1
|
Seely SM, Parajuli NP, De Tarafder A, Ge X, Sanyal S, Gagnon MG. Molecular basis of the pleiotropic effects by the antibiotic amikacin on the ribosome. Nat Commun 2023; 14:4666. [PMID: 37537169 PMCID: PMC10400623 DOI: 10.1038/s41467-023-40416-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Aminoglycosides are a class of antibiotics that bind to ribosomal RNA and exert pleiotropic effects on ribosome function. Amikacin, the semisynthetic derivative of kanamycin, is commonly used for treating severe infections with multidrug-resistant, aerobic Gram-negative bacteria. Amikacin carries the 4-amino-2-hydroxy butyrate (AHB) moiety at the N1 amino group of the central 2-deoxystreptamine (2-DOS) ring, which may confer amikacin a unique ribosome inhibition profile. Here we use in vitro fast kinetics combined with X-ray crystallography and cryo-EM to dissect the mechanisms of ribosome inhibition by amikacin and the parent compound, kanamycin. Amikacin interferes with tRNA translocation, release factor-mediated peptidyl-tRNA hydrolysis, and ribosome recycling, traits attributed to the additional interactions amikacin makes with the decoding center. The binding site in the large ribosomal subunit proximal to the 3'-end of tRNA in the peptidyl (P) site lays the groundwork for rational design of amikacin derivatives with improved antibacterial properties.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Narayan P Parajuli
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Arindam De Tarafder
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
2
|
Guchhait S, Khononov A, Pieńko T, Belakhov V, Baasov T. Balancing Nonsense Mutation Readthrough and Toxicity of Designer Aminoglycosides for Treatment of Genetic Diseases. ACS Med Chem Lett 2023; 14:794-801. [PMID: 37312846 PMCID: PMC10258827 DOI: 10.1021/acsmedchemlett.3c00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/15/2023] Open
Abstract
New derivatives of aminoglycosides with a side chain 1,2-aminoalcohol at the 5" position of ring III were designed, synthesized, and biologically evaluated. The novel lead structure (compound 6), exhibiting substantially enhanced selectivity toward eukaryotic versus prokaryotic ribosome, high readthrough activity, and considerably lower toxicity than the previous lead compounds, was discovered. Balanced readthrough activity and toxicity of 6 were demonstrated in three different nonsense DNA-constructs underlying the genetic diseases, cystic fibrosis and Usher syndrome, and in two different cell lines, baby hamster kidney and human embryonic kidney cells. Molecular dynamics simulations within the A site of the 80S yeast ribosome demonstrated a remarkable kinetic stability of 6, which potentially determines its high readthrough activity.
Collapse
|
3
|
Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria. Nat Commun 2023; 14:918. [PMID: 36806263 PMCID: PMC9938272 DOI: 10.1038/s41467-023-36528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Thermorubin (THB) is a long-known broad-spectrum ribosome-targeting antibiotic, but the molecular mechanism of its action was unclear. Here, our precise fast-kinetics assays in a reconstituted Escherichia coli translation system and 1.96 Å resolution cryo-EM structure of THB-bound 70S ribosome with mRNA and initiator tRNA, independently suggest that THB binding at the intersubunit bridge B2a near decoding center of the ribosome interferes with the binding of A-site substrates aminoacyl-tRNAs and class-I release factors, thereby inhibiting elongation and termination steps of bacterial translation. Furthermore, THB acts as an anti-dissociation agent that tethers the ribosomal subunits and blocks ribosome recycling, subsequently reducing the pool of active ribosomes. Our results show that THB does not inhibit translation initiation as proposed earlier and provide a complete mechanism of how THB perturbs bacterial protein synthesis. This in-depth characterization will hopefully spur efforts toward the design of THB analogs with improved solubility and effectivity against multidrug-resistant bacteria.
Collapse
|
4
|
Susorov D, Egri S, Korostelev AA. Termi-Luc: a versatile assay to monitor full-protein release from ribosomes. RNA (NEW YORK, N.Y.) 2020; 26:2044-2050. [PMID: 32817446 PMCID: PMC7668252 DOI: 10.1261/rna.076588.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 05/05/2023]
Abstract
Termination of protein biosynthesis is an essential step of gene expression, during which a complete functional protein is released from the ribosome. Premature or inefficient termination results in truncated, nonfunctional, or toxic proteins that may cause disease. Indeed, more than 10% of human genetic diseases are caused by nonsense mutations leading to premature termination. Efficient and sensitive approaches are required to study eukaryotic termination mechanisms and to identify potential therapeutics that modulate termination. Canonical radioactivity-based termination assays are complex, report on a short peptide release, and are incompatible with high-throughput screening. Here we describe a robust and simple in vitro assay to study the kinetics of full-protein release. The assay monitors luminescence upon release of nanoluciferase from a mammalian pretermination complex. The assay can be used to record time-progress curves of protein release in a high-throughput format, making it optimal for studying release kinetics and for high-throughput screening for small molecules that modulate the efficiency of termination.
Collapse
Affiliation(s)
- Denis Susorov
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Shawn Egri
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
5
|
Hoernes TP, Clementi N, Juen MA, Shi X, Faserl K, Willi J, Gasser C, Kreutz C, Joseph S, Lindner H, Hüttenhofer A, Erlacher MD. Atomic mutagenesis of stop codon nucleotides reveals the chemical prerequisites for release factor-mediated peptide release. Proc Natl Acad Sci U S A 2018; 115:E382-E389. [PMID: 29298914 PMCID: PMC5776981 DOI: 10.1073/pnas.1714554115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Termination of protein synthesis is triggered by the recognition of a stop codon at the ribosomal A site and is mediated by class I release factors (RFs). Whereas in bacteria, RF1 and RF2 promote termination at UAA/UAG and UAA/UGA stop codons, respectively, eukaryotes only depend on one RF (eRF1) to initiate peptide release at all three stop codons. Based on several structural as well as biochemical studies, interactions between mRNA, tRNA, and rRNA have been proposed to be required for stop codon recognition. In this study, the influence of these interactions was investigated by using chemically modified stop codons. Single functional groups within stop codon nucleotides were substituted to weaken or completely eliminate specific interactions between the respective mRNA and RFs. Our findings provide detailed insight into the recognition mode of bacterial and eukaryotic RFs, thereby revealing the chemical groups of nucleotides that define the identity of stop codons and provide the means to discriminate against noncognate stop codons or UGG sense codons.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Clementi
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jessica Willi
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
6
|
Abstract
Aminoglycosides are well known as antibiotics that target the bacterial ribosome. However, they also impact the eukaryotic translation mechanism to promote read-through of premature termination codons (PTCs) in mRNA. Aminoglycosides are therefore considered as potential therapies for PTC-associated human diseases. Here, we performed a comprehensive study of the mechanism of action of aminoglycosides in eukaryotes by applying a combination of structural and functional approaches. Our findings reveal complex interactions of aminoglycosides with eukaryotic 80S ribosome caused by their multiple binding sites, which lead to inhibition of intersubunit movement within the human ribosome that impact nearly every aspect of protein synthesis. Aminoglycosides are chemically diverse, broad-spectrum antibiotics that target functional centers within the bacterial ribosome to impact all four principle stages (initiation, elongation, termination, and recycling) of the translation mechanism. The propensity of aminoglycosides to induce miscoding errors that suppress the termination of protein synthesis supports their potential as therapeutic interventions in human diseases associated with premature termination codons (PTCs). However, the sites of interaction of aminoglycosides with the eukaryotic ribosome and their modes of action in eukaryotic translation remain largely unexplored. Here, we use the combination of X-ray crystallography and single-molecule FRET analysis to reveal the interactions of distinct classes of aminoglycosides with the 80S eukaryotic ribosome. Crystal structures of the 80S ribosome in complex with paromomycin, geneticin (G418), gentamicin, and TC007, solved at 3.3- to 3.7-Å resolution, reveal multiple aminoglycoside-binding sites within the large and small subunits, wherein the 6′-hydroxyl substituent in ring I serves as a key determinant of binding to the canonical eukaryotic ribosomal decoding center. Multivalent binding interactions with the human ribosome are also evidenced through their capacity to affect large-scale conformational dynamics within the pretranslocation complex that contribute to multiple aspects of the translation mechanism. The distinct impacts of the aminoglycosides examined suggest that their chemical composition and distinct modes of interaction with the ribosome influence PTC read-through efficiency. These findings provide structural and functional insights into aminoglycoside-induced impacts on the eukaryotic ribosome and implicate pleiotropic mechanisms of action beyond decoding.
Collapse
|
7
|
Identification of potential allosteric communication pathways between functional sites of the bacterial ribosome by graph and elastic network models. Biochim Biophys Acta Gen Subj 2017; 1861:3131-3141. [PMID: 28917952 DOI: 10.1016/j.bbagen.2017.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Accumulated evidence indicates that bacterial ribosome employs allostery throughout its structure for protein synthesis. The nature of the allosteric communication between remote functional sites remains unclear, but the contact topology and dynamics of residues may play role in transmission of a perturbation to distant sites. METHODS/RESULTS We employ two computationally efficient approaches - graph and elastic network modeling to gain insights about the allosteric communication in ribosome. Using graph representation of the structure, we perform k-shortest pathways analysis between peptidyl transferase center-ribosomal tunnel, decoding center-peptidyl transferase center - previously reported functional sites having allosteric communication. Detailed analysis on intact structures points to common and alternative shortest pathways preferred by different states of translation. All shortest pathways capture drug target sites and allosterically important regions. Elastic network model further reveals that residues along all pathways have the ability of quickly establishing pair-wise communication and to help the propagation of a perturbation in long-ranges during functional motions of the complex. CONCLUSIONS Contact topology and inherent dynamics of ribosome configure potential communication pathways between functional sites in different translation states. Inter-subunit bridges B2a, B3 and P-tRNA come forward for their high potential in assisting allostery during translation. Especially B3 emerges as a potential druggable site. GENERAL SIGNIFICANCE This study indicates that the ribosome topology forms a basis for allosteric communication, which can be disrupted by novel drugs to kill drug-resistant bacteria. Our computationally efficient approach not only overlaps with experimental evidence on allosteric regulation in ribosome but also proposes new druggable sites.
Collapse
|
8
|
Fan Y, Evans CR, Barber KW, Banerjee K, Weiss KJ, Margolin W, Igoshin OA, Rinehart J, Ling J. Heterogeneity of Stop Codon Readthrough in Single Bacterial Cells and Implications for Population Fitness. Mol Cell 2017; 67:826-836.e5. [PMID: 28781237 PMCID: PMC5591071 DOI: 10.1016/j.molcel.2017.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/22/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022]
Abstract
Gene expression noise (heterogeneity) leads to phenotypic diversity among isogenic individual cells. Our current understanding of gene expression noise is mostly limited to transcription, as separating translational noise from transcriptional noise has been challenging. It also remains unclear how translational heterogeneity originates. Using a transcription-normalized reporter system, we discovered that stop codon readthrough is heterogeneous among single cells, and individual cells with higher UGA readthrough grow faster from stationary phase. Our work also revealed that individual cells with lower protein synthesis levels exhibited higher UGA readthrough, which was confirmed with ribosome-targeting antibiotics (e.g., chloramphenicol). Further experiments and mathematical modeling suggest that varied competition between ternary complexes and release factors perturbs the UGA readthrough level. Our results indicate that fluctuations in the concentrations of translational components lead to UGA readthrough heterogeneity among single cells, which enhances phenotypic diversity of the genetically identical population and facilitates its adaptation to changing environments.
Collapse
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Codon, Terminator
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Reporter
- Genetic Fitness
- Genotype
- Kinetics
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Microscopy, Fluorescence
- Models, Genetic
- One-Carbon Group Transferases
- Phenotype
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Transcription, Genetic
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Yongqiang Fan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Christopher R Evans
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Karl W Barber
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Kinshuk Banerjee
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Kalyn J Weiss
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Urakov VN, Mitkevich OV, Safenkova IV, Ter‐Avanesyan MD. Ribosome‐bound Pub1 modulates stop codon decoding during translation termination in yeast. FEBS J 2017; 284:1914-1930. [DOI: 10.1111/febs.14099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Valery N. Urakov
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Olga V. Mitkevich
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Irina V. Safenkova
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Michael D. Ter‐Avanesyan
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| |
Collapse
|
10
|
Reynolds NM, Vargas-Rodriguez O, Söll D, Crnković A. The central role of tRNA in genetic code expansion. Biochim Biophys Acta Gen Subj 2017; 1861:3001-3008. [PMID: 28323071 DOI: 10.1016/j.bbagen.2017.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The development of orthogonal translation systems (OTSs) for genetic code expansion (GCE) has allowed for the incorporation of a diverse array of non-canonical amino acids (ncAA) into proteins. Transfer RNA, the central molecule in the translation of the genetic message into proteins, plays a significant role in the efficiency of ncAA incorporation. SCOPE OF REVIEW Here we review the biochemical basis of OTSs for genetic code expansion. We focus on the role of tRNA and discuss strategies used to engineer tRNA for the improvement of ncAA incorporation into proteins. MAJOR CONCLUSIONS The engineering of orthogonal tRNAs for GCE has significantly improved the incorporation of ncAAs. However, there are numerous unintended consequences of orthogonal tRNA engineering that cannot be predicted ab initio. GENERAL SIGNIFICANCE Genetic code expansion has allowed for the incorporation of a great diversity of ncAAs and novel chemistries into proteins, making significant contributions to our understanding of biological molecules and interactions. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
11
|
Zeng F, Chen Y, Remis J, Shekhar M, Phillips JC, Tajkhorshid E, Jin H. Structural basis of co-translational quality control by ArfA and RF2 bound to ribosome. Nature 2017; 541:554-557. [PMID: 28077875 DOI: 10.1038/nature21053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/14/2016] [Indexed: 01/26/2023]
Abstract
Quality control mechanisms intervene appropriately when defective translation events occur, in order to preserve the integrity of protein synthesis. Rescue of ribosomes translating on messenger RNAs that lack stop codons is one of the co-translational quality control pathways. In many bacteria, ArfA recognizes stalled ribosomes and recruits the release factor RF2, which catalyses the termination of protein synthesis. Although an induced-fit mechanism of nonstop mRNA surveillance mediated by ArfA and RF2 has been reported, the molecular interaction between ArfA and RF2 in the ribosome that is responsible for the mechanism is unknown. Here we report an electron cryo-microscopy structure of ArfA and RF2 in complex with the 70S ribosome bound to a nonstop mRNA. The structure, which is consistent with our kinetic and biochemical data, reveals the molecular interactions that enable ArfA to specifically recruit RF2, not RF1, into the ribosome and to enable RF2 to release the truncated protein product in this co-translational quality control pathway. The positively charged C-terminal domain of ArfA anchors in the mRNA entry channel of the ribosome. Furthermore, binding of ArfA and RF2 induces conformational changes in the ribosomal decoding centre that are similar to those seen in other protein-involved decoding processes. Specific interactions between residues in the N-terminal domain of ArfA and RF2 help RF2 to adopt a catalytically competent conformation for peptide release. Our findings provide a framework for understanding recognition of the translational state of the ribosome by new proteins, and expand our knowledge of the decoding potential of the ribosome.
Collapse
Affiliation(s)
- Fuxing Zeng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yanbo Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jonathan Remis
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500, USA
| | - Mrinal Shekhar
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - James C Phillips
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
12
|
Wang J, Dong H, Chionh YH, McBee ME, Sirirungruang S, Cunningham RP, Shi PY, Dedon PC. The role of sequence context, nucleotide pool balance and stress in 2'-deoxynucleotide misincorporation in viral, bacterial and mammalian RNA. Nucleic Acids Res 2016; 44:8962-8975. [PMID: 27365049 PMCID: PMC5062971 DOI: 10.1093/nar/gkw572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/06/2016] [Indexed: 11/16/2022] Open
Abstract
The misincorporation of 2′-deoxyribonucleotides (dNs) into RNA has important implications for the function of non-coding RNAs, the translational fidelity of coding RNAs and the mutagenic evolution of viral RNA genomes. However, quantitative appreciation for the degree to which dN misincorporation occurs is limited by the lack of analytical tools. Here, we report a method to hydrolyze RNA to release 2′-deoxyribonucleotide-ribonucleotide pairs (dNrN) that are then quantified by chromatography-coupled mass spectrometry (LC-MS). Using this platform, we found misincorporated dNs occurring at 1 per 103 to 105 ribonucleotide (nt) in mRNA, rRNAs and tRNA in human cells, Escherichia coli, Saccharomyces cerevisiae and, most abundantly, in the RNA genome of dengue virus. The frequency of dNs varied widely among organisms and sequence contexts, and partly reflected the in vitro discrimination efficiencies of different RNA polymerases against 2′-deoxyribonucleoside 5′-triphosphates (dNTPs). Further, we demonstrate a strong link between dN frequencies in RNA and the balance of dNTPs and ribonucleoside 5′-triphosphates (rNTPs) in the cellular pool, with significant stress-induced variation of dN incorporation. Potential implications of dNs in RNA are discussed, including the possibilities of dN incorporation in RNA as a contributing factor in viral evolution and human disease, and as a host immune defense mechanism against viral infections.
Collapse
Affiliation(s)
- Jin Wang
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Yok Hian Chionh
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602 Department of Microbiology & Immunology Programme, Center for Life Sciences, National University of Singapore, Singapore 117545
| | - Megan E McBee
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Sasilada Sirirungruang
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Richard P Cunningham
- Department of Biological Sciences, The University at Albany, Albany, NY 12222, USA
| | - Pei-Yong Shi
- Departments of Biochemistry & Molecular Biology and Phamarcology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Peter C Dedon
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602 Department of Biological Engineering & Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
13
|
Zeng F, Jin H. Peptide release promoted by methylated RF2 and ArfA in nonstop translation is achieved by an induced-fit mechanism. RNA (NEW YORK, N.Y.) 2016; 22:49-60. [PMID: 26554029 PMCID: PMC4691834 DOI: 10.1261/rna.053082.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/01/2015] [Indexed: 05/27/2023]
Abstract
Here we report that the specificity of peptide release in the ribosome on a nonstop mRNA by ArfA and RF2 is achieved by an induced-fit mechanism. Using RF2 that is methylated on the glutamine of its GGQ motif (RF2(m)), we show that methylation substantially increases the rate of ArfA/RF2-catalyzed peptide release on a nonstop mRNA that does not occupy the ribosomal A site, but has only a modest effect on k(cat) by the same proteins on longer nonstop mRNAs occupying the A site of the mRNA channel in the ribosome. Our data suggest that enhancement in the kcat of peptide release by ArfA and RF2 under the cognate decoding condition is the result of favorable conformational changes in the nonstop complex. We demonstrate a shared mechanism between canonical and nonstop termination, supported by similarities in the kinetic mechanisms in antibiotic inhibition and methylation-correlated enhancement in the rate of peptide release. Despite these similarities, our data suggest that nonstop termination differs from canonical pathway in the downstream event of recycling.
Collapse
Affiliation(s)
- Fuxing Zeng
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hong Jin
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
14
|
|
15
|
Saito K, Ito K. Genetic analysis of L123 of the tRNA-mimicking eukaryote release factor eRF1, an amino acid residue critical for discrimination of stop codons. Nucleic Acids Res 2015; 43:4591-601. [PMID: 25897120 PMCID: PMC4482090 DOI: 10.1093/nar/gkv376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the tRNA-mimicking polypeptide-chain release factor, eRF1, decodes stop codons on the ribosome in a complex with eRF3; this complex exhibits striking structural similarity to the tRNA–eEF1A–GTP complex. Although amino acid residues or motifs of eRF1 that are critical for stop codon discrimination have been identified, the details of the molecular mechanisms involved in the function of the ribosomal decoding site remain obscure. Here, we report analyses of the position-123 amino acid of eRF1 (L123 in Saccharomyces cerevisiae eRF1), a residue that is phylogenetically conserved among species with canonical and variant genetic codes. In vivo readthrough efficiency analysis and genetic growth complementation analysis of the residue-123 systematic mutants suggested that this amino acid functions in stop codon discrimination in a manner coupled with eRF3 binding, and distinctive from previously reported adjacent residues. Furthermore, aminoglycoside antibiotic sensitivity analysis and ribosomal docking modeling of eRF1 in a quasi-A/T state suggested a functional interaction between the side chain of L123 and ribosomal residues critical for codon recognition in the decoding site, as a molecular explanation for coupling with eRF3. Our results provide insights into the molecular mechanisms underlying stop codon discrimination by a tRNA-mimicking protein on the ribosome.
Collapse
Affiliation(s)
- Kazuki Saito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| |
Collapse
|
16
|
Indrisiunaite G, Pavlov MY, Heurgué-Hamard V, Ehrenberg M. On the pH dependence of class-1 RF-dependent termination of mRNA translation. J Mol Biol 2015; 427:1848-60. [PMID: 25619162 DOI: 10.1016/j.jmb.2015.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
Abstract
We have studied the pH dependence of the rate of termination of bacterial protein synthesis catalyzed by a class-1 release factor (RF1 or RF2). We used a classical quench-flow technique and a newly developed stopped-flow technique that relies on the use of fluorescently labeled peptides. We found the termination rate to increase with increasing pH and, eventually, to saturate at about 70 s(-1) with an apparent pKa value of about 7.6. From our data, we suggest that class-1 RF termination is rate limited by the chemistry of ester bond hydrolysis at low pH and by a stop-codon-dependent and pH-independent conformational change of RFs at high pH. We propose that RF-dependent termination depends on the participation of a hydroxide ion rather than a water molecule in the hydrolysis of the ester bond between the P-site tRNA and its peptide chain. We provide a simple explanation for why the rate of termination saturated at high pH in our experiments but not in those of others.
Collapse
Affiliation(s)
- Gabriele Indrisiunaite
- Department of Cell and Molecular Biology, Uppsala University, Biomedicinskt Centrum, Box 596, 75124 Uppsala, Sweden
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Uppsala University, Biomedicinskt Centrum, Box 596, 75124 Uppsala, Sweden
| | - Valérie Heurgué-Hamard
- Centre National de la Recherche Scientifique, FRE3630, University Paris Diderot Sorbonne Paris Cité Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Biomedicinskt Centrum, Box 596, 75124 Uppsala, Sweden.
| |
Collapse
|
17
|
Petropoulos AD, McDonald ME, Green R, Zaher HS. Distinct roles for release factor 1 and release factor 2 in translational quality control. J Biol Chem 2014; 289:17589-96. [PMID: 24798339 DOI: 10.1074/jbc.m114.564989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, stop codons are recognized by two similar class 1 release factors, release factor 1 (RF1) and release factor 2 (RF2). Normally, during termination, the class 2 release factor 3 (RF3), a GTPase, functions downstream of peptide release where it accelerates the dissociation of RF1/RF2 prior to ribosome recycling. In addition to their canonical function in termination, both classes of release factor are also involved in a post peptidyl transfer quality control (post PT QC) mechanism where the termination factors recognize mismatched (i.e. error-containing) ribosome complexes and promote premature termination. Here, using a well defined in vitro system, we explored the role of release factors in canonical termination and post PT QC. As reported previously, during canonical termination, RF1 and RF2 recognize stop codons in a similar manner, and RF3 accelerates their rate of dissociation. During post PT QC, only RF2 (and not RF1) effectively binds to mismatched ribosome complexes; and whereas the addition of RF3 to RF2 increased its rate of release on mismatched complexes, the addition of RF3 to RF1 inhibited its rate of release but increased the rate of peptidyl-tRNA dissociation. Our data strongly suggest that RF2, in addition to its primary role in peptide release, functions as the principle factor for post PT QC.
Collapse
Affiliation(s)
- Alexandros D Petropoulos
- From the Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Megan E McDonald
- From the Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Rachel Green
- From the Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Hani S Zaher
- the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
18
|
Shalev M, Baasov T. When Proteins Start to Make Sense: Fine-tuning Aminoglycosides for PTC Suppression Therapy. MEDCHEMCOMM 2014; 5:1092-1105. [PMID: 25147726 DOI: 10.1039/c4md00081a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aminoglycosides (AGs) are highly potent antibacterial agents, which are known to exert their deleterious effects on bacterial cells by interfering with the translation process, leading to aberrant protein synthesis that usually results in cell death. Nearly 45 years ago, AGs were shown to induce read-through activity in prokaryotic systems by selectively encoding tRNA molecules at premature termination codon (PTC) positions; resulting in the generation of full length functional proteins. However, only in the last 20 years this ability has been demonstrated in eukaryotic systems, highlighting their potential as therapeutic agents to treat PTC induced genetic disorders. Despite the great potential, AGs use in these manners is quite restricted due to relatively high toxicity values observed upon their administration. Over the last few years several synthetic derivatives were developed to overcome some of the enhanced toxicity issues, while in parallel showed significantly improved PTC suppression activity in various in-vitro, ex-vivo and in-vivo models of a variety of different diseases models underling by PTC mutations. Although these derivatives hold great promise to serve as therapeutic candidates they also demonstrate the necessity to further understand the molecular mechanisms of which AGs confer their biological activity in eukaryotic cells for further rational drug design. Recent achievements in structural research shed light on AGs mechanism of action and opened a new avenue in the development of new and improved therapeutic derivatives. The following manuscript highlights these accomplishments and summarizes their contributions to the state of art rational drug design.
Collapse
Affiliation(s)
- Moran Shalev
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Timor Baasov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
19
|
Jiang J, Sakakibara Y, Chow CS. Helix 69: A Multitasking RNA Motif as a Novel Drug Target. Isr J Chem 2013. [DOI: 10.1002/ijch.201300012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Khade PK, Shi X, Joseph S. Steric complementarity in the decoding center is important for tRNA selection by the ribosome. J Mol Biol 2013; 425:3778-89. [PMID: 23542008 DOI: 10.1016/j.jmb.2013.02.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 11/27/2022]
Abstract
Accurate tRNA selection by the ribosome is essential for the synthesis of functional proteins. Previous structural studies indicated that the ribosome distinguishes between cognate and near-cognate tRNAs by monitoring the geometry of the codon-anticodon helix in the decoding center using the universally conserved 16S ribosomal RNA bases G530, A1492 and A1493. These bases form hydrogen bonds with the 2'-hydroxyl groups of the codon-anticodon helix, which are expected to be disrupted with a near-cognate codon-anticodon helix. However, a recent structural study showed that G530, A1492 and A1493 form hydrogen bonds in a manner identical with that of both cognate and near-cognate codon-anticodon helices. To understand how the ribosome discriminates between cognate and near-cognate tRNAs, we made 2'-deoxynucleotide and 2'-fluoro substituted mRNAs, which disrupt the hydrogen bonds between the A site codon and G530, A1492 and A1493. Our results show that multiple 2'-deoxynucleotide substitutions in the mRNA substantially inhibit tRNA selection, whereas multiple 2'-fluoro substitutions in the mRNA have only modest effects on tRNA selection. Furthermore, the miscoding antibiotics paromomycin and streptomycin rescue the defects in tRNA selection with the multiple 2'-deoxynucleotide substituted mRNA. These results suggest that steric complementarity in the decoding center is more important than the hydrogen bonds between the A site codon and G530, A1492 and A1493 for tRNA selection.
Collapse
Affiliation(s)
- Prashant K Khade
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| | | | | |
Collapse
|
21
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Quantum Mechanical Study on the Mechanism of Peptide Release in the Ribosome. J Phys Chem B 2013; 117:3503-15. [DOI: 10.1021/jp3110248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Antoni Oliva
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
22
|
Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol 2012; 4:a013706. [PMID: 22751155 DOI: 10.1101/cshperspect.a013706] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.
Collapse
Affiliation(s)
- Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
23
|
Sakakibara Y, Chow CS. Role of pseudouridine in structural rearrangements of helix 69 during bacterial ribosome assembly. ACS Chem Biol 2012; 7:871-8. [PMID: 22324880 DOI: 10.1021/cb200497q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As part of the central core domain of the ribosome, helix 69 of 23S rRNA participates in an important intersubunit bridge and contacts several protein translation factors. Helix 69 is believed to play key roles in protein synthesis. Even though high-resolution crystal structures of the ribosome exist, the solution dynamics and roles of individual nucleotides in H69 are still not well-defined. To better understand the influence of modified nucleotides, specifically pseudouridine, on the multiple conformational states of helix 69 in the context of 50S subunits and 70S ribosomes, chemical probing analyses were performed on wild-type and pseudouridine-deficient bacterial ribosomes. Local structural rearrangements of helix 69 upon ribosomal subunit association and interactions with its partner, helix 44 of 16S rRNA, are observed. The helix 69 conformational states are also magnesium-dependent. The probing data presented in this study provide insight into the functional role of helix 69 dynamics and regulation of these conformational states by post-transcriptional pseudouridine modification.
Collapse
Affiliation(s)
- Yogo Sakakibara
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - Christine S. Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
24
|
Quality control of mRNA decoding on the bacterial ribosome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:95-128. [PMID: 22243582 DOI: 10.1016/b978-0-12-386497-0.00003-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ribosome is a major player in providing accurate gene expression in the cell. The fidelity of substrate selection is tightly controlled throughout the translation process, including the initiation, elongation, and termination phases. Although each phase of translation involves different players, that is, translation factors and tRNAs, the general principles of selection appear surprisingly similar for very different substrates. At essentially every step of translation, differences in complex stabilities as well as induced fit are sources of selectivity. A view starts to emerge of how the ribosome uses local and global conformational switches to govern induced-fit mechanisms that ensure fidelity. This review describes the mechanisms of tRNA and mRNA selection at all phases of protein synthesis in bacteria.
Collapse
|
25
|
Zaher HS, Green R. A primary role for release factor 3 in quality control during translation elongation in Escherichia coli. Cell 2011; 147:396-408. [PMID: 22000017 DOI: 10.1016/j.cell.2011.08.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/10/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022]
Abstract
Release factor 3 (RF3) is a GTPase found in a broad range of bacteria where it is thought to play a critical "recycling" role in translation by facilitating the removal of class 1 release factors (RF1 and RF2) from the ribosome following peptide release. More recently, RF3 was shown in vitro to stimulate a retrospective editing reaction on the bacterial ribosome wherein peptides carrying mistakes are prematurely terminated during protein synthesis. Here, we examine the role of RF3 in the bacterial cell and show that the deletion of this gene sensitizes cells to other perturbations that reduce the overall fidelity of protein synthesis. We further document substantial effects on mRNA stability and protein expression using reporter systems, native mRNAs and proteins. We conclude that RF3 plays a primary role in vivo in specifying the fidelity of protein synthesis thus impacting overall protein quantity and quality.
Collapse
Affiliation(s)
- Hani S Zaher
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
26
|
Korostelev AA. Structural aspects of translation termination on the ribosome. RNA (NEW YORK, N.Y.) 2011; 17:1409-1421. [PMID: 21700725 PMCID: PMC3153966 DOI: 10.1261/rna.2733411] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Translation of genetic information encoded in messenger RNAs into polypeptide sequences is carried out by ribosomes in all organisms. When a full protein is synthesized, a stop codon positioned in the ribosomal A site signals termination of translation and protein release. Translation termination depends on class I release factors. Recently, atomic-resolution crystal structures were determined for bacterial 70S ribosome termination complexes bound with release factors RF1 or RF2. In combination with recent biochemical studies, the structures resolve long-standing questions about translation termination. They bring insights into the mechanisms of recognition of all three stop codons, peptidyl-tRNA hydrolysis, and coordination of stop-codon recognition with peptidyl-tRNA hydrolysis. In this review, the structural aspects of these mechanisms are discussed.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
27
|
Ortiz-Meoz RF, Green R. Helix 69 is key for uniformity during substrate selection on the ribosome. J Biol Chem 2011; 286:25604-10. [PMID: 21622559 DOI: 10.1074/jbc.m111.256255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural studies of ribosome complexes with bound tRNAs and release factors show considerable contacts between these factors and helix 69 (H69) of 23 S rRNA. Although biochemical and genetic studies have provided some general insights into the role of H69 in tRNA and RF selection, a detailed understanding of these contributions remains elusive. Here, we present a pre- steady-state kinetic analysis establishing that two distinct regions of H69 make critical contributions to substrate selection. The loop of H69 (A1913) forms contacts necessary for the efficient accommodation of a subset of natural tRNA species, whereas the base of the stem (G1922) is specifically critical for UGA codon recognition by the class 1 release factor RF2. These data define a broad and critical role for this centrally located intersubunit helix (H69) in accurate and efficient substrate recognition by the ribosome.
Collapse
Affiliation(s)
- Rodrigo F Ortiz-Meoz
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
28
|
Klaholz BP. Molecular recognition and catalysis in translation termination complexes. Trends Biochem Sci 2011; 36:282-92. [DOI: 10.1016/j.tibs.2011.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/16/2022]
|
29
|
Field A, Hetrick B, Mathew M, Joseph S. Histidine 197 in release factor 1 is essential for a site binding and peptide release. Biochemistry 2010; 49:9385-90. [PMID: 20873815 DOI: 10.1021/bi1012047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class I peptide release factors 1 and 2 (RF1 and RF2, respectively) recognize the stop codons in the ribosomal decoding center and catalyze peptidyl-tRNA hydrolysis. High-fidelity stop codon recognition by these release factors is essential for accurate peptide synthesis and ribosome recycling. X-ray crystal structures of RF1 and RF2 bound to the ribosome have identified residues in the mRNA-protein interface that appear to be critical for stop codon recognition. Especially interesting is a conserved histidine in all bacterial class I release factors that forms a stacking interaction with the second base of the stop codon. Here we analyzed the functional significance of this conserved histidine (position 197 in Escherichia coli) of RF1 by point mutagenesis to alanine. Equilibrium binding studies and transient-state kinetic analysis have shown that the histidine is essential for binding with high affinity to the ribosome. Furthermore, analysis of the binding data indicates a conformational change within the RF1·ribosome complex that results in a more tightly bound state. The rate of peptidyl-tRNA hydrolysis was also reduced significantly, more than the binding data would suggest, implying a defect in the orientation of the GGQ domain without the histidine residue.
Collapse
Affiliation(s)
- Andrew Field
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| | | | | | | |
Collapse
|
30
|
Zaher HS, Green R. Kinetic basis for global loss of fidelity arising from mismatches in the P-site codon:anticodon helix. RNA (NEW YORK, N.Y.) 2010; 16:1980-1989. [PMID: 20724456 PMCID: PMC2941106 DOI: 10.1261/rna.2241810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 07/16/2010] [Indexed: 05/27/2023]
Abstract
Faithful decoding of the genetic information by the ribosome relies on kinetically driven mechanisms that promote selection of cognate substrates during elongation. Recently, we have shown that in addition to these kinetically driven mechanisms, the ribosome possesses a post peptidyl transfer quality control system that retrospectively monitors the codon-anticodon interaction in the P site, triggering substantial losses in the specificity of the A site during subsequent tRNA and RF selection when a mistake has occurred. Here, we report a detailed kinetic analysis of tRNA selection in the context of a mismatched P-site codon:anticodon interaction. We observe pleiotropic effects of a P-site mismatch on tRNA selection, such that near-cognate tRNA is processed by the ribosome almost as efficiently as cognate. In particular, after a miscoding event, near-cognate codon-anticodon complexes are stabilized on the ribosome to an extent similar to that observed for cognate ones. Moreover, the two observed forward rates of GTPase activation and accommodation are greatly accelerated (∼10-fold) for near-cognate tRNAs. Because the ensemble of effects of a mismatched P site on substrate selection were found to be different from those reported for other ribosomal perturbations and miscoding agents, we propose that the structural integrity of the mRNA-tRNA helix in the P site provides a distinct molecular switch that dictates the specificity of the A site.
Collapse
Affiliation(s)
- Hani S Zaher
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
31
|
Kramer EB, Vallabhaneni H, Mayer LM, Farabaugh PJ. A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2010; 16:1797-808. [PMID: 20651030 PMCID: PMC2924539 DOI: 10.1261/rna.2201210] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The process of protein synthesis must be sufficiently rapid and sufficiently accurate to support continued cellular growth. Failure in speed or accuracy can have dire consequences, including disease in humans. Most estimates of the accuracy come from studies of bacterial systems, principally Escherichia coli, and have involved incomplete analysis of possible errors. We recently used a highly quantitative system to measure the frequency of all types of misreading errors by a single tRNA in E. coli. That study found a wide variation in error frequencies among codons; a major factor causing that variation is competition between the correct (cognate) and incorrect (near-cognate) aminoacyl-tRNAs for the mutant codon. Here we extend that analysis to measure the frequency of missense errors by two tRNAs in a eukaryote, the yeast Saccharomyces cerevisiae. The data show that in yeast errors vary by codon from a low of 4 x 10(-5) to a high of 6.9 x 10(-4) per codon and that error frequency is in general about threefold lower than in E. coli, which may suggest that yeast has additional mechanisms that reduce missense errors. Error rate again is strongly influenced by tRNA competition. Surprisingly, missense errors involving wobble position mispairing were much less frequent in S. cerevisiae than in E. coli. Furthermore, the error-inducing aminoglycoside antibiotic, paromomycin, which stimulates errors on all error-prone codons in E. coli, has a more codon-specific effect in yeast.
Collapse
Affiliation(s)
- Emily B Kramer
- Program in Molecular and Cell Biology, Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
32
|
Zaher HS, Green R. Hyperaccurate and error-prone ribosomes exploit distinct mechanisms during tRNA selection. Mol Cell 2010; 39:110-20. [PMID: 20603079 DOI: 10.1016/j.molcel.2010.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/15/2010] [Accepted: 04/28/2010] [Indexed: 11/18/2022]
Abstract
Escherichia coli strains displaying hyperaccurate (restrictive) and ribosomal ambiguity (ram) phenotypes have long been associated with alterations in rpsL and rpsD/rpsE, respectively. Crystallographic evidence shows the ribosomal proteins S12 and S4/S5 (corresponding to these genes) to be located in separate regions of the small ribosomal subunit that are important for domain closure thought to take place during tRNA selection. Mechanistically, the process of tRNA selection is separated into two distinct phases, initial selection and proofreading. Here, we explore the effects of mutations in rpsL and rpsD on these steps. Surprisingly, both restrictive and ram ribosomes primarily affect tRNA selection through alteration of the off rates of the near-cognate tRNA species but during distinct phases of the overall process (proofreading and initial selection, respectively). These observations suggest that closure interfaces (S12/h27/h44 versus S4/S5) in two distinct regions of the small ribosomal subunit function independently to promote high-fidelity tRNA selection.
Collapse
Affiliation(s)
- Hani S Zaher
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
33
|
Abstract
Protein biosynthesis, or translation, occurs on the ribosome, a large RNA-protein assembly universally conserved in all forms of life. Over the last decade, structures of the small and large ribosomal subunits and of the intact ribosome have begun to reveal the molecular details of how the ribosome works. Both cryo-electron microscopy and X-ray crystallography continue to provide fresh insights into the mechanism of translation. In this review, we describe the most recent structural models of the bacterial ribosome that shed light on the movement of messenger RNA and transfer RNA on the ribosome after each peptide bond is formed, a process termed translocation. We also discuss recent structures that reveal the molecular basis for stop codon recognition during translation termination. Finally, we review recent advances in understanding how bacteria handle errors in both translocation and termination.
Collapse
Affiliation(s)
- Jack A Dunkle
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
34
|
Visualization of codon-dependent conformational rearrangements during translation termination. Nat Struct Mol Biol 2010; 17:465-70. [PMID: 20208546 DOI: 10.1038/nsmb.1766] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/15/2009] [Indexed: 11/08/2022]
Abstract
Although the recognition of stop codons by class 1 release factors (RFs) on the ribosome takes place with extremely high fidelity, the molecular mechanisms behind this remarkable process are poorly understood. Here we performed structural probing experiments with Fe(II)-derivatized RFs to compare the conformations of cognate and near-cognate ribosome termination complexes. The structural differences that we document provide an unprecedented view of how authentic stop-codon recognition is signaled to the large subunit of the ribosome. These events initiate with very close interactions between RF and the small-subunit decoding center, lead to increased interactions between the switch loop of the RF and specific regions of the subunit interface and end in the adoption of the precise orientation of the RF for maximal catalytic activity in the large-subunit peptidyl transferase center.
Collapse
|
35
|
Hetrick B, Lee K, Joseph S. Kinetics of stop codon recognition by release factor 1. Biochemistry 2009; 48:11178-84. [PMID: 19874047 DOI: 10.1021/bi901577d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recognition of stop codons by class I release factors is a fundamental step in the termination phase of protein synthesis. Since premature termination is costly to the cell, release factors have to efficiently discriminate between stop and sense codons. To understand the mechanism of discrimination between stop and sense codons, we developed a new, pre-steady state kinetic assay to monitor the interaction of RF1 with the ribosome. Our results show that RF1 associates with similar association rate constants with ribosomes programmed with stop or sense codons. However, dissociation of RF1 from sense codons is as much as 3 orders of magnitude faster than from stop codons. Interestingly, the affinity of RF1 for ribosomes programmed with different sense codons does not correlate with the defects in peptide release. Thus, discrimination against sense codons is achieved with both an increase in the dissociation rates and a decrease in the rate of peptide release. These results suggest that sense codons inhibit conformational changes necessary for RF1 to stably bind to the ribosome and catalyze peptide release.
Collapse
Affiliation(s)
- Byron Hetrick
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0314, USA
| | | | | |
Collapse
|
36
|
What recent ribosome structures have revealed about the mechanism of translation. Nature 2009; 461:1234-42. [DOI: 10.1038/nature08403] [Citation(s) in RCA: 533] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
|
37
|
Holberger LE, Hayes CS. Ribosomal protein S12 and aminoglycoside antibiotics modulate A-site mRNA cleavage and transfer-messenger RNA activity in Escherichia coli. J Biol Chem 2009; 284:32188-200. [PMID: 19776006 DOI: 10.1074/jbc.m109.062745] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translational pausing in Escherichia coli can lead to mRNA cleavage within the ribosomal A-site. A-site mRNA cleavage is thought to facilitate transfer-messenger RNA (tmRNA).SmpB- mediated recycling of stalled ribosome complexes. Here, we demonstrate that the aminoglycosides paromomycin and streptomycin inhibit A-site cleavage of stop codons during inefficient translation termination. Aminoglycosides also induced stop codon read-through, suggesting that these antibiotics alleviate ribosome pausing during termination. Streptomycin did not inhibit A-site cleavage in rpsL mutants, which express streptomycin-resistant variants of ribosomal protein S12. However, rpsL strains exhibited reduced A-site mRNA cleavage compared with rpsL(+) cells. Additionally, tmRNA.SmpB-mediated SsrA peptide tagging was significantly reduced in several rpsL strains but could be fully restored in a subset of mutants when treated with streptomycin. The streptomycin-dependent rpsL(P90K) mutant also showed significantly lower levels of A-site cleavage and tmRNA.SmpB activity. Mutations in rpsD (encoding ribosomal protein S4), which suppressed streptomycin dependence, were able to partially restore A-site cleavage to rpsL(P90K) cells but failed to increase tmRNA.SmpB activity. Taken together, these results show that perturbations to A-site structure and function modulate A-site mRNA cleavage and tmRNA.SmpB activity. We propose that tmRNA.SmpB binds to streptomycin-resistant rpsL ribosomes less efficiently, leading to a partial loss of ribosome rescue function in these mutants.
Collapse
Affiliation(s)
- Laura E Holberger
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106-9610, USA
| | | |
Collapse
|
38
|
Abstract
The faithful and rapid translation of genetic information into peptide sequences is an indispensable property of the ribosome. The mechanistic understanding of strategies used by the ribosome to achieve both speed and fidelity during translation results from nearly a half century of biochemical and structural studies. Emerging from these studies is the common theme that the ribosome uses local as well as remote conformational switches to govern induced-fit mechanisms that ensure accuracy in codon recognition during both tRNA selection and translation termination.
Collapse
|
39
|
Rodnina MV, Wintermeyer W. Recent mechanistic insights into eukaryotic ribosomes. Curr Opin Cell Biol 2009; 21:435-43. [PMID: 19243929 DOI: 10.1016/j.ceb.2009.01.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Ribosomes are supramolecular ribonucleoprotein particles that synthesize proteins in all cells. Protein synthesis proceeds through four major phases: initiation, elongation, termination, and ribosome recycling. In each phase, a number of phase-specific translation factors cooperate with the ribosome. Whereas elongation in prokaryotes and eukaryotes involve similar factors and proceed by similar mechanisms, mechanisms of initiation, termination, and ribosome recycling, as well as the factors involved, appear quite different. Here, we summarize recent progress in deciphering molecular mechanisms of eukaryotic translation. Comparisons with prokaryotic translation are included, emphasizing emerging patterns of common design.
Collapse
Affiliation(s)
- Marina V Rodnina
- Max-Planck-Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany.
| | | |
Collapse
|
40
|
|
41
|
Ribosome: an Ancient Cellular Nano-Machine for Genetic Code Translation. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2009. [DOI: 10.1007/978-90-481-2368-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob Agents Chemother 2008; 53:1019-26. [PMID: 19104019 DOI: 10.1128/aac.00388-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a novel paromomycin resistance-associated mutation in rpsL, caused by the insertion of a glycine residue at position 92, in Streptomyces coelicolor ribosomal protein S12. This insertion mutation (GI92) resulted in a 20-fold increase in the paromomycin resistance level. In combination with another S12 mutation, K88E, the GI92 mutation markedly enhanced the production of the blue-colored polyketide antibiotic actinorhodin and the red-colored antibiotic undecylprodigiosin. The gene replacement experiments demonstrated that the K88E-GI92 double mutation in the rpsL gene was responsible for the marked enhancement of antibiotic production observed. Ribosomes with the K88E-GI92 double mutation were characterized by error restrictiveness (i.e., hyperaccuracy). Using a cell-free translation system, we found that mutant ribosomes harboring the K88E-GI92 double mutation but not ribosomes harboring the GI92 mutation alone displayed sixfold greater translation activity relative to that of the wild-type ribosomes at late growth phase. This resulted in the overproduction of actinorhodin, caused by the transcriptional activation of the pathway-specific regulatory gene actII-orf4, possibly due to the increased translation of transcripts encoding activators of actII-orf4. The mutant with the K88E-GI92 double mutation accumulated a high level of ribosome recycling factor at late stationary phase, underlying the high level of protein synthesis activity observed.
Collapse
|
43
|
Quality control by the ribosome following peptide bond formation. Nature 2008; 457:161-6. [PMID: 19092806 DOI: 10.1038/nature07582] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 10/24/2008] [Indexed: 11/08/2022]
Abstract
The overall fidelity of protein synthesis has been thought to rely on the combined accuracy of two basic processes: the aminoacylation of transfer RNAs with their cognate amino acid by the aminoacyl-tRNA synthetases, and the selection of cognate aminoacyl-tRNAs by the ribosome in cooperation with the GTPase elongation factor EF-Tu. These two processes, which together ensure the specific acceptance of a correctly charged cognate tRNA into the aminoacyl (A) site, operate before peptide bond formation. Here we report the identification of an additional mechanism that contributes to high fidelity protein synthesis after peptidyl transfer, using a well-defined in vitro bacterial translation system. In this retrospective quality control step, the incorporation of an amino acid from a non-cognate tRNA into the growing polypeptide chain leads to a general loss of specificity in the A site of the ribosome, and thus to a propagation of errors that results in abortive termination of protein synthesis.
Collapse
|
44
|
Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci U S A 2008; 105:19684-9. [PMID: 19064930 DOI: 10.1073/pnas.0810953105] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the crystal structure of a translation termination complex formed by the Thermus thermophilus 70S ribosome bound with release factor RF2, in response to a UAA stop codon, solved at 3 A resolution. The backbone of helix alpha5 and the side chain of serine of the conserved SPF motif of RF2 recognize U1 and A2 of the stop codon, respectively. A3 is unstacked from the first 2 bases, contacting Thr-216 and Val-203 of RF2 and stacking on G530 of 16S rRNA. The structure of the RF2 complex supports our previous proposal that conformational changes in the ribosome in response to recognition of the stop codon stabilize rearrangement of the switch loop of the release factor, resulting in docking of the universally conserved GGQ motif in the PTC of the 50S subunit. As seen for the RF1 complex, the main-chain amide nitrogen of glutamine in the GGQ motif is positioned to contribute directly to catalysis of peptidyl-tRNA hydrolysis, consistent with mutational studies, which show that most side-chain substitutions of the conserved glutamine have little effect. We show that when the H-bonding capability of the main-chain N-H of the conserved glutamine is eliminated by substitution with proline, peptidyl-tRNA esterase activity is abolished, consistent with its proposed role in catalysis.
Collapse
|
45
|
Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, Kelley AC, Ramakrishnan V. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 2008; 322:953-6. [PMID: 18988853 DOI: 10.1126/science.1164840] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The termination of protein synthesis occurs through the specific recognition of a stop codon in the A site of the ribosome by a release factor (RF), which then catalyzes the hydrolysis of the nascent protein chain from the P-site transfer RNA. Here we present, at a resolution of 3.5 angstroms, the crystal structure of RF2 in complex with its cognate UGA stop codon in the 70S ribosome. The structure provides insight into how RF2 specifically recognizes the stop codon; it also suggests a model for the role of a universally conserved GGQ motif in the catalysis of peptide release.
Collapse
Affiliation(s)
- Albert Weixlbaumer
- Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Youngman EM, McDonald ME, Green R. Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev Microbiol 2008; 62:353-73. [PMID: 18544041 DOI: 10.1146/annurev.micro.61.080706.093323] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide release, the reaction that hydrolyzes a completed protein from the peptidyl-tRNA upon completion of translation, is catalyzed in the active site of the large subunit of the ribosome and requires a class I release factor protein. The ribosome and release factor protein cooperate to accomplish two tasks: recognition of the stop codon and catalysis of peptidyl-tRNA hydrolysis. Although many fundamental questions remain, substantial progress has been made in the past several years. This review summarizes those advances and presents current models for the mechanisms of stop codon specificity and catalysis of peptide release. Finally, we discuss how these views fit into a larger emerging theme in the translation field: the importance of induced fit and conformational changes for progression through the translation cycle.
Collapse
Affiliation(s)
- Elaine M Youngman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
47
|
Diago-Navarro E, Mora L, Buckingham RH, Díaz-Orejas R, Lemonnier M. Novel Escherichia coli RF1 mutants with decreased translation termination activity and increased sensitivity to the cytotoxic effect of the bacterial toxins Kid and RelE. Mol Microbiol 2008; 71:66-78. [PMID: 19019162 PMCID: PMC2680264 DOI: 10.1111/j.1365-2958.2008.06510.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel mutations in prfA, the gene for the polypeptide release factor RF1 of Escherichia coli, were isolated using a positive genetic screen based on the parD (kis, kid) toxin–antitoxin system. This original approach allowed the direct selection of mutants with altered translational termination efficiency at UAG codons. The isolated prfA mutants displayed a ∼10-fold decrease in UAG termination efficiency with no significant changes in RF1 stability in vivo. All three mutations, G121S, G301S and R303H, were situated close to the nonsense codon recognition site in RF1:ribosome complexes. The prfA mutants displayed increased sensitivity to the RelE toxin encoded by the relBE system of E. coli, thus providing in vivo support for the functional interaction between RF1 and RelE. The prfA mutants also showed increased sensitivity to the Kid toxin. Since this toxin can cleave RNA in a ribosome-independent manner, this result was not anticipated and provided first evidence for the involvement of RF1 in the pathway of Kid toxicity. The sensitivity of the prfA mutants to RelE and Kid was restored to normal levels upon overproduction of the wild-type RF1 protein. We discuss these results and their utility for the design of novel antibacterial strategies in the light of the recently reported structure of ribosome-bound RF1.
Collapse
Affiliation(s)
- Elizabeth Diago-Navarro
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
48
|
Garcia-Ortega L, Stephen J, Joseph S. Precise alignment of peptidyl tRNA by the decoding center is essential for EF-G-dependent translocation. Mol Cell 2008; 32:292-9. [PMID: 18951096 PMCID: PMC11849654 DOI: 10.1016/j.molcel.2008.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 05/22/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
Translocation is an essential step in the elongation cycle of the protein synthesis that allows for the continual incorporation of new amino acids to the growing polypeptide. Movement of mRNA and tRNAs within the ribosome is catalyzed by EF-G binding and GTP hydrolysis. The 30S subunit decoding center is crucial for the selection of the cognate tRNA. However, it is not clear whether the decoding center participates in translocation. We disrupted the interactions in the decoding center by mutating the universally conserved 16S rRNA bases G530, A1492, and A1493, and the effects of these mutations on translocation were studied. Our results show that point mutation of any of these 16S rRNA bases inhibits EF-G-dependent translocation. Furthermore, the mutant ribosomes showed increased puromycin reactivity in the pretranslocation complexes, indicating that the dynamic equilibrium of the peptidyl tRNA between the classical and hybrid-state configurations is influenced by contacts in the decoding center.
Collapse
MESH Headings
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Mutagenesis, Site-Directed
- Peptide Chain Elongation, Translational/drug effects
- Peptide Chain Elongation, Translational/physiology
- Peptide Elongation Factor G/metabolism
- Point Mutation
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/physiology
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- Ribosome Subunits, Small, Bacterial/physiology
- Ribosomes/drug effects
- Ribosomes/physiology
- Sparsomycin/pharmacology
- Spectrometry, Fluorescence
Collapse
Affiliation(s)
- Lucia Garcia-Ortega
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| | | | | |
Collapse
|
49
|
Korostelev A, Ermolenko DN, Noller HF. Structural dynamics of the ribosome. Curr Opin Chem Biol 2008; 12:674-83. [PMID: 18848900 DOI: 10.1016/j.cbpa.2008.08.037] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 08/23/2008] [Indexed: 01/01/2023]
Abstract
Protein synthesis is inherently a dynamic process, requiring both small-scale and large-scale movements of tRNA and mRNA. It has long been suspected that these movements might be coupled to conformational changes in the ribosome, and in its RNA moieties in particular. Recently, the nature of ribosome structural dynamics has begun to emerge from a combination of approaches, most notably cryo-EM, X-ray crystallography, and FRET. Ribosome movement occurs both on a grand scale, as in the intersubunit rotational movements that are coupled to tRNA-mRNA translocation, and in intricate localized rearrangements such as those that accompany codon-anticodon recognition and peptide bond formation. In spite of much progress, our understanding of the mechanics of translation is now beset with countless new questions, reflecting the vast molecular architecture of the ribosome itself.
Collapse
Affiliation(s)
- Andrei Korostelev
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
50
|
Borovinskaya MA, Shoji S, Fredrick K, Cate JHD. Structural basis for hygromycin B inhibition of protein biosynthesis. RNA (NEW YORK, N.Y.) 2008; 14:1590-9. [PMID: 18567815 PMCID: PMC2491480 DOI: 10.1261/rna.1076908] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/07/2008] [Indexed: 05/18/2023]
Abstract
Aminoglycosides are one of the most widely used and clinically important classes of antibiotics that target the ribosome. Hygromycin B is an atypical aminoglycoside antibiotic with unique structural and functional properties. Here we describe the structure of the intact Escherichia coli 70S ribosome in complex with hygromycin B. The antibiotic binds to the mRNA decoding center in the small (30S) ribosomal subunit of the 70S ribosome and induces a localized conformational change, in contrast to its effects observed in the structure of the isolated 30S ribosomal subunit in complex with the drug. The conformational change in the ribosome caused by hygromycin B binding differs from that induced by other aminoglycosides. Also, in contrast to other aminoglycosides, hygromycin B potently inhibits spontaneous reverse translocation of tRNAs and mRNA on the ribosome in vitro. These structural and biochemical results help to explain the unique mode of translation inhibition by hygromycin B.
Collapse
Affiliation(s)
- Maria A Borovinskaya
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|