal.pgen.1010545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/27/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
Replication fork reversal which restrains DNA replication progression is an important protective mechanism in response to replication stress. PARP1 is recruited to stalled forks to restrain DNA replication. However, PARP1 has no helicase activity, and the mechanism through which PARP1 participates in DNA replication restraint remains unclear. Here, we found novel protein-protein interactions between PARP1 and DNA translocases, including HLTF, SHPRH, ZRANB3, and SMARCAL1, with HLTF showing the strongest interaction among these DNA translocases. Although HLTF and SHPRH share structural and functional similarity, it remains unclear whether SHPRH contains DNA translocase activity. We further identified the ability of SHPRH to restrain DNA replication upon replication stress, indicating that SHPRH itself could be a DNA translocase or a helper to facilitate DNA translocation. Although hydroxyurea (HU) and MMS induce different types of replication stress, they both induce common DNA replication restraint mechanisms independent of intra-S phase activation. Our results suggest that the PARP1 facilitates DNA translocase recruitment to damaged forks, preventing fork collapse and facilitating DNA repair.
Collapse
Affiliation(s)
- Yen-Chih Ho
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Chen-Syun Ku
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Siang-Sheng Tsai
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Yi-Zhen Jiang
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
| | - Hui Emmanuela Miriam
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Han-Wen Zhang
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Yen-Tzu Chen
- Department of Public Health & Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City, Taiwan
| | - Kyungjae Myung
- IBS Center for Genomic Integrity, UNIST-gil 50, Ulsan, Republic of Korea
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Kwok ACM, Li C, Lam WT, Wong JTY. Responses of dinoflagellate cells to ultraviolet-C irradiation. Environ Microbiol 2022; 24:5936-5950. [PMID: 35837869 DOI: 10.1111/1462-2920.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/12/2023]
Abstract
Dinoflagellates are important aquatic microbes and major harmful algal bloom (HAB) agents that form invasive species through ship ballast transfer. UV-C installations are recommended for ballast treatments and HAB controls, but there is a lack of knowledge in dinoflagellate responses to UV-C. We report here dose-dependent cell cycle delay and viability loss of dinoflagellate cells irradiated with UV-C, with significant proliferative reduction at 800 Jm-2 doses or higher, but immediate LD50 was in the range of 2400-3200 Jm-2 . At higher dosages, some dinoflagellate cells surprisingly survived after days of recovery incubation, and continued viability loss, with samples exhibiting DNA fragmentations per proliferative resumption. Sequential cell cycle postponements, suggesting DNA damages were repaired over one cell cycle, were revealed with flow cytometric analysis and transcriptomic analysis. Over a sustained level of other DNA damage repair pathways, transcript elevation was observed only for several components of base pair repair and mismatch repair. Cumulatively, our findings demonstrated special DNA damage responses in dinoflagellate cells, which we discussed in relation to their unique chromo-genomic characters, as well as indicating resilience of dinoflagellate cells to UV-C.
Collapse
Affiliation(s)
- Alvin Chun Man Kwok
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chongping Li
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wing Tai Lam
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Joseph Tin Yum Wong
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
15
|
Masłowska KH, Pagès V. Rad5 participates in lesion bypass through its Rev1-binding and ubiquitin ligase domains, but not through its helicase function. Front Mol Biosci 2022; 9:1062027. [DOI: 10.3389/fmolb.2022.1062027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
DNA Damage Tolerance (DDT) functions to bypass replication-blocking lesions and is divided into two distinct pathways: error-prone Translesion Synthesis (TLS) and error-free Damage Avoidance (DA). Rad5 is a multifunctional protein that is involved in these DDT processes. Saccharomyces cerevisiae Rad5 contains three well defined domains: a RING domain that promotes PCNA polyubiquitination, a ssDNA-dependent ATPase/helicase domain, and a Rev1-binding domain. Both the RING domain and the ATPase/helicase domain are conserved in human Rad5 ortholog HLTF. In this study we used domain-specific mutants to address the contribution of each of the Rad5 domains to the lesion tolerance. We demonstrate that the two critical functions of Rad5 during DNA damage tolerance are the activation of template switching through polyubiquitination of PCNA and the recruitment of TLS polymerases, and that loss of one of those functions can be compensated by increased usage of the other. We also show that, unlike previously suggested, the helicase activity does not play any role in lesion tolerance.
Collapse
|
16
|
Reusswig KU, Bittmann J, Peritore M, Courtes M, Pardo B, Wierer M, Mann M, Pfander B. Unscheduled DNA replication in G1 causes genome instability and damage signatures indicative of replication collisions. Nat Commun 2022; 13:7014. [PMID: 36400763 PMCID: PMC9674678 DOI: 10.1038/s41467-022-34379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
DNA replicates once per cell cycle. Interfering with the regulation of DNA replication initiation generates genome instability through over-replication and has been linked to early stages of cancer development. Here, we engineer genetic systems in budding yeast to induce unscheduled replication in a G1-like cell cycle state. Unscheduled G1 replication initiates at canonical S-phase origins. We quantifiy the composition of replisomes in G1- and S-phase and identified firing factors, polymerase α, and histone supply as factors that limit replication outside S-phase. G1 replication per se does not trigger cellular checkpoints. Subsequent replication during S-phase, however, results in over-replication and leads to chromosome breaks and chromosome-wide, strand-biased occurrence of RPA-bound single-stranded DNA, indicating head-to-tail replication collisions as a key mechanism generating genome instability upon G1 replication. Low-level, sporadic induction of G1 replication induces an identical response, indicating findings from synthetic systems are applicable to naturally occurring scenarios of unscheduled replication initiation.
Collapse
Affiliation(s)
- Karl-Uwe Reusswig
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.38142.3c000000041936754XPresent Address: Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Present Address: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Julia Bittmann
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Martina Peritore
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.7551.60000 0000 8983 7915Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Mathilde Courtes
- grid.433120.7Institut de Génétique Humaine (IGH), Université de Montpellier – Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Benjamin Pardo
- grid.433120.7Institut de Génétique Humaine (IGH), Université de Montpellier – Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Michael Wierer
- grid.418615.f0000 0004 0491 845XProteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.5254.60000 0001 0674 042XPresent Address: Proteomics Research Infrastructure, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- grid.418615.f0000 0004 0491 845XProteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Boris Pfander
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.7551.60000 0000 8983 7915Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany ,grid.6190.e0000 0000 8580 3777Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
17
|
Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. J Fungi (Basel) 2022; 8:jof8060621. [PMID: 35736104 PMCID: PMC9225081 DOI: 10.3390/jof8060621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The sliding clamp PCNA is a multifunctional homotrimer mainly linked to DNA replication. During this process, cells must ensure an accurate and complete genome replication when constantly challenged by the presence of DNA lesions. Post-translational modifications of PCNA play a crucial role in channeling DNA damage tolerance (DDT) and repair mechanisms to bypass unrepaired lesions and promote optimal fork replication restart. PCNA ubiquitination processes trigger the following two main DDT sub-pathways: Rad6/Rad18-dependent PCNA monoubiquitination and Ubc13-Mms2/Rad5-mediated PCNA polyubiquitination, promoting error-prone translation synthesis (TLS) or error-free template switch (TS) pathways, respectively. However, the fork protection mechanism leading to TS during fork reversal is still poorly understood. In contrast, PCNA sumoylation impedes the homologous recombination (HR)-mediated salvage recombination (SR) repair pathway. Focusing on Saccharomyces cerevisiae budding yeast, we summarized PCNA related-DDT and repair mechanisms that coordinately sustain genome stability and cell survival. In addition, we compared PCNA sequences from various fungal pathogens, considering recent advances in structural features. Importantly, the identification of PCNA epitopes may lead to potential fungal targets for antifungal drug development.
Collapse
|
18
|
Kramarz K, Dziadkowiec D. Rrp1, Rrp2 and Uls1 - Yeast SWI2/SNF2 DNA dependent translocases in genome stability maintenance. DNA Repair (Amst) 2022; 116:103356. [PMID: 35716431 DOI: 10.1016/j.dnarep.2022.103356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Multiple eukaryotic SWI2/SNF2 DNA translocases safeguard genome integrity, mostly by remodelling nucleosomes, but also by fine-tuning mechanisms of DNA repair, such as homologous recombination. Among this large family there is a unique class of Rad5/16-like enzymes, including Saccharomyces cerevisiae Uls1 and its Schizosaccharomyces pombe orthologues Rrp1 and Rrp2, that have both translocase and E3 ubiquitin ligase activities, and are often directed towards their substrates by SUMOylation. Here we summarize recent advances in understanding how different activities of these yeast proteins jointly contribute to their important roles in replication stress response particularly at centromeres and telomeres. This extends the possible range of functions performed by this class of SNF2 enzymes in human cells involving both their translocase and ubiquitin ligase activities and related to SUMOylation pathways within the nucleus.
Collapse
Affiliation(s)
- Karol Kramarz
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wrocław, Poland.
| | | |
Collapse
|
19
|
Dusek CO, Dash RC, McPherson KS, Calhoun JT, Bezsonova I, Korzhnev DM, Hadden MK. DNA Sequence Specificity Reveals a Role of the HLTF HIRAN Domain in the Recognition of Trinucleotide Repeats. Biochemistry 2022; 61:10.1021/acs.biochem.2c00027. [PMID: 35608245 PMCID: PMC9684356 DOI: 10.1021/acs.biochem.2c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA damage tolerance (DDT) pathways enable cells to cope with a variety of replication blocks that threaten their ability to complete DNA replication. Helicase-like transcription factor (HLTF) plays a central role in the error-free DDT pathway, template switching (TS), by serving as a ubiquitin ligase to polyubiquitinate the DNA sliding clamp PCNA, which promotes TS initiation. HLTF also serves as an ATP-dependent DNA translocase facilitating replication fork remodeling. The HIP116, Rad5p N-terminal (HIRAN) domain of HLTF specifically recognizes the unmodified 3'-end of single-stranded DNA (ssDNA) at stalled replication forks to promote fork regression. Several crystal structures of the HIRAN domain in complex with ssDNA have been reported; however, optimal ssDNA sequences for high-affinity binding with the domain have not been described. Here we elucidated DNA sequence preferences of HLTF HIRAN through systematic studies of its binding to ssDNA substrates using fluorescence polarization assays and a computational analysis of the ssDNA:HIRAN interaction. These studies reveal that the HLTF HIRAN domain preferentially recognizes a (T/C)TG sequence at the 3'-hydroxyl ssDNA end, which occurs in the CTG trinucleotide repeat (TNR) regions that are susceptible to expansion and deletion mutations identified in neuromuscular and neurodegenerative disorders. These findings support a role for HLTF in maintaining the stability of difficult to replicate TNR microsatellite regions.
Collapse
Affiliation(s)
- Christopher O Dusek
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Kerry S McPherson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Jackson T Calhoun
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| |
Collapse
|
20
|
Mechanistic insights into the multiple activities of the Rad5 family of enzymes. J Mol Biol 2022; 434:167581. [DOI: 10.1016/j.jmb.2022.167581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022]
|
21
|
Silva BM, Santos LH, de Almeida JPP, de Magalhães MTQ. Rad5 HIRAN domain: Structural insights into its interaction with ssDNA through molecular modeling approaches. J Biomol Struct Dyn 2022; 41:3062-3075. [PMID: 35249470 DOI: 10.1080/07391102.2022.2045222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Rad5 protein is an SWI/SNF family ubiquitin ligase that contains an N-terminal HIRAN domain and a RING C3HC4 motif. The HIRAN domain is critical for recognition of the stalled replication fork during the replication process and acts as a sensor to initiate the damaged DNA checkpoint. It is a conserved domain widely distributed in eukaryotic organisms and is present in several DNA-binding proteins from all kingdoms. Here we showed that distant species have important differences in key residues that affect affinity for ssDNA. Based on these findings, we hypothesized that different HIRAN domains might affect fork reversal and translesion synthesis through different metabolic processes. To address this question, we predicted the tertiary structure of both yeast and human HIRAN domains using molecular modeling. Structural dynamics experiments showed that the yeast HIRAN domain exhibited higher structural denaturation than its human homolog, although both domains became stable in the presence of ssDNA. Analysis of atomic contacts revealed that a greater number of interactions between the ssDNA nucleotides and the Rad5 domain are electrostatic. Taken together, these results provide new insights into the molecular mechanism of the HIRAN domain of Rad5 and may guide us to further elucidate differences in the ancient eukaryotes HIRAN sequences and their DNA affinity. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bruno M Silva
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil.,Macromolecular Biophysics Laboratory (LBM), Biological Sciences Institute (ICB), Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Lucianna H Santos
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil.,Molecular Modeling and Drug Planning Laboratory, Department of Biochemistry and Immunology, Biological Sciences Institute (ICB), Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - João Paulo P de Almeida
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Mariana T Q de Magalhães
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil.,Macromolecular Biophysics Laboratory (LBM), Biological Sciences Institute (ICB), Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Marie L, Symington LS. Mechanism for inverted-repeat recombination induced by a replication fork barrier. Nat Commun 2022; 13:32. [PMID: 35013185 PMCID: PMC8748988 DOI: 10.1038/s41467-021-27443-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Replication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. To gain insight into the mechanism of recombination between repeated sequences in the context of replication stress, we used a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome. Our study reveals that the replication fork block stimulates a unique recombination pathway dependent on Rad51 strand invasion and Rad52-Rad59 strand annealing activities, Mph1/Rad5 fork remodelers, Mre11/Exo1/Dna2 resection machineries, Rad1-Rad10 nuclease and DNA polymerase δ. Furthermore, we show recombination at stalled replication forks is limited by the Srs2 helicase and Mus81-Mms4/Yen1 nucleases. Physical analysis of the replication-associated recombinants revealed that half are associated with an inversion of sequence between the repeats. Based on our extensive genetic characterization, we propose a model for recombination of closely linked repeats that can robustly generate chromosome rearrangements. Replication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. Here the authors use a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome to support a model for recombination of closely linked repeats at stalled replication forks.
Collapse
Affiliation(s)
- Léa Marie
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA. .,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Toth R, Balogh D, Pinter L, Jaksa G, Szeplaki B, Graf A, Gyorfy Z, Enyedi MZ, Kiss E, Haracska L, Unk I. The Rad5 Helicase and RING Domains Contribute to Genome Stability through their Independent Catalytic Activities. J Mol Biol 2022; 434:167437. [PMID: 34990655 DOI: 10.1016/j.jmb.2021.167437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/08/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022]
Abstract
Genomic stability is compromised by DNA damage that obstructs replication. Rad5 plays a prominent role in DNA damage bypass processes that evolved to ensure the continuation of stalled replication. Like its human orthologs, the HLTF and SHPRH tumor suppressors, yeast Rad5 has a RING domain that supports ubiquitin ligase activity promoting PCNA polyubiquitylation and a helicase domain that in the case of HLTF and Rad5 was shown to exhibit an ATPase-linked replication fork reversal activity. The RING domain is embedded in the helicase domain, confusing their separate investigation and the understanding of the exact role of Rad5 in DNA damage bypass. Particularly, it is still debated whether the helicase domain plays a catalytic or a non-enzymatic role during error-free damage bypass and whether it facilitates a function separately from the RING domain. In this study, through in vivo and in vitro characterization of domain-specific mutants, we delineate the contributions of the two domains to Rad5 function. Yeast genetic experiments and whole-genome sequencing complemented with biochemical assays demonstrate that the ubiquitin ligase and the ATPase-linked activities of Rad5 exhibit independent catalytic activities in facilitating separate pathways during error-free lesion bypass. Our results also provide important insights into the mutagenic role of Rad5 and indicate its tripartite contribution to DNA damage tolerance.
Collapse
Affiliation(s)
- Robert Toth
- DNA Repair Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary; University of Szeged, Doctoral School of Biology, Hungary
| | - David Balogh
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | | | | | | | - Alexandra Graf
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Zsuzsanna Gyorfy
- DNA Repair Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Marton Zs Enyedi
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary; Delta Bio 2000 Ltd., Szeged H-6726, Hungary
| | - Erno Kiss
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Lajos Haracska
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Ildiko Unk
- DNA Repair Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary.
| |
Collapse
|
24
|
PCNA Loaders and Unloaders-One Ring That Rules Them All. Genes (Basel) 2021; 12:genes12111812. [PMID: 34828416 PMCID: PMC8618651 DOI: 10.3390/genes12111812] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
During each cell duplication, the entirety of the genomic DNA in every cell must be accurately and quickly copied. Given the short time available for the chore, the requirement of many proteins, and the daunting amount of DNA present, DNA replication poses a serious challenge to the cell. A high level of coordination between polymerases and other DNA and chromatin-interacting proteins is vital to complete this task. One of the most important proteins for maintaining such coordination is PCNA. PCNA is a multitasking protein that forms a homotrimeric ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and acts as a landing platform for different proteins interacting with DNA and chromatin. Therefore, PCNA is a signaling hub that influences the rate and accuracy of DNA replication, regulates DNA damage repair, controls chromatin formation during the replication, and the proper segregation of the sister chromatids. With so many essential roles, PCNA recruitment and turnover on the chromatin is of utmost importance. Three different, conserved protein complexes are in charge of loading/unloading PCNA onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA during the S-phase. The Ctf18 and Elg1 (ATAD5 in mammalian) proteins form complexes similar to RFC, with particular functions in the cell’s nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast and mammals.
Collapse
|
25
|
Elserafy M, El-Shiekh I, Fleifel D, Atteya R, AlOkda A, Abdrabbou MM, Nasr M, El-Khamisy SF. A role for Rad5 in ribonucleoside monophosphate (rNMP) tolerance. Life Sci Alliance 2021; 4:4/10/e202000966. [PMID: 34407997 PMCID: PMC8380674 DOI: 10.26508/lsa.202000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/24/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022] Open
Abstract
Ribonucleoside incorporation in genomic DNA poses a significant threat to genomic integrity. Here, we describe how cells tolerate this threat and discuss implications for cancer therapeutics. Ribonucleoside monophosphate (rNMP) incorporation in genomic DNA poses a significant threat to genomic integrity. In addition to repair, DNA damage tolerance mechanisms ensure replication progression upon encountering unrepaired lesions. One player in the tolerance mechanism is Rad5, which is an E3 ubiquitin ligase and helicase. Here, we report a new role for yeast Rad5 in tolerating rNMP incorporation, in the absence of the bona fide ribonucleotide excision repair pathway via RNase H2. This role of Rad5 is further highlighted after replication stress induced by hydroxyurea or by increasing rNMP genomic burden using a mutant DNA polymerase (Pol ε - Pol2-M644G). We further demonstrate the importance of the ATPase and ubiquitin ligase domains of Rad5 in rNMP tolerance. These findings suggest a similar role for the human Rad5 homologues helicase-like transcription factor (HLTF) and SNF2 Histone Linker PHD RING Helicase (SHPRH) in rNMP tolerance, which may impact the response of cancer cells to replication stress-inducing therapeutics.
Collapse
Affiliation(s)
- Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Dalia Fleifel
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Abdelrahman AlOkda
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed M Abdrabbou
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mostafa Nasr
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif F El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt .,The Healthy Lifespan Institute and Institute of Neuroscience, School of Bioscience, University of Sheffield, South Yorkshire, UK.,The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, UK.,Center for Genomics, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
26
|
Arbel M, Liefshitz B, Kupiec M. DNA damage bypass pathways and their effect on mutagenesis in yeast. FEMS Microbiol Rev 2021; 45:5896953. [PMID: 32840566 DOI: 10.1093/femsre/fuaa038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
What is the origin of mutations? In contrast to the naïve notion that mutations are unfortunate accidents, genetic research in microorganisms has demonstrated that most mutations are created by genetically encoded error-prone repair mechanisms. However, error-free repair pathways also exist, and it is still unclear how cells decide when to use one repair method or the other. Here, we summarize what is known about the DNA damage tolerance mechanisms (also known as post-replication repair) for perhaps the best-studied organism, the yeast Saccharomyces cerevisiae. We describe the latest research, which has established the existence of at least two error-free and two error-prone inter-related mechanisms of damage tolerance that compete for the handling of spontaneous DNA damage. We explore what is known about the induction of mutations by DNA damage. We point to potential paradoxes and to open questions that still remain unanswered.
Collapse
Affiliation(s)
- Matan Arbel
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Batia Liefshitz
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
27
|
Dieckman L. Something’s gotta give: How PCNA alters its structure in response to mutations and the implications on cellular processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:46-59. [DOI: 10.1016/j.pbiomolbio.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
|
28
|
Guilliam TA. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage. Front Mol Biosci 2021; 8:712971. [PMID: 34295925 PMCID: PMC8290200 DOI: 10.3389/fmolb.2021.712971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis to drive DNA replication fork progression and complete efficient genome duplication. During its advancement along the parental template, each replisome may encounter an array of obstacles including damaged and structured DNA that impede its progression and threaten genome stability. A number of mechanisms exist to permit replisomes to overcome such obstacles, maintain their progression, and prevent fork collapse. A combination of recent advances in structural, biochemical, and single-molecule approaches have illuminated the architecture of the replisome during unperturbed replication, rationalised the impact of impediments to fork progression, and enhanced our understanding of DNA damage tolerance mechanisms and their regulation. This review focusses on these studies to provide an updated overview of the mechanisms that support replisomes to maintain their progression on an imperfect template.
Collapse
Affiliation(s)
- Thomas A. Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
29
|
Wong RP, Petriukov K, Ulrich HD. Daughter-strand gaps in DNA replication - substrates of lesion processing and initiators of distress signalling. DNA Repair (Amst) 2021; 105:103163. [PMID: 34186497 DOI: 10.1016/j.dnarep.2021.103163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
Dealing with DNA lesions during genome replication is particularly challenging because damaged replication templates interfere with the progression of the replicative DNA polymerases and thereby endanger the stability of the replisome. A variety of mechanisms for the recovery of replication forks exist, but both bacteria and eukaryotic cells also have the option of continuing replication downstream of the lesion, leaving behind a daughter-strand gap in the newly synthesized DNA. In this review, we address the significance of these single-stranded DNA structures as sites of DNA damage sensing and processing at a distance from ongoing genome replication. We describe the factors controlling the emergence of daughter-strand gaps from stalled replication intermediates, the benefits and risks of their expansion and repair via translesion synthesis or recombination-mediated template switching, and the mechanisms by which they activate local as well as global replication stress signals. Our growing understanding of daughter-strand gaps not only identifies them as targets of fundamental genome maintenance mechanisms, but also suggests that proper control over their activities has important practical implications for treatment strategies and resistance mechanisms in cancer therapy.
Collapse
Affiliation(s)
- Ronald P Wong
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany
| | - Kirill Petriukov
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany.
| |
Collapse
|
30
|
Frittmann O, Gali VK, Halmai M, Toth R, Gyorfy Z, Balint E, Unk I. The Zn-finger of Saccharomyces cerevisiae Rad18 and its adjacent region mediate interaction with Rad5. G3-GENES GENOMES GENETICS 2021; 11:6133228. [PMID: 33570581 PMCID: PMC8759821 DOI: 10.1093/g3journal/jkab041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 11/13/2022]
Abstract
DNA damages that hinder the movement of the replication complex can ultimately lead to cell death. To avoid that, cells possess several DNA damage bypass mechanisms. The Rad18 ubiquitin ligase controls error-free and mutagenic pathways that help the replication complex to bypass DNA lesions by monoubiquitylating PCNA at stalled replication forks. In Saccharomyces cerevisiae, two of the Rad18 governed pathways are activated by monoubiquitylated PCNA and they involve translesion synthesis polymerases, whereas a third pathway needs subsequent polyubiquitylation of the same PCNA residue by another ubiquitin ligase the Rad5 protein, and it employs template switching. The goal of this study was to dissect the regulatory role of the multidomain Rad18 in DNA damage bypass using a structure-function based approach. Investigating deletion and point mutant RAD18 variants in yeast genetic and yeast two-hybrid assays we show that the Zn-finger of Rad18 mediates its interaction with Rad5, and the N-terminal adjacent region is also necessary for Rad5 binding. Moreover, results of the yeast two-hybrid and in vivo ubiquitylation experiments raise the possibility that direct interaction between Rad18 and Rad5 might not be necessary for the function of the Rad5 dependent pathway. The presented data also reveal that yeast Rad18 uses different domains to mediate its association with itself and with Rad5. Our results contribute to better understanding of the complex machinery of DNA damage bypass pathways.
Collapse
Affiliation(s)
- Orsolya Frittmann
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, H-6720, Hungary
| | - Vamsi K Gali
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| | - Miklos Halmai
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| | - Robert Toth
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| | - Zsuzsanna Gyorfy
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| | - Eva Balint
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| | - Ildiko Unk
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| |
Collapse
|
31
|
Alekseeva EA, Korolev VG. DNA Damage Tolerance in the Yeast Saccharomyces cerevisiae. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Shen M, Dhingra N, Wang Q, Gong X, Xu X, Niu H, Zhao X, Xiang S. Structure of Rad5 provides insights into its role in tolerance to replication stress. Mol Cell Oncol 2021; 8:1889348. [PMID: 33860087 DOI: 10.1080/23723556.2021.1889348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Rad5 family of proteins are critical genome maintenance factors, with helicase-like transcription factor (HLTF) and SNF2 histone linker PHD RING helicase (SHRPH) in humans implicated in several types of cancer. How their multiple activities coordinate has been unclear. Our recent study on Rad5 shed light on this question.
Collapse
Affiliation(s)
- Miaomiao Shen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, P. R. China
| | - Nalini Dhingra
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Quan Wang
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, IN, USA
| | - Xiaoxin Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, P. R. China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, P. R. China
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, IN, USA
| | - Xiaolan Zhao
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, P. R. China
| |
Collapse
|
33
|
DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 2021; 477:2655-2677. [PMID: 32726436 DOI: 10.1042/bcj20190579] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.
Collapse
|
34
|
Shen M, Dhingra N, Wang Q, Cheng C, Zhu S, Tian X, Yu J, Gong X, Li X, Zhang H, Xu X, Zhai L, Xie M, Gao Y, Deng H, He Y, Niu H, Zhao X, Xiang S. Structural basis for the multi-activity factor Rad5 in replication stress tolerance. Nat Commun 2021; 12:321. [PMID: 33436623 PMCID: PMC7804152 DOI: 10.1038/s41467-020-20538-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The yeast protein Rad5 and its orthologs in other eukaryotes promote replication stress tolerance and cell survival using their multiple activities, including ubiquitin ligase, replication fork remodeling and DNA lesion targeting activities. Here, we present the crystal structure of a nearly full-length Rad5 protein. The structure shows three distinct, but well-connected, domains required for Rad5’s activities. The spatial arrangement of these domains suggest that different domains can have autonomous activities but also undergo intrinsic coordination. Moreover, our structural, biochemical and cellular studies demonstrate that Rad5’s HIRAN domain mediates interactions with the DNA metabolism maestro factor PCNA and contributes to its poly-ubiquitination, binds to DNA and contributes to the Rad5-catalyzed replication fork regression, defining a new type of HIRAN domains with multiple activities. Our work provides a framework to understand how Rad5 integrates its various activities in replication stress tolerance. Rad5 is a hub connecting three replication stress tolerance pathways. Here, the authors present the 3.3 Å crystal structure of a N-terminal truncated K.lactis Rad5 construct that reveals the spatial arrangement of the HIRAN, Snf2 and RING domains and structure-guided in vitro and in vivo experiments reveal multiple activities of the yeast Rad5 HIRAN domain among them a role in binding PCNA and supporting its ubiquitination.
Collapse
Affiliation(s)
- Miaomiao Shen
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, P. R. China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070, Tianjin, P. R. China.,The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Nalini Dhingra
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Quan Wang
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Chen Cheng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201210, Shanghai, P. R. China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, P. R. China
| | - Jun Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P. R. China
| | - Xiaoxin Gong
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, P. R. China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070, Tianjin, P. R. China.,The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Xuzhichao Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, P. R. China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070, Tianjin, P. R. China.,The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Hongwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P. R. China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, P. R. China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070, Tianjin, P. R. China.,The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Liting Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P. R. China
| | - Min Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P. R. China
| | - Ying Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongning He
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201210, Shanghai, P. R. China
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Xiaolan Zhao
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, P. R. China. .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070, Tianjin, P. R. China. .,The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070, Tianjin, P. R. China.
| |
Collapse
|
35
|
Conti BA, Smogorzewska A. Mechanisms of direct replication restart at stressed replisomes. DNA Repair (Amst) 2020; 95:102947. [PMID: 32853827 PMCID: PMC7669714 DOI: 10.1016/j.dnarep.2020.102947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/09/2023]
Affiliation(s)
- Brooke A Conti
- Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA.
| |
Collapse
|
36
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
37
|
Kondratick CM, Washington MT, Spies M. Making Choices: DNA Replication Fork Recovery Mechanisms. Semin Cell Dev Biol 2020; 113:27-37. [PMID: 33967572 DOI: 10.1016/j.semcdb.2020.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA replication is laden with obstacles that slow, stall, collapse, and break DNA replication forks. At each obstacle, there is a decision to be made whether to bypass the lesion, repair or restart the damaged fork, or to protect stalled forks from further demise. Each "decision" draws upon multitude of proteins participating in various mechanisms that allow repair and restart of replication forks. Specific functions for many of these proteins have been described and an understanding of how they come together in supporting replication forks is starting to emerge. Many questions, however, remain regarding selection of the mechanisms that enable faithful genome duplication and how "normal" intermediates in these mechanisms are sometimes funneled into "rogue" processes that destabilize the genome and lead to cancer, cell death, and emergence of chemotherapeutic resistance. In this review we will discuss molecular mechanisms of DNA damage bypass and replication fork protection and repair. We will specifically focus on the key players that define which mechanism is employed including: PCNA and its control by posttranslational modifications, translesion synthesis DNA polymerases, molecular motors that catalyze reversal of stalled replication forks, proteins that antagonize fork reversal and protect reversed forks from nucleolytic degradation, and the machinery of homologous recombination that helps to reestablish broken forks. We will also discuss risks to genome integrity inherent in each of these mechanisms.
Collapse
Affiliation(s)
- Christine M Kondratick
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.,Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.,Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
38
|
Joseph SA, Taglialatela A, Leuzzi G, Huang JW, Cuella-Martin R, Ciccia A. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair (Amst) 2020; 95:102943. [PMID: 32971328 DOI: 10.1016/j.dnarep.2020.102943] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Over the course of DNA replication, DNA lesions, transcriptional intermediates and protein-DNA complexes can impair the progression of replication forks, thus resulting in replication stress. Failure to maintain replication fork integrity in response to replication stress leads to genomic instability and predisposes to the development of cancer and other genetic disorders. Multiple DNA damage and repair pathways have evolved to allow completion of DNA replication following replication stress, thus preserving genomic integrity. One of the processes commonly induced in response to replication stress is fork reversal, which consists in the remodeling of stalled replication forks into four-way DNA junctions. In normal conditions, fork reversal slows down replication fork progression to ensure accurate repair of DNA lesions and facilitates replication fork restart once the DNA lesions have been removed. However, in certain pathological situations, such as the deficiency of DNA repair factors that protect regressed forks from nuclease-mediated degradation, fork reversal can cause genomic instability. In this review, we describe the complex molecular mechanisms regulating fork reversal, with a focus on the role of the SNF2-family fork remodelers SMARCAL1, ZRANB3 and HLTF, and highlight the implications of fork reversal for tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Sarah A Joseph
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
39
|
Contractions of the C-Terminal Domain of Saccharomyces cerevisiae Rpb1p Are Mediated by Rad5p. G3-GENES GENOMES GENETICS 2020; 10:2543-2551. [PMID: 32467128 PMCID: PMC7341143 DOI: 10.1534/g3.120.401409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The C-terminal domain (CTD) is an essential domain of the largest subunit of RNA polymerase II, Rpb1p, and is composed of 26 tandem repeats of a seven-amino acid sequence, YSPTSPS. Despite being an essential domain within an essential gene, we have previously demonstrated that the CTD coding region is genetically unstable. Furthermore, yeast with a truncated or mutated CTD sequence are capable of promoting spontaneous genetic expansion or contraction of this coding region to improve fitness. We investigated the mechanism by which the CTD contracts using a tet-off reporter system for RPB1 to monitor genetic instability within the CTD coding region. We report that contractions require the post-replication repair factor Rad5p but, unlike expansions, not the homologous recombination factors Rad51p and Rad52p. Sequence analysis of contraction events reveals that deleted regions are flanked by microhomologies. We also find that G-quadruplex forming sequences predicted by the QGRS Mapper are enriched on the noncoding strand of the CTD compared to the body of RPB1. Formation of G-quadruplexes in the CTD coding region could block the replication fork, necessitating post-replication repair. We propose that contractions of the CTD result when microhomologies misalign during Rad5p-dependent template switching via fork reversal.
Collapse
|
40
|
Berti M, Cortez D, Lopes M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Biol 2020; 21:633-651. [PMID: 32612242 DOI: 10.1038/s41580-020-0257-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/28/2022]
Abstract
Complete and accurate DNA replication requires the progression of replication forks through DNA damage, actively transcribed regions, structured DNA and compact chromatin. Recent studies have revealed a remarkable plasticity of the replication process in dealing with these obstacles, which includes modulation of replication origin firing, of the architecture of replication forks, and of the functional organization of the replication machinery in response to replication stress. However, these specialized mechanisms also expose cells to potentially dangerous transactions while replicating DNA. In this Review, we discuss how replication forks are actively stalled, remodelled, processed, protected and restarted in response to specific types of stress. We also discuss adaptations of the replication machinery and the role of chromatin modifications during these transactions. Finally, we discuss interesting recent data on the relevance of replication fork plasticity to human health, covering its role in tumorigenesis, its crosstalk with innate immunity responses and its potential as an effective cancer therapy target.
Collapse
Affiliation(s)
- Matteo Berti
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
MutSα deficiency increases tolerance to DNA damage in yeast lacking postreplication repair. DNA Repair (Amst) 2020; 91-92:102870. [PMID: 32470850 DOI: 10.1016/j.dnarep.2020.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 11/22/2022]
Abstract
By combining mutations in DNA repair genes, important and unexpected interactions between different repair pathways can be discovered. In this study, we identified a novel link between mismatch repair (MMR) genes and postreplication repair (PRR) in Saccharomyces cerevisiae. Strains lacking Rad5 (HLTF in mammals), a protein important for restarting stalled replication forks in the error-free PRR pathway, were supersensitive to the DNA methylating agent methyl methanesulfonate (MMS). Deletion of the mismatch repair genes, MSH2 or MSH6, which together constitutes the MutSα complex, partially suppressed the MMS super-sensitivity of the rad5Δ strain. Deletion of MSH2 also suppressed the MMS sensitivity of mms2Δ, which acts together with Rad5 in error-free PRR. However, inactivating the mismatch repair genes MSH3 and MLH1 did not suppress rad5Δ, showing that the suppression was specific for disabling MutSα. The partial suppression did not require translesion DNA synthesis (REV1, REV3 or RAD30), base excision repair (MAG1) or homologous recombination (RAD51). Instead, the underlying mechanism was dependent on RAD52 while independent of established pathways involving RAD52, like single-strand annealing and break-induced replication. We propose a Rad5- and Rad51-independent template switch pathway, capable of compensating for the loss of the error-free template-switch subpathway of postreplication repair, triggered by the loss of MutSα.
Collapse
|
42
|
Saccharomyces cerevisiae Mus81-Mms4 prevents accelerated senescence in telomerase-deficient cells. PLoS Genet 2020; 16:e1008816. [PMID: 32469862 PMCID: PMC7286520 DOI: 10.1371/journal.pgen.1008816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/10/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) in human cells is a conserved process that is often activated in telomerase-deficient human cancers. This process exploits components of the recombination machinery to extend telomere ends, thus allowing for increased proliferative potential. Human MUS81 (Mus81 in Saccharomyces cerevisiae) is the catalytic subunit of structure-selective endonucleases involved in recombination and has been implicated in the ALT mechanism. However, it is unclear whether MUS81 activity at the telomere is specific to ALT cells or if it is required for more general aspects of telomere stability. In this study, we use S. cerevisiae to evaluate the contribution of the conserved Mus81-Mms4 endonuclease in telomerase-deficient yeast cells that maintain their telomeres by mechanisms akin to human ALT. Similar to human cells, we find that yeast Mus81 readily localizes to telomeres and its activity is important for viability after initial loss of telomerase. Interestingly, our analysis reveals that yeast Mus81 is not required for the survival of cells undergoing recombination-mediated telomere lengthening, i.e. for ALT itself. Rather we infer from genetic analysis that Mus81-Mms4 facilitates telomere replication during times of telomere instability. Furthermore, combining mus81 mutants with mutants of a yeast telomere replication factor, Rrm3, reveals that the two proteins function in parallel to promote normal growth during times of telomere stress. Combined with previous reports, our data can be interpreted in a consistent model in which both yeast and human MUS81-dependent nucleases participate in the recovery of stalled replication forks within telomeric DNA. Furthermore, this process becomes crucial under conditions of additional replication stress, such as telomere replication in telomerase-deficient cells. Cancer cell divisions require active chromosome lengthening through extension of their highly repetitive ends, called telomeres. This process is accomplished through two main mechanisms: the activity of an RNA-protein complex, telomerase, or through a telomerase-independent process termed alternative lengthening of telomeres (ALT). Human MUS81, the catalytic subunit of a set of structure-selective endonucleases, was found to be essential in human cells undergoing ALT and proposed to be directly involved in telomere lengthening. Using telomerase-deficient Saccharomyces cerevisiae cells as a model for ALT, we tested the hypothesis that Mus81-Mms4, the budding yeast homolog of human MUS81-dependent nucleases, is essential for telomere lengthening as proposed for human cells. Using genetic and molecular assays we confirm that Mus81-Mms4 is involved in telomere metabolism in yeast. However, to our surprise, we find that Mus81-Mms4 is not directly involved in recombination-based mechanisms of telomere lengthening. Rather it appears that Mus81-Mms4 is involved in resolving replication stress at telomeres, which is augmented in cells undergoing telomere instability. This model is consistent with observations in mammalian cells and suggest that cells undergoing telomere shortening experience replication stress at telomeres.
Collapse
|
43
|
Duong PTM, Bui ATN, Kim S, Park H, Seo Y, Choi B. The interaction between ubiquitin and yeast polymerase η C terminus does not require the UBZ domain. FEBS Lett 2020; 594:1726-1737. [DOI: 10.1002/1873-3468.13783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Seong‐Ok Kim
- Department of Chemistry KAIST Daejeon Korea
- Department of Chemistry Center for Nanomaterials and Chemical Reactions Institute of Basic Science KAIST Daejeon Korea
| | | | - Yeon‐Soo Seo
- Department of Biological Sciences KAIST Daejeon Korea
| | | |
Collapse
|
44
|
Control of DNA Damage Bypass by Ubiquitylation of PCNA. Genes (Basel) 2020; 11:genes11020138. [PMID: 32013080 PMCID: PMC7074500 DOI: 10.3390/genes11020138] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/01/2023] Open
Abstract
DNA damage leads to genome instability by interfering with DNA replication. Cells possess several damage bypass pathways that mitigate the effects of DNA damage during replication. These pathways include translesion synthesis and template switching. These pathways are regulated largely through post-translational modifications of proliferating cell nuclear antigen (PCNA), an essential replication accessory factor. Mono-ubiquitylation of PCNA promotes translesion synthesis, and K63-linked poly-ubiquitylation promotes template switching. This article will discuss the mechanisms of how these post-translational modifications of PCNA control these bypass pathways from a structural and biochemical perspective. We will focus on the structure and function of the E3 ubiquitin ligases Rad18 and Rad5 that facilitate the mono-ubiquitylation and poly-ubiquitylation of PCNA, respectively. We conclude by reviewing alternative ideas about how these post-translational modifications of PCNA regulate the assembly of the multi-protein complexes that promote damage bypass pathways.
Collapse
|
45
|
Shin S, Hyun K, Kim J, Hohng S. ATP Binding to Rad5 Initiates Replication Fork Reversal by Inducing the Unwinding of the Leading Arm and the Formation of the Holliday Junction. Cell Rep 2019; 23:1831-1839. [PMID: 29742437 DOI: 10.1016/j.celrep.2018.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 11/30/2022] Open
Abstract
Replication fork reversal is one of the major pathways for reactivating stalled DNA replication. Many enzymes with replication fork reversal activity have DNA-unwinding activity as well, but none of the fork reversal enzymes in the SWI/SNF family shows a separate DNA-unwinding activity, raising the question of how they initiate the remodeling process. Here, we found ATP binding to Rad5 induces the unwinding of the leading arm of the replication fork and proximally positions the leading and lagging arms. This facilitates the spontaneous remodeling of the replication fork into a four-way junction. Once the four-way junction is formed, Rad5 migrates the four-way junction at a speed of 7.1 ± 0.14 nt/s. The 3' end anchoring of the leading arm by Rad5's HIRAN domain is critical for both branch migration and the recovery of the three-way junction, but not for the structural transition to the four-way junction.
Collapse
Affiliation(s)
- Soochul Shin
- Department of Physics and Astronomy, Institute of Applied Physics, National Center of Creative Research Initiatives, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwangbeom Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, National Center of Creative Research Initiatives, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
46
|
Masuda Y, Masutani C. Spatiotemporal regulation of PCNA ubiquitination in damage tolerance pathways. Crit Rev Biochem Mol Biol 2019; 54:418-442. [PMID: 31736364 DOI: 10.1080/10409238.2019.1687420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA is constantly exposed to a wide variety of exogenous and endogenous agents, and most DNA lesions inhibit DNA synthesis. To cope with such problems during replication, cells have molecular mechanisms to resume DNA synthesis in the presence of DNA lesions, which are known as DNA damage tolerance (DDT) pathways. The concept of ubiquitination-mediated regulation of DDT pathways in eukaryotes was established via genetic studies in the yeast Saccharomyces cerevisiae, in which two branches of the DDT pathway are regulated via ubiquitination of proliferating cell nuclear antigen (PCNA): translesion DNA synthesis (TLS) and homology-dependent repair (HDR), which are stimulated by mono- and polyubiquitination of PCNA, respectively. Over the subsequent nearly two decades, significant progress has been made in understanding the mechanisms that regulate DDT pathways in other eukaryotes. Importantly, TLS is intrinsically error-prone because of the miscoding nature of most damaged nucleotides and inaccurate replication of undamaged templates by TLS polymerases (pols), whereas HDR is theoretically error-free because the DNA synthesis is thought to be predominantly performed by pol δ, an accurate replicative DNA pol, using the undamaged sister chromatid as its template. Thus, the regulation of the choice between the TLS and HDR pathways is critical to determine the appropriate biological outcomes caused by DNA damage. In this review, we summarize our current understanding of the species-specific regulatory mechanisms of PCNA ubiquitination and how cells choose between TLS and HDR. We then provide a hypothetical model for the spatiotemporal regulation of DDT pathways in human cells.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
47
|
Gildenberg MS, Washington MT. Conformational flexibility of fork-remodeling helicase Rad5 shown by full-ensemble hybrid methods. PLoS One 2019; 14:e0223875. [PMID: 31626633 PMCID: PMC6799953 DOI: 10.1371/journal.pone.0223875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Several pathways exist to bypass DNA damage during replication. One such pathway is template switching. The Rad5 protein plays two important roles in template switching: it is an E3 ubiquitin ligase that catalyzes PCNA poly-ubiquitylation and it is a helicase that converts replication forks to chicken foot structures. To understand the structure, conformational flexibility, and mechanism of Rad5, we used a full-ensemble hybrid method combining Langevin dynamics simulations and small-angle X-ray scattering. From these studies, we generated the first experimentally validated, high-resolution structural model of Rad5. We found that Rad5 is more compact and less extended than is suggested by its large amount of predicted intrinsic disorder. Thus, Rad5 likely has a novel intra-molecular interaction that limits the range of conformational space it can sample. We provide evidence for a novel interaction between the HIRAN and the helicase domains of Rad5, and we discuss the biological and mechanistic implications of this.
Collapse
Affiliation(s)
- Melissa S. Gildenberg
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
| | - M. Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
48
|
Bryant EE, Šunjevarić I, Berchowitz L, Rothstein R, Reid RJD. Rad5 dysregulation drives hyperactive recombination at replication forks resulting in cisplatin sensitivity and genome instability. Nucleic Acids Res 2019; 47:9144-9159. [PMID: 31350889 PMCID: PMC6753471 DOI: 10.1093/nar/gkz631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/14/2019] [Accepted: 07/25/2019] [Indexed: 01/19/2023] Open
Abstract
The postreplication repair gene, HLTF, is often amplified and overexpressed in cancer. Here we model HLTF dysregulation through the functionally conserved Saccharomyces cerevisiae ortholog, RAD5. Genetic interaction profiling and landscape enrichment analysis of RAD5 overexpression (RAD5OE) reveals requirements for genes involved in recombination, crossover resolution, and DNA replication. While RAD5OE and rad5Δ both cause cisplatin sensitivity and share many genetic interactions, RAD5OE specifically requires crossover resolving genes and drives recombination in a region of repetitive DNA. Remarkably, RAD5OE induced recombination does not require other post-replication repair pathway members, or the PCNA modification sites involved in regulation of this pathway. Instead, the RAD5OE phenotype depends on a conserved domain necessary for binding 3' DNA ends. Analysis of DNA replication intermediates supports a model in which dysregulated Rad5 causes aberrant template switching at replication forks. The direct effect of Rad5 on replication forks in vivo, increased recombination, and cisplatin sensitivity predicts similar consequences for dysregulated HLTF in cancer.
Collapse
Affiliation(s)
- Eric E Bryant
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ivana Šunjevarić
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luke Berchowitz
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rodney Rothstein
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
49
|
Brühl J, Trautwein J, Schäfer A, Linne U, Bouazoune K. The DNA repair protein SHPRH is a nucleosome-stimulated ATPase and a nucleosome-E3 ubiquitin ligase. Epigenetics Chromatin 2019; 12:52. [PMID: 31434570 PMCID: PMC6702750 DOI: 10.1186/s13072-019-0294-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background Maintenance of genome integrity during DNA replication is crucial to the perpetuation of all organisms. In eukaryotes, the bypass of DNA lesions by the replication machinery prevents prolonged stalling of the replication fork, which could otherwise lead to greater damages such as gross chromosomal rearrangements. Bypassing DNA lesions and subsequent repair are accomplished by the activation of DNA damage tolerance pathways such as the template switching (TS) pathway. In yeast, the RAD5 (Radiation-sensitive 5) protein plays a crucial role in initiating the TS pathway by catalyzing the polyubiquitination of PCNA (Proliferation Cell Nuclear Antigen). Likewise, one of the mammalian RAD5-homologs, SHPRH (SNF2, histone linker, PHD, RING, helicase) mediates PCNA polyubiquitination. To date, the study of SHPRH enzymatic functions has been limited to this modification. It is therefore unclear how SHPRH carries out its function in DNA repair. Moreover, how this protein regulates gene transcription at the enzymatic level is also unknown. Results Given that SHPRH harbors domains found in chromatin remodeling proteins, we investigated its biochemical properties in the presence of nucleosomal substrates. We find that SHPRH binds equally well to double-stranded (ds) DNA and to nucleosome core particles, however, like ISWI and CHD-family remodelers, SHPRH shows a strong preference for nucleosomes presenting extranucleosomal DNA. Moreover, nucleosomes but not dsDNA strongly stimulate the ATPase activity of SHPRH. Intriguingly, unlike typically observed with SNF2-family enzymes, ATPase activity does not translate into conventional nucleosome remodeling, under standard assay conditions. To test whether SHPRH can act as a ubiquitin E3 ligase for nucleosomes, we performed a screen using 26 E2-conjugating enzymes. We uncover that SHPRH is a potent nucleosome E3-ubiquitin-ligase that can function with at least 7 different E2s. Mass spectrometry analyses of products generated in the presence of the UBE2D1-conjugating enzyme reveal that SHPRH can catalyze the formation of polyubiquitin linkages that are either branched or associated with the recruitment of DNA repair factors, as well as linkages involved in proteasomal degradation. Conclusions We propose that, in addition to polyubiquitinating PCNA, SHPRH promotes DNA repair or transcriptional regulation in part through chromatin ubiquitination. Our study sets a biochemical framework for studying other RAD5- and RAD16-related protein functions through the ubiquitination of nucleosomes. Electronic supplementary material The online version of this article (10.1186/s13072-019-0294-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joanna Brühl
- Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Jonathan Trautwein
- Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Agnes Schäfer
- Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Uwe Linne
- Fachbereich Chemie und Synmikro, Gerätezentrum Massenspektrometrie und Elementanalaytik, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Karim Bouazoune
- Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany.
| |
Collapse
|
50
|
Masuda Y, Mitsuyuki S, Kanao R, Hishiki A, Hashimoto H, Masutani C. Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway. Nucleic Acids Res 2019; 46:11340-11356. [PMID: 30335157 PMCID: PMC6265450 DOI: 10.1093/nar/gky943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
DNA-damage tolerance protects cells via at least two sub-pathways regulated by proliferating cell nuclear antigen (PCNA) ubiquitination in eukaryotes: translesion DNA synthesis (TLS) and template switching (TS), which are stimulated by mono- and polyubiquitination, respectively. However, how cells choose between the two pathways remains unclear. The regulation of ubiquitin ligases catalyzing polyubiquitination, such as helicase-like transcription factor (HLTF), could play a role in the choice of pathway. Here, we demonstrate that the ligase activity of HLTF is stimulated by double-stranded DNA via HIRAN domain-dependent recruitment to stalled primer ends. Replication factor C (RFC) and PCNA located at primer ends, however, suppress en bloc polyubiquitination in the complex, redirecting toward sequential chain elongation. When PCNA in the complex is monoubiquitinated by RAD6-RAD18, the resulting ubiquitin moiety is immediately polyubiquitinated by coexisting HLTF, indicating a coupling reaction between mono- and polyubiquitination. By contrast, when PCNA was monoubiquitinated in the absence of HLTF, it was not polyubiquitinated by subsequently recruited HLTF unless all three-subunits of PCNA were monoubiquitinated, indicating that the uncoupling reaction specifically occurs on three-subunit-monoubiquitinated PCNA. We discuss the physiological relevance of the different modes of the polyubiquitination to the choice of cells between TLS and TS under different conditions.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Satoshi Mitsuyuki
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Asami Hishiki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8002, Japan
| | - Hiroshi Hashimoto
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8002, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|