1
|
Jin SK, Baek KH. Unraveling the role of deubiquitinating enzymes on cisplatin resistance in several cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189297. [PMID: 40058507 DOI: 10.1016/j.bbcan.2025.189297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The use of platinum-based drugs in cancer treatment is one of the most common methods in chemotherapy. Especially, cisplatin induces cell death by interrupting DNA synthesis by binding to the DNA bases, thereby leading to the apoptosis via multiple pathways. However, the major hurdle in chemotherapy is drug resistance. To overcome drug resistance, the ubiquitin-proteasome system (UPS) has emerged as a potential therapeutic target. The UPS is a pivotal signaling pathway that regulates the majority of cellular proteins by attaching ubiquitin to substrates, leading to proteasomal degradation. Conversely, deubiquitinating enzymes (DUBs) remove tagged ubiquitin from the substrate and inhibit degradation, thereby maintaining proteostasis. Recently, studies have been conducted to identify the substrates of DUBs and investigated the cellular mechanisms, and now the development of therapeutics using DUB inhibitors is in clinical trials. However, the mechanism of the DUB response to cisplatin remains still unclear. In this review, we summarize the research reported on the function of DUBs responding to cisplatin.
Collapse
Affiliation(s)
- Sun-Kyu Jin
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
2
|
Mazloumi Aboukheili AM, Walden H. USP1 in regulation of DNA repair pathways. DNA Repair (Amst) 2025; 146:103807. [PMID: 39848025 DOI: 10.1016/j.dnarep.2025.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves. This review covers recent findings on the mechanisms and functions of USP1 in DNA repair, its regulation, and its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Helen Walden
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland.
| |
Collapse
|
3
|
Su Y, Du Y, He W. USP1-mediated deubiquitination of KDM1A promotes the malignant progression of triple-negative breast cancer. J Biochem Mol Toxicol 2024; 38:e23864. [PMID: 39318028 DOI: 10.1002/jbt.23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Previous research has indicated the highly expressed lysine-specific histone demethylase 1A (KDM1A) in several human malignancies, including triple-negative breast cancer (TNBC). However, its detailed mechanisms in TNBC development remain poorly understood. The mRNA levels of KDM1A and Yin Yang 1 (YY1) were determined by RT-qPCR analysis. Western blot was performed to measure KDM1A and ubiquitin-specific protease 1 (USP1) protein expression. Cell proliferation, apoptosis, invasion, migration and stemness were evaluated by MTT assay, EdU assay, flow cytometry, transwell invasion assay, wound-healing assay and sphere-formation assay, respectively. ChIP and dual-luciferase reporter assays were conducted to determine the relationship between YY1 and KDM1A. Xenograft tumor experiment and IHC were carried out to investigate the roles of USP1 and KDM1A in TNBC development in vivo. The highly expressed KDM1A was demonstrated in TNBC tissues and cells, and KDM1A knockdown significantly promoted cell apoptosis, and hampered cell proliferation, invasion, migration, and stemness in TNBC cells. USP1 could increase the stability of KDM1A via deubiquitination, and USP1 depletion restrained the progression of TNBC cells through decreasing KDM1A expression. Moreover, YY1 transcriptionally activated KDM1A expression by directly binding to its promoter in TNBC cells. Additionally, USP1 inhibition reduced KDM1A expression to suppress tumor growth in TNBC mice in vivo. In conclusion, YY1 upregulation increased KDM1A expression via transcriptional activation. USP1 stabilized KDM1A through deubiquitination to promote TNBC progression.
Collapse
Affiliation(s)
- Yang Su
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
- Nanyang Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang, China
| | - Yan Du
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
- Nanyang Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang, China
| | - Wenguang He
- Department of Thyroid and Breast Surgery, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
5
|
Ma R, Xu X. Deciphering the role of post-translational modifications in fanconi anemia proteins and their influence on tumorigenesis. Cancer Gene Ther 2024; 31:1113-1123. [PMID: 38879655 DOI: 10.1038/s41417-024-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 08/17/2024]
Abstract
Fanconi anemia (FA) is an autosomal or X-linked human disease, characterized by bone marrow failure, cancer susceptibility and various developmental abnormalities. So far, at least 22 FA genes (FANCA-W) have been identified. Germline inactivation of any one of these FA genes causes FA symptoms. Proteins encoded by FA genes are involved in the Fanconi anemia pathway, which is known for its roles in DNA inter-strand crosslinks (ICLs) repair. Besides, its roles in genome maintenance upon replication stress has also been reported. Post-translational modifications (PTMs) of FA proteins, particularly phosphorylation and ubiquitination, emerge as critical determinants in the activation of the FA pathway during ICL repair or replication stress response. Consequent inactivation of the FA pathway engenders heightened chromosomal instability, thereby constituting a genetic susceptibility conducive to cancer predisposition and the exacerbation of tumorigenesis. In this review, we have combined recent structural analysis of FA proteins and summarized knowledge on the functions of different PTMs in regulating FA pathways, and discuss potential contributions stemming from mutations at PTMs to the genesis and progression of tumorigenesis.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xinlin Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
6
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
7
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Mallard HJ, Wan S, Nidhi P, Hanscom-Trofy YD, Mohapatra B, Woods NT, Lopez-Guerrero JA, Llombart-Bosch A, Machado I, Scotlandi K, Kreiling NF, Perry MC, Mirza S, Coulter DW, Band V, Band H, Ghosal G. USP1 Expression Driven by EWS::FLI1 Transcription Factor Stabilizes Survivin and Mitigates Replication Stress in Ewing Sarcoma. Mol Cancer Res 2023; 21:1186-1204. [PMID: 37478161 PMCID: PMC10618738 DOI: 10.1158/1541-7786.mcr-23-0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
In this study, we identify USP1 as a transcriptional target of EWS::FLI1 and demonstrate the requisite function of USP1 in Ewing sarcoma (EWS) cell survival in response to endogenous replication stress. EWS::FLI1 oncogenic transcription factor drives most EWS, a pediatric bone cancer. EWS cells display elevated levels of R-loops and replication stress. The mechanism by which EWS cells override activation of apoptosis or cellular senescence in response to increased replication stress is not known. We show that USP1 is overexpressed in EWS and EWS::FLI1 regulates USP1 transcript levels. USP1 knockdown or inhibition arrests EWS cell growth and induces cell death by apoptosis. Mechanistically, USP1 regulates Survivin (BIRC5/API4) protein stability and the activation of caspase-9 and caspase-3/7 in response to endogenous replication stress. Notably, USP1 inhibition sensitizes cells to doxorubicin and etoposide treatment. Together, our study demonstrates that USP1 is regulated by EWS::FLI1, the USP1-Survivin axis promotes EWS cell survival, and USP1 inhibition sensitizes cells to standard of care chemotherapy. IMPLICATIONS High USP1 and replication stress levels driven by EWS::FLI1 transcription factor in EWS are vulnerabilities that can be exploited to improve existing treatment avenues and overcome drug resistance.
Collapse
Affiliation(s)
- Halle J. Mallard
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Prakriti Nidhi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yvan D. Hanscom-Trofy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bhopal Mohapatra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nicholas T. Woods
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Antonio Llombart-Bosch
- Department of Pathology, Instituto Valenciano de Oncología and Patologika Laboratory, Hospital QuironSalud, Valencia, Spain
| | - Isidro Machado
- Department of Pathology, Instituto Valenciano de Oncología and Patologika Laboratory, Hospital QuironSalud, Valencia, Spain
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Natasha F. Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Megan C. Perry
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Donald W. Coulter
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
9
|
Huang P, Wang Y, Zhang P, Li Q. Ubiquitin-specific peptidase 1: assessing its role in cancer therapy. Clin Exp Med 2023; 23:2953-2966. [PMID: 37093451 DOI: 10.1007/s10238-023-01075-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Reversible protein ubiquitination represents an essential determinator of cellular homeostasis, and the ubiquitin-specific enzymes, particularly deubiquitinases (DUBs), are emerging as promising targets for drug development. DUBs are composed of seven different subfamilies, out of which ubiquitin-specific proteases (USPs) are the largest family with 56 members. One of the well-characterized USPs is USP1, which contributes to several cellular biological processes including DNA damage response, immune regulation, cell proliferation, apoptosis, and migration. USP1 levels and activity are regulated by multiple mechanisms, including transcription regulation, phosphorylation, autocleavage, and proteasomal degradation, ensuring that the cellular function of USP1 is performed in a suitably modulated spatio-temporal manner. Moreover, USP1 with deregulated expression and activity are found in several human cancers, indicating that targeting USP1 is a feasible therapeutic approach in anti-cancer treatment. In this review, we highlight the essential role of USP1 in cancer development and the regulatory landscape of USP1 activity, which might provide novel insights into cancer treatment.
Collapse
Affiliation(s)
- Peng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - YuHan Wang
- Department of Anorectal, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - PengFei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Xia D, Zhu X, Wang Y, Gong P, Su HS, Xu X. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy. Biosci Rep 2023; 43:BSR20222591. [PMID: 37728310 PMCID: PMC10550789 DOI: 10.1042/bsr20222591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
DNA replication forks are subject to intricate surveillance and strict regulation by sophisticated cellular machinery. Such close regulation is necessary to ensure the accurate duplication of genetic information and to tackle the diverse endogenous and exogenous stresses that impede this process. Stalled replication forks are vulnerable to collapse, which is a major cause of genomic instability and carcinogenesis. Replication stress responses, which are organized via a series of coordinated molecular events, stabilize stalled replication forks and carry out fork reversal and restoration. DNA damage tolerance and repair pathways such as homologous recombination and Fanconi anemia also contribute to replication fork stabilization. The signaling network that mediates the transduction and interplay of these pathways is regulated by a series of post-translational modifications, including ubiquitination, which affects the activity, stability, and interactome of substrates. In particular, the ubiquitination of replication protein A and proliferating cell nuclear antigen at stalled replication forks promotes the recruitment of downstream regulators. In this review, we describe the ubiquitination-mediated signaling cascades that regulate replication fork progression and stabilization. In addition, we discuss the targeting of replication fork stability and ubiquitination system components as a potential therapeutic approach for the treatment of cancer.
Collapse
Affiliation(s)
- Donghui Xia
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuefei Zhu
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ying Wang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Hong-Shu Su
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
| | - Xingzhi Xu
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
11
|
Liu S, Xiang Y, Wang B, Gao C, Chen Z, Xie S, Wu J, Liu Y, Zhao X, Yang C, Yue Z, Wang L, Wen X, Zhang R, Zhang F, Xu H, Zhai X, Zheng H, Zhang H, Qian M. USP1 promotes the aerobic glycolysis and progression of T-cell acute lymphoblastic leukemia via PLK1/LDHA axis. Blood Adv 2023; 7:3099-3112. [PMID: 36912760 PMCID: PMC10362547 DOI: 10.1182/bloodadvances.2022008284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
The effect of aerobic glycolysis remains elusive in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Increasing evidence has revealed that dysregulation of deubiquitination is involved in glycolysis, by targeting glycolytic rate-limiting enzymes. Here, we demonstrated that upregulated deubiquitinase ubiquitin-specific peptidase 1 (USP1) expression correlated with poor prognosis in pediatric primary T-ALL samples. USP1 depletion abolished cellular proliferation and attenuated glycolytic metabolism. In vivo experiments showed that USP1 suppression decreased leukemia progression in nude mice. Inhibition of USP1 caused a decrease in both mRNA and protein levels in lactate dehydrogenase A (LDHA), a critical glycolytic enzyme. Moreover, USP1 interacted with and deubiquitinated polo-like kinase 1 (PLK1), a critical regulator of glycolysis. Overexpression of USP1 with upregulated PLK1 was observed in most samples of patients with T-ALL. In addition, PLK1 inhibition reduced LDHA expression and abrogated the USP1-mediated increase of cell proliferation and lactate level. Ectopic expression of LDHA can rescue the suppressive effect of USP1 silencing on cell growth and lactate production. Pharmacological inhibition of USP1 by ML323 exhibited cell cytotoxicity in human T-ALL cells. Taken together, our results demonstrated that USP1 may be a promising therapeutic target in pediatric T-ALL.
Collapse
Affiliation(s)
- Shuguang Liu
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yuening Xiang
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Gao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhenping Chen
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Shao Xie
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jing Wu
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi Liu
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiaoxi Zhao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Chao Yang
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhixia Yue
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Linya Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiaojia Wen
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Ruidong Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Feng Zhang
- Center for Precision Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Heng Xu
- Division of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Huyong Zheng
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Hui Zhang
- Department of Hematology & Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Hematology & Oncology, Fujian Branch of Shanghai Children’s Medical Center, Fujian Children’s Hospital, Fuzhou, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Lemonidis K, Rennie ML, Arkinson C, Chaugule VK, Clarke M, Streetley J, Walden H. Structural and biochemical basis of interdependent FANCI-FANCD2 ubiquitination. EMBO J 2023; 42:e111898. [PMID: 36385258 PMCID: PMC9890228 DOI: 10.15252/embj.2022111898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Di-monoubiquitination of the FANCI-FANCD2 (ID2) complex is a central and crucial step for the repair of DNA interstrand crosslinks via the Fanconi anaemia pathway. While FANCD2 ubiquitination precedes FANCI ubiquitination, FANCD2 is also deubiquitinated at a faster rate than FANCI, which can result in a FANCI-ubiquitinated ID2 complex (IUb D2). Here, we present a 4.1 Å cryo-EM structure of IUb D2 complex bound to double-stranded DNA. We show that this complex, like ID2Ub and IUb D2Ub , is also in the closed ID2 conformation and clamps on DNA. The target lysine of FANCD2 (K561) becomes fully exposed in the IUb D2-DNA structure and is thus primed for ubiquitination. Similarly, FANCI's target lysine (K523) is also primed for ubiquitination in the ID2Ub -DNA complex. The IUb D2-DNA complex exhibits deubiquitination resistance, conferred by the presence of DNA and FANCD2. ID2Ub -DNA, on the other hand, can be efficiently deubiquitinated by USP1-UAF1, unless further ubiquitination on FANCI occurs. Therefore, FANCI ubiquitination effectively maintains FANCD2 ubiquitination in two ways: it prevents excessive FANCD2 deubiquitination within an IUb D2Ub -DNA complex, and it enables re-ubiquitination of FANCD2 within a transient, closed-on-DNA, IUb D2 complex.
Collapse
Affiliation(s)
- Kimon Lemonidis
- School of Molecular Biosciences, College of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Martin L Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Connor Arkinson
- School of Molecular Biosciences, College of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Present address:
Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Viduth K Chaugule
- School of Molecular Biosciences, College of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Mairi Clarke
- Scottish Centre for Macromolecular ImagingUniversity of GlasgowGlasgowUK
| | - James Streetley
- Scottish Centre for Macromolecular ImagingUniversity of GlasgowGlasgowUK
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
13
|
Shang K, Zhang L, Yu Y, Xiao H, Gao Y, Yang L, Huang J, Song H, Han H. Disulfide-containing polymer delivery of C527 and a Platinum(IV) prodrug selectively inhibited protein ubiquitination and tumor growth on cisplatin resistant and patient-derived liver cancer models. Mater Today Bio 2023; 18:100548. [PMID: 36713799 PMCID: PMC9874064 DOI: 10.1016/j.mtbio.2023.100548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
USP1 (Ubiquitin-specific protease 1) is closely related to the prognosis of patients with liver cancer and plays an important role in DNA damage repair. C527 is a selective USP1 inhibitor (USP1i), which can regulate the protein ubiquitination to effectively inhibit the proliferation of cancer cells. However, its clinical application is hindered due to the poor water solubility and lack of tumor targeting. Moreover, the efficacy of single use of USP1i is still limited. Herein, a glutathione (GSH) sensitive amphiphilic polymer (poly (2-HD-co-HPMDA)-mPEG, PHHM) with disulfide bonds in the main chain was designed to encapsulate the USP1i as well as platinum (IV) prodrug (Pt (IV)-C12), resulting in the formation of composite nanoparticles, i.e., NP-Pt-USP1i. NP-Pt-USP1i can inhibit the DNA damage repair by targeting USP1 by the encapsulated USP1i, which ultimately increases the sensitivity of tumor cells to cisplatin and enhances the anti-cancer efficacy of cisplatin. Finally, an intraperitoneal tumor mice model and a patient-derived xenograft (PDX) of liver cancer mice model were established to prove that NP-Pt-USP1i could effectively inhibit the tumor growth. This work further validated the possibility of therapeutically target USP1 by USP1i in combination with DNA damaging alkylating agents, which could become a promising cancer treatment modality in the future.
Collapse
Affiliation(s)
- Kun Shang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Lingpu Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, 100191, China
| | - Liu Yang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, 100191, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 20023, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
14
|
Huang Z, Chen Y, Chen R, Zhou B, Wang Y, Hong L, Wang Y, Wang J, Xu X, Huang Z, Chen W. HPV Enhances HNSCC Chemosensitization by Inhibiting SERPINB3 Expression to Disrupt the Fanconi Anemia Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202437. [PMID: 36382555 PMCID: PMC9811475 DOI: 10.1002/advs.202202437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck, and the prognosis of patients is poor due to chemotherapeutic resistance. Interestingly, patients with HNSCC induced by human papillomavirus (HPV) infection are more sensitive to chemotherapy and display a better prognosis than HPV-negative patients. The biological relevance of HPV infection and the mechanism underlying chemosensitivity to cisplatin remain unknown. Herein, SERPINB3 is identified as an important target for regulation of cisplatin sensitivity by HPV-E6/E7 in HNSCC. Downregulation of SERPINB3 inhibits cisplatin-induced DNA damage repair and enhances the cytotoxicity of cisplatin. In detail, decreasing SERPINB3 expression reduces the USP1-mediated deubiquitination of FANCD2-FANCI in the Fanconi anemia pathway, thereby interfering with cisplatin-induced DNA interstrand crosslinks repair and further contributing to HNSCC cell apoptosis. To translate this finding, pH-responsive nanoparticles are used to deliver SERPINB3 small interfering RNA in combination with cisplatin, and this treatment successfully reverses cisplatin chemotherapeutic resistance in a patient-derived xenograft model from HPV-negative HNSCC. Taken together, these findings suggest that targeting SERPINB3 based on HPV-positive HNSCC is a potential strategy to overcome cisplatin resistance in HPV-negative HNSCC and improves the prognosis of this disease.
Collapse
Affiliation(s)
- Zixian Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Yongju Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Rui Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Bin Zhou
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Yongqiang Wang
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Lei Hong
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Yuepeng Wang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Jianguang Wang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Xiaoding Xu
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Zhiquan Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Weiliang Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| |
Collapse
|
15
|
The key to the FANCD2-FANCI lock. Nat Struct Mol Biol 2022; 29:848-849. [PMID: 36071212 DOI: 10.1038/s41594-022-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Sijacki T, Alcón P, Chen ZA, McLaughlin SH, Shakeel S, Rappsilber J, Passmore LA. The DNA-damage kinase ATR activates the FANCD2-FANCI clamp by priming it for ubiquitination. Nat Struct Mol Biol 2022; 29:881-890. [PMID: 36050501 PMCID: PMC7613635 DOI: 10.1038/s41594-022-00820-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
DNA interstrand cross-links are tumor-inducing lesions that block DNA replication and transcription. When cross-links are detected at stalled replication forks, ATR kinase phosphorylates FANCI, which stimulates monoubiquitination of the FANCD2-FANCI clamp by the Fanconi anemia core complex. Monoubiquitinated FANCD2-FANCI is locked onto DNA and recruits nucleases that mediate DNA repair. However, it remains unclear how phosphorylation activates this pathway. Here, we report structures of FANCD2-FANCI complexes containing phosphomimetic FANCI. We observe that, unlike wild-type FANCD2-FANCI, the phosphomimetic complex closes around DNA, independent of the Fanconi anemia core complex. The phosphomimetic mutations do not substantially alter DNA binding but instead destabilize the open state of FANCD2-FANCI and alter its conformational dynamics. Overall, our results demonstrate that phosphorylation primes the FANCD2-FANCI clamp for ubiquitination, showing how multiple posttranslational modifications are coordinated to control DNA repair.
Collapse
Affiliation(s)
| | - Pablo Alcón
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Zhuo A Chen
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | | | - Shabih Shakeel
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | | |
Collapse
|
17
|
Tyagi A, Kaushal K, Chandrasekaran AP, Sarodaya N, Das S, Park CH, Hong SH, Kim KS, Ramakrishna S. CRISPR/Cas9-based genome-wide screening for deubiquitinase subfamily identifies USP1 regulating MAST1-driven cisplatin-resistance in cancer cells. Theranostics 2022; 12:5949-5970. [PMID: 35966591 PMCID: PMC9373805 DOI: 10.7150/thno.72826] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Background: Cisplatin is one of the frontline anticancer agents. However, development of cisplatin-resistance limits the therapeutic efficacy of cisplatin-based treatment. The expression of microtubule-associated serine/threonine kinase 1 (MAST1) is a primary factor driving cisplatin-resistance in cancers by rewiring the MEK pathway. However, the mechanisms responsible for MAST1 regulation in conferring drug resistance is unknown. Methods: We implemented a CRISPR/Cas9-based, genome-wide, dual screening system to identify deubiquitinating enzymes (DUBs) that govern cisplatin resistance and regulate MAST1 protein level. We analyzed K48- and K63-linked polyubiquitination of MAST1 protein and mapped the interacting domain between USP1 and MAST1 by immunoprecipitation assay. The deubiquitinating effect of USP1 on MAST1 protein was validated using rescue experiments, in vitro deubiquitination assay, immunoprecipitation assays, and half-life analysis. Furthermore, USP1-knockout A549 lung cancer cells were generated to validate the deubiquitinating activity of USP1 on MAST1 abundance. The USP1-MAST1 correlation was evaluated using bioinformatics tool and in different human clinical tissues. The potential role of USP1 in regulating MAST1-mediated cisplatin resistance was confirmed using a series of in vitro and in vivo experiments. Finally, the clinical relevance of the USP1-MAST1 axis was validated by application of small-molecule inhibitors in a lung cancer xenograft model in NSG mice. Results: The CRISPR/Cas9-based dual screening system identified USP1 as a novel deubiquitinase that interacts, stabilizes, and extends the half-life of MAST1 by preventing its K48-linked polyubiquitination. The expression analysis across human clinical tissues revealed a positive correlation between USP1 and MAST1. USP1 promotes MAST1-mediated MEK1 activation as an underlying mechanism that contributes to cisplatin-resistance in cancers. Loss of USP1 led to attenuation of MAST1-mediated cisplatin-resistance both in vitro and in vivo. The combined pharmacological inhibition of USP1 and MAST1 using small-molecule inhibitors further abrogated MAST1 level and synergistically enhanced cisplatin efficacy in a mouse xenograft model. Conclusions: Overall, our study highlights the role of USP1 in the development of cisplatin resistance and uncovers the regulatory mechanism of MAST1-mediated cisplatin resistance in cancers. Co-treatment with USP1 and MAST1 inhibitors abrogated tumor growth and synergistically enhanced cisplatin efficacy, suggesting a novel alternative combinatorial therapeutic strategy that could further improve MAST1-based therapy in patients with cisplatin-resistant tumors.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
18
|
ML323, a USP1 inhibitor triggers cell cycle arrest, apoptosis and autophagy in esophageal squamous cell carcinoma cells. Apoptosis 2022; 27:545-560. [PMID: 35654870 DOI: 10.1007/s10495-022-01736-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 01/18/2023]
|
19
|
Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet 2022; 141:1811-1836. [PMID: 35596788 DOI: 10.1007/s00439-022-02462-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Fanconi anemia is a genetic disorder that is characterized by bone marrow failure, as well as a predisposition to malignancies including leukemia and squamous cell carcinoma (SCC). At least 22 genes are associated with Fanconi anemia, constituting the Fanconi anemia DNA repair pathway. This pathway coordinates multiple processes and proteins to facilitate the repair of DNA adducts including interstrand crosslinks (ICLs) that are generated by environmental carcinogens, chemotherapeutic crosslinkers, and metabolic products of alcohol. ICLs can interfere with DNA transactions, including replication and transcription. If not properly removed and repaired, ICLs cause DNA breaks and lead to genomic instability, a hallmark of cancer. In this review, we will discuss the genetic and phenotypic characteristics of Fanconi anemia, the epidemiology of the disease, and associated cancer risk. The sources of ICLs and the role of ICL-inducing chemotherapeutic agents will also be discussed. Finally, we will review the detailed mechanisms of ICL repair via the Fanconi anemia DNA repair pathway, highlighting critical regulatory processes. Together, the information in this review will underscore important contributions to Fanconi anemia research in the past two decades.
Collapse
Affiliation(s)
- Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
20
|
Abstract
DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.
Collapse
Affiliation(s)
- Jessica L Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
21
|
Kim JJ, Lee SY, Hwang Y, Kim S, Chung JM, Park S, Yoon J, Yun H, Ji JH, Chae S, Cho H, Kim CG, Dawson TM, Kim H, Dawson VL, Kang HC. USP39 promotes non-homologous end-joining repair by poly(ADP-ribose)-induced liquid demixing. Nucleic Acids Res 2021; 49:11083-11102. [PMID: 34614178 PMCID: PMC8565343 DOI: 10.1093/nar/gkab892] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mutual crosstalk among poly(ADP-ribose) (PAR), activated PAR polymerase 1 (PARP1) metabolites, and DNA repair machinery has emerged as a key regulatory mechanism of the DNA damage response (DDR). However, there is no conclusive evidence of how PAR precisely controls DDR. Herein, six deubiquitinating enzymes (DUBs) associated with PAR-coupled DDR were identified, and the role of USP39, an inactive DUB involved in spliceosome assembly, was characterized. USP39 rapidly localizes to DNA lesions in a PAR-dependent manner, where it regulates non-homologous end-joining (NHEJ) via a tripartite RG motif located in the N-terminus comprising 46 amino acids (N46). Furthermore, USP39 acts as a molecular trigger for liquid demixing in a PAR-coupled N46-dependent manner, thereby directly interacting with the XRCC4/LIG4 complex during NHEJ. In parallel, the USP39-associated spliceosome complex controls homologous recombination repair in a PAR-independent manner. These findings provide mechanistic insights into how PAR chains precisely control DNA repair processes in the DDR.
Collapse
Affiliation(s)
- Jae Jin Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Life Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seo Yun Lee
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yiseul Hwang
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Soyeon Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Jee Min Chung
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Sangwook Park
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Junghyun Yoon
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hansol Yun
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Jae-Hoon Ji
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hyeseong Cho
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Chan Gil Kim
- Department of Biotechnology, Konkuk University, Chungju 380-701, Republic of Korea
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongtae Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ho Chul Kang
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| |
Collapse
|
22
|
Lemonidis K, Arkinson C, Rennie ML, Walden H. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination. FEBS J 2021; 289:4811-4829. [PMID: 34137174 DOI: 10.1111/febs.16077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by mutations in any of the currently 22 known FA genes. The products of these genes, along with other FA-associated proteins, participate in a biochemical pathway, known as the FA pathway. This pathway is responsible for the repair of DNA interstrand cross-links (ICL) and the maintenance of genomic stability in response to replication stress. At the center of the pathway is the monoubiquitination of two FA proteins, FANCD2 and FANCI, on two specific lysine residues. This is achieved by the combined action of the UBE2T ubiquitin-conjugating enzyme and a large multicomponent E3 ligase, known as the FA-core complex. This E2-E3 pair specifically targets the FANCI-FANCD2 heterodimer (ID2 complex) for ubiquitination on DNA. Deubiquitination of both FANCD2 and FANCI, which is also critical for ICL repair, is achieved by the USP1-UAF1 complex. Recent work suggests that FANCD2 ubiquitination transforms the ID2 complex into a sliding DNA clamp. Further, ID2 ubiquitination on FANCI does not alter the closed ID2 conformation observed upon FANCD2 ubiquitination and the associated ID2Ub complex with high DNA affinity. However, the resulting dimonoubiquitinated complex is highly resistant to USP1-UAF1 deubiquitination. This review will provide an update on recent work focusing on how specificity in FANCD2 ubiquitination and deubiquitination is achieved. Recent findings shedding light to the mechanisms, molecular functions, and biological roles of FANCI/FANCD2 ubiquitination and deubiquitination will be also discussed. ENZYMES: UBA1 (6.2.1.45), UBE2T (2.3.2.23), FANCL (2.3.2.27), USP1 (3.4.19.12).
Collapse
Affiliation(s)
- Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
23
|
Abstract
DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.
Collapse
Affiliation(s)
- Daniel R Semlow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Structural basis of FANCD2 deubiquitination by USP1-UAF1. Nat Struct Mol Biol 2021; 28:356-364. [PMID: 33795880 DOI: 10.1038/s41594-021-00576-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Ubiquitin-specific protease 1 (USP1) acts together with the cofactor UAF1 during DNA repair processes to specifically remove monoubiquitin signals. One substrate of the USP1-UAF1 complex is the monoubiquitinated FANCI-FANCD2 heterodimer, which is involved in the repair of DNA interstrand crosslinks via the Fanconi anemia pathway. Here we determine structures of human USP1-UAF1 with and without ubiquitin and bound to monoubiquitinated FANCI-FANCD2. The crystal structures of USP1-UAF1 reveal plasticity in USP1 and key differences to USP12-UAF1 and USP46-UAF1, two related proteases. A cryo-EM reconstruction of USP1-UAF1 in complex with monoubiquitinated FANCI-FANCD2 highlights a highly orchestrated deubiquitination process, with USP1-UAF1 driving conformational changes in the substrate. An extensive interface between UAF1 and FANCI, confirmed by mutagenesis and biochemical assays, provides a molecular explanation for the requirement of both proteins, despite neither being directly involved in catalysis. Overall, our data provide molecular details of USP1-UAF1 regulation and substrate recognition.
Collapse
|
25
|
Her YR, Wang L, Chepelev I, Manterola M, Berkovits B, Cui K, Zhao K, Wolgemuth DJ. Genome-wide chromatin occupancy of BRDT and gene expression analysis suggest transcriptional partners and specific epigenetic landscapes that regulate gene expression during spermatogenesis. Mol Reprod Dev 2021; 88:141-157. [PMID: 33469999 DOI: 10.1002/mrd.23449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 11/09/2022]
Abstract
BRDT, a member of the BET family of double bromodomain-containing proteins, is essential for spermatogenesis in the mouse and has been postulated to be a key regulator of transcription in meiotic and post-meiotic cells. To understand the function of BRDT in these processes, we first characterized the genome-wide distribution of the BRDT binding sites, in particular within gene units, by ChIP-Seq analysis of enriched fractions of pachytene spermatocytes and round spermatids. In both cell types, BRDT binding sites were mainly located in promoters, first exons, and introns of genes. BRDT binding sites in promoters overlapped with several histone modifications and histone variants associated with active transcription, and were enriched for consensus sequences for specific transcription factors, including MYB, RFX, ETS, and ELF1 in pachytene spermatocytes, and JunD, c-Jun, CRE, and RFX in round spermatids. Subsequent integration of the ChIP-seq data with available transcriptome data revealed that stage-specific gene expression programs are associated with BRDT binding to their gene promoters, with most of the BDRT-bound genes being upregulated. Gene Ontology analysis further identified unique sets of genes enriched in diverse biological processes essential for meiosis and spermiogenesis between the two cell types, suggesting distinct developmentally stage-specific functions for BRDT. Taken together, our data suggest that BRDT cooperates with different transcription factors at distinctive chromatin regions within gene units to regulate diverse downstream target genes that function in male meiosis and spermiogenesis.
Collapse
Affiliation(s)
- Yoon Ra Her
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Li Wang
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Iouri Chepelev
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marcia Manterola
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Binyamin Berkovits
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA.,Department Obstetrics & Gynecology, Columbia University Medical Center, New York, New York, USA.,Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
26
|
Song H, Zhao C, Yu Z, Li Q, Yan R, Qin Y, Jia M, Zhao W. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat Commun 2020; 11:6042. [PMID: 33247121 PMCID: PMC7695691 DOI: 10.1038/s41467-020-19939-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
NOD-like receptor protein 3 (NLRP3) detects microbial infections or endogenous danger signals and activates the NLRP3 inflammasome, which has important functions in host defense and contributes to the pathogenesis of inflammatory diseases, and thereby needs to be tightly controlled. Deubiquitination of NLRP3 is considered a key step in NLRP3 inflammasome activation. However, the mechanisms by which deubiquitination controls NLRP3 inflammasome activation are unclear. Here, we show that the UAF1/USP1 deubiquitinase complex selectively removes K48-linked polyubiquitination of NLRP3 and suppresses its ubiquitination-mediated degradation, enhancing cellular NLRP3 levels, which are indispensable for subsequent NLRP3 inflammasome assembly and activation. In addition, the UAF1/USP12 and UAF1/USP46 complexes promote NF-κB activation, enhance the transcription of NLRP3 and proinflammatory cytokines (including pro-IL-1β, TNF, and IL-6) by inhibiting ubiquitination-mediated degradation of p65. Consequently, Uaf1 deficiency attenuates NLRP3 inflammasome activation and IL-1β secretion both in vitro and in vivo. Our study reveals that the UAF1 deubiquitinase complexes enhance NLRP3 and pro-IL-1β expression by targeting NLRP3 and p65 and licensing NLRP3 inflammasome activation. NLRP3 inflammasome activation is regulated by various signaling pathways to ensure inflammation does not go unchecked. Here the authors show how deubiquitination avoids this regulation to activate the NLRP3 inflammasome through the function of UAF1/USP deubiquitinase complexes.
Collapse
Affiliation(s)
- Hui Song
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Chunyuan Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China.,Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Zhongxia Yu
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Qizhao Li
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Rongzhen Yan
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Ying Qin
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Mutian Jia
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China. .,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
27
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Rennie ML, Lemonidis K, Arkinson C, Chaugule VK, Clarke M, Streetley J, Spagnolo L, Walden H. Differential functions of FANCI and FANCD2 ubiquitination stabilize ID2 complex on DNA. EMBO Rep 2020; 21:e50133. [PMID: 32510829 PMCID: PMC7332966 DOI: 10.15252/embr.202050133] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022] Open
Abstract
The Fanconi anaemia (FA) pathway is a dedicated pathway for the repair of DNA interstrand crosslinks and is additionally activated in response to other forms of replication stress. A key step in the FA pathway is the monoubiquitination of each of the two subunits (FANCI and FANCD2) of the ID2 complex on specific lysine residues. However, the molecular function of these modifications has been unknown for nearly two decades. Here, we find that ubiquitination of FANCD2 acts to increase ID2's affinity for double‐stranded DNA via promoting a large‐scale conformational change in the complex. The resulting complex encircles DNA, by forming a secondary “Arm” ID2 interface. Ubiquitination of FANCI, on the other hand, largely protects the ubiquitin on FANCD2 from USP1‐UAF1 deubiquitination, with key hydrophobic residues of FANCI's ubiquitin being important for this protection. In effect, both of these post‐translational modifications function to stabilize a conformation in which the ID2 complex encircles DNA.
Collapse
Affiliation(s)
- Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Viduth K Chaugule
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mairi Clarke
- Scottish Centre for Macromolecular Imaging, University of Glasgow, Glasgow, UK
| | - James Streetley
- Scottish Centre for Macromolecular Imaging, University of Glasgow, Glasgow, UK
| | - Laura Spagnolo
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes (Basel) 2020; 11:genes11050585. [PMID: 32466131 PMCID: PMC7288313 DOI: 10.3390/genes11050585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
DNA interstrand cross-links (ICLs) represent a major barrier blocking DNA replication fork progression. ICL accumulation results in growth arrest and cell death—particularly in cell populations undergoing high replicative activity, such as cancer and leukemic cells. For this reason, agents able to induce DNA ICLs are widely used as chemotherapeutic drugs. However, ICLs are also generated in cells as byproducts of normal metabolic activities. Therefore, every cell must be capable of rescuing lCL-stalled replication forks while maintaining the genetic stability of the daughter cells in order to survive, replicate DNA and segregate chromosomes at mitosis. Inactivation of the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway by inherited mutations leads to Fanconi anemia (FA), a rare developmental, cancer-predisposing and chromosome-fragility syndrome. FANC/BRCA is the key hub for a complex and wide network of proteins that—upon rescuing ICL-stalled DNA replication forks—allows cell survival. Understanding how cells cope with ICLs is mandatory to ameliorate ICL-based anticancer therapies and provide the molecular basis to prevent or bypass cancer drug resistance. Here, we review our state-of-the-art understanding of the mechanisms involved in ICL resolution during DNA synthesis, with a major focus on how the FANC/BRCA pathway ensures DNA strand opening and prevents genomic instability.
Collapse
|
30
|
Cui S, Lei Z, Guan T, Fan L, Li Y, Geng X, Fu D, Jiang H, Xu S. Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy. Cancer Sci 2020; 111:1567-1581. [PMID: 32133742 PMCID: PMC7226285 DOI: 10.1111/cas.14375] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
Abstract
The histone demethylase lysine-specific demethylase 4A (KDM4A) is reported to be overexpressed and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 or H3K36 methylation marks. However, the biological role and mechanism of KDM4A in prostate cancer (PC) remain unclear. Herein, we reported KDM4A expression was upregulation in phosphatase and tensin homolog knockout mouse prostate tissue. Depletion of KDM4A in PC cells inhibited their proliferation and survival in vivo and vitro. Further studies reveal that USP1 is a deubiquitinase that regulates KDM4A K48-linked deubiquitin and stability. Interestingly, we found c-Myc was a key downstream effector of the USP1-KDM4A/androgen receptor axis in driving PC cell proliferation. Notably, upregulation of KDM4A expression with high USP1 expression was observed in most prostate tumors and inhibition of USP1 promotes PC cells response to therapeutic agent enzalutamide. Our studies propose USP1 could be an anticancer therapeutic target in PC.
Collapse
Affiliation(s)
- Shu‐Zhong Cui
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Zi‐Ying Lei
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Tian‐Pei Guan
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Ling‐Ling Fan
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - You‐Qiang Li
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xin‐Yan Geng
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - De‐Xue Fu
- Department of SurgeryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Hao‐Wu Jiang
- Department of AnesthesiologyCenter for the Study of ItchWashington University School of MedicineSt. LouisMOUSA
| | - Song‐Hui Xu
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
31
|
Liang F, Miller AS, Tang C, Maranon D, Williamson EA, Hromas R, Wiese C, Zhao W, Sung P, Kupfer GM. The DNA-binding activity of USP1-associated factor 1 is required for efficient RAD51-mediated homologous DNA pairing and homology-directed DNA repair. J Biol Chem 2020; 295:8186-8194. [PMID: 32350107 DOI: 10.1074/jbc.ra120.013714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Indexed: 11/06/2022] Open
Abstract
USP1-associated factor 1 (UAF1) is an integral component of the RAD51-associated protein 1 (RAD51AP1)-UAF1-ubiquitin-specific peptidase 1 (USP1) trimeric deubiquitinase complex. This complex acts on DNA-bound, monoubiquitinated Fanconi anemia complementation group D2 (FANCD2) protein in the Fanconi anemia pathway of the DNA damage response. Moreover, RAD51AP1 and UAF1 cooperate to enhance homologous DNA pairing mediated by the recombinase RAD51 in DNA repair via the homologous recombination (HR) pathway. However, whereas the DNA-binding activity of RAD51AP1 has been shown to be important for RAD51-mediated homologous DNA pairing and HR-mediated DNA repair, the role of DNA binding by UAF1 in these processes is unclear. We have isolated mutant UAF1 variants that are impaired in DNA binding and tested them together with RAD51AP1 in RAD51-mediated HR. This biochemical analysis revealed that the DNA-binding activity of UAF1 is indispensable for enhanced RAD51 recombinase activity within the context of the UAF1-RAD51AP1 complex. In cells, DNA-binding deficiency of UAF1 increased DNA damage sensitivity and impaired HR efficiency, suggesting that UAF1 and RAD51AP1 have coordinated roles in DNA binding during HR and DNA damage repair. Our findings show that even though UAF1's DNA-binding activity is redundant with that of RAD51AP1 in FANCD2 deubiquitination, it is required for efficient HR-mediated chromosome damage repair.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Caroline Tang
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Williamson
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gary M Kupfer
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA .,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Sewduth RN, Baietti MF, Sablina AA. Cracking the Monoubiquitin Code of Genetic Diseases. Int J Mol Sci 2020; 21:ijms21093036. [PMID: 32344852 PMCID: PMC7246618 DOI: 10.3390/ijms21093036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Ubiquitination is a versatile and dynamic post-translational modification in which single ubiquitin molecules or polyubiquitin chains are attached to target proteins, giving rise to mono- or poly-ubiquitination, respectively. The majority of research in the ubiquitin field focused on degradative polyubiquitination, whereas more recent studies uncovered the role of single ubiquitin modification in important physiological processes. Monoubiquitination can modulate the stability, subcellular localization, binding properties, and activity of the target proteins. Understanding the function of monoubiquitination in normal physiology and pathology has important therapeutic implications, as alterations in the monoubiquitin pathway are found in a broad range of genetic diseases. This review highlights a link between monoubiquitin signaling and the pathogenesis of genetic disorders.
Collapse
Affiliation(s)
- Raj Nayan Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (R.N.S.); (M.F.B.)
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Maria Francesca Baietti
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (R.N.S.); (M.F.B.)
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anna A. Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (R.N.S.); (M.F.B.)
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
33
|
Alcón P, Shakeel S, Chen ZA, Rappsilber J, Patel KJ, Passmore LA. FANCD2-FANCI is a clamp stabilized on DNA by monoubiquitination of FANCD2 during DNA repair. Nat Struct Mol Biol 2020; 27:240-248. [PMID: 32066963 PMCID: PMC7067600 DOI: 10.1038/s41594-020-0380-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/14/2020] [Indexed: 01/18/2023]
Abstract
Vertebrate DNA crosslink repair excises toxic replication-blocking DNA crosslinks. Numerous factors involved in crosslink repair have been identified, and mutations in their corresponding genes cause Fanconi anemia (FA). A key step in crosslink repair is monoubiquitination of the FANCD2-FANCI heterodimer, which then recruits nucleases to remove the DNA lesion. Here, we use cryo-EM to determine the structures of recombinant chicken FANCD2 and FANCI complexes. FANCD2-FANCI adopts a closed conformation when the FANCD2 subunit is monoubiquitinated, creating a channel that encloses double-stranded DNA (dsDNA). Ubiquitin is positioned at the interface of FANCD2 and FANCI, where it acts as a covalent molecular pin to trap the complex on DNA. In contrast, isolated FANCD2 is a homodimer that is unable to bind DNA, suggestive of an autoinhibitory mechanism that prevents premature activation. Together, our work suggests that FANCD2-FANCI is a clamp that is locked onto DNA by ubiquitin, with distinct interfaces that may recruit other DNA repair factors.
Collapse
Affiliation(s)
- Pablo Alcón
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Zhuo A Chen
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
34
|
Masuda Y, Masutani C. Spatiotemporal regulation of PCNA ubiquitination in damage tolerance pathways. Crit Rev Biochem Mol Biol 2019; 54:418-442. [PMID: 31736364 DOI: 10.1080/10409238.2019.1687420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA is constantly exposed to a wide variety of exogenous and endogenous agents, and most DNA lesions inhibit DNA synthesis. To cope with such problems during replication, cells have molecular mechanisms to resume DNA synthesis in the presence of DNA lesions, which are known as DNA damage tolerance (DDT) pathways. The concept of ubiquitination-mediated regulation of DDT pathways in eukaryotes was established via genetic studies in the yeast Saccharomyces cerevisiae, in which two branches of the DDT pathway are regulated via ubiquitination of proliferating cell nuclear antigen (PCNA): translesion DNA synthesis (TLS) and homology-dependent repair (HDR), which are stimulated by mono- and polyubiquitination of PCNA, respectively. Over the subsequent nearly two decades, significant progress has been made in understanding the mechanisms that regulate DDT pathways in other eukaryotes. Importantly, TLS is intrinsically error-prone because of the miscoding nature of most damaged nucleotides and inaccurate replication of undamaged templates by TLS polymerases (pols), whereas HDR is theoretically error-free because the DNA synthesis is thought to be predominantly performed by pol δ, an accurate replicative DNA pol, using the undamaged sister chromatid as its template. Thus, the regulation of the choice between the TLS and HDR pathways is critical to determine the appropriate biological outcomes caused by DNA damage. In this review, we summarize our current understanding of the species-specific regulatory mechanisms of PCNA ubiquitination and how cells choose between TLS and HDR. We then provide a hypothetical model for the spatiotemporal regulation of DDT pathways in human cells.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
35
|
Ohsugi T, Yamaguchi K, Zhu C, Ikenoue T, Takane K, Shinozaki M, Tsurita G, Yano H, Furukawa Y. Anti-apoptotic effect by the suppression of IRF1 as a downstream of Wnt/β-catenin signaling in colorectal cancer cells. Oncogene 2019; 38:6051-6064. [PMID: 31292489 DOI: 10.1038/s41388-019-0856-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
Abstract
Impaired Wnt signaling pathway plays a crucial role in the development of colorectal cancer through activation of the β-catenin/TCF7L2 complex. Although genes upregulated by Wnt/β-catenin signaling have been intensively studied, the roles of downregulated genes are poorly understood. Previously, we reported that interferon-induced proteins with tetratricopeptide repeats 2 (IFIT2) was downregulated by the Wnt/β-catenin signaling, and that the suppressed expression of IFIT2 conferred antiapoptotic property to colorectal cancer (CRC) cells. However, the mechanisms underlying how Wnt/β-catenin signaling regulates IFIT2 remain to be elucidated. In this study, we have uncovered that the expression of IFIT2 is induced by IRF1, which is negatively regulated by the Wnt/β-catenin signaling. In addition, we found that downregulation of IRF1 is mediated by its degradation through the ubiquitination-proteasome pathway, and that decreased activity of a deubiquitinase complex containing USP1 and UAF1 is involved in the degradation of IRF1 by Wnt/β-catenin signaling. These data should provide better understanding of the Wnt signaling pathway and human carcinogenesis.
Collapse
Affiliation(s)
- Tomoyuki Ohsugi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | - Chi Zhu
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | - Kiyoko Takane
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | - Masaru Shinozaki
- Department of Surgery, IMSUT Hospital, Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | - Giichiro Tsurita
- Department of Surgery, IMSUT Hospital, Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | - Hideaki Yano
- Department of Surgery, Center Hospital of the National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
36
|
Liang F, Miller AS, Longerich S, Tang C, Maranon D, Williamson EA, Hromas R, Wiese C, Kupfer GM, Sung P. DNA requirement in FANCD2 deubiquitination by USP1-UAF1-RAD51AP1 in the Fanconi anemia DNA damage response. Nat Commun 2019; 10:2849. [PMID: 31253762 PMCID: PMC6599204 DOI: 10.1038/s41467-019-10408-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
Fanconi anemia (FA) is a multigenic disease of bone marrow failure and cancer susceptibility stemming from a failure to remove DNA crosslinks and other chromosomal lesions. Within the FA DNA damage response pathway, DNA-dependent monoubiquitinaton of FANCD2 licenses downstream events, while timely FANCD2 deubiquitination serves to extinguish the response. Here, we show with reconstituted biochemical systems, which we developed, that efficient FANCD2 deubiquitination by the USP1-UAF1 complex is dependent on DNA and DNA binding by UAF1. Surprisingly, we find that the DNA binding activity of the UAF1-associated protein RAD51AP1 can substitute for that of UAF1 in FANCD2 deubiquitination in our biochemical system. We also reveal the importance of DNA binding by UAF1 and RAD51AP1 in FANCD2 deubiquitination in the cellular setting. Our results provide insights into a key step in the FA pathway and help define the multifaceted role of the USP1-UAF1-RAD51AP1 complex in DNA damage tolerance and genome repair. In the Fanconi anemia pathway, deubiquitination of FANCD2 is a fundamental regulatory step. Here, the authors have developed a set of biochemical tools to reconstitute FANCD2 deubiquitination by recombinant USP1-UAF1-RAD51AP1 and reveal critical mechanistic details of the process.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Simonne Longerich
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Tang
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth A Williamson
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gary M Kupfer
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA. .,Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
37
|
Hu WF, Krieger KL, Lagundžin D, Li X, Cheung RS, Taniguchi T, Johnson KR, Bessho T, Monteiro ANA, Woods NT. CTDP1 regulates breast cancer survival and DNA repair through BRCT-specific interactions with FANCI. Cell Death Discov 2019; 5:105. [PMID: 31240132 PMCID: PMC6584691 DOI: 10.1038/s41420-019-0185-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
BRCA1 C-terminal domains are found in a specialized group of 23 proteins that function in the DNA damage response to protect genomic integrity. C-terminal domain phosphatase 1 (CTDP1) is the only phosphatase with a BRCA1 C-terminal domain in the human proteome, yet direct participation in the DNA damage response has not been reported. Examination of the CTDP1 BRCA1 C-terminal domain-specific protein interaction network revealed 103 high confidence interactions enriched in DNA damage response proteins, including FANCA and FANCI that are central to the Fanconi anemia DNA repair pathway necessary for the resolution of DNA interstrand crosslink damage. CTDP1 expression promotes DNA damage-induced FANCA and FANCD2 foci formation and enhances homologous recombination repair efficiency. CTDP1 was found to regulate multiple aspects of FANCI activity, including chromatin localization, interaction with γ-H2AX, and SQ motif phosphorylations. Knockdown of CTDP1 increases MCF-10A sensitivity to DNA interstrand crosslinks and double-strand breaks, but not ultraviolet radiation. In addition, CTDP1 knockdown impairs in vitro and in vivo growth of breast cancer cell lines. These results elucidate the molecular functions of CTDP1 in Fanconi anemia interstrand crosslink repair and identify this protein as a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Wen-Feng Hu
- 1Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA.,2Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Kimiko L Krieger
- 1Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Dragana Lagundžin
- 1Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA.,3Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Xueli Li
- 4Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612 USA
| | - Ronald S Cheung
- 5Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Toshiyasu Taniguchi
- 5Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA.,6Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa Japan
| | - Keith R Johnson
- 1Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Tadayoshi Bessho
- 1Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Alvaro N A Monteiro
- 4Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612 USA
| | - Nicholas T Woods
- 1Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
38
|
Sonego M, Pellarin I, Costa A, Vinciguerra GLR, Coan M, Kraut A, D’Andrea S, Dall’Acqua A, Castillo-Tong DC, Califano D, Losito S, Spizzo R, Couté Y, Vecchione A, Belletti B, Schiappacassi M, Baldassarre G. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. SCIENCE ADVANCES 2019; 5:eaav3235. [PMID: 31086816 PMCID: PMC6506239 DOI: 10.1126/sciadv.aav3235] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/01/2019] [Indexed: 06/01/2023]
Abstract
Resistance to platinum-based chemotherapy is a common event in patients with cancer, generally associated with tumor dissemination and metastasis. Whether platinum treatment per se activates molecular pathways linked to tumor spreading is not known. Here, we report that the ubiquitin-specific protease 1 (USP1) mediates ovarian cancer cell resistance to platinum, by regulating the stability of Snail, which, in turn, promotes tumor dissemination. At the molecular level, we observed that upon platinum treatment, USP1 is phosphorylated by ATM and ATR and binds to Snail. Then, USP1 de-ubiquitinates and stabilizes Snail expression, conferring resistance to platinum, increased stem cell-like features, and metastatic ability. Consistently, knockout or pharmacological inhibition of USP1 increased platinum sensitivity and decreased metastatic dissemination in a Snail-dependent manner. Our findings identify Snail as a USP1 target and open the way to a novel strategy to overcome platinum resistance and more successfully treat patients with ovarian cancer.
Collapse
Affiliation(s)
- Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Alice Costa
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza,” Santo Andrea Hospital, 00189 Rome, Italy
| | - Michela Coan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Alexandra Kraut
- University of Grenoble Alpes, CEA, INSERM, BIG-BGE, F-38000 Grenoble, France
| | - Sara D’Andrea
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Alessandra Dall’Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Dan Cacsire Castillo-Tong
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Wien, 1090 Vienna, Austria
| | - Daniela Califano
- Genomica Funzionale, Fondazione G. Pascale, IRCCS, National Cancer Institute, 80100 Naples, Italy
| | - Simona Losito
- Anatomia Patologica, Fondazione G. Pascale, IRCCS, National Cancer Institute, 80100 Naples, Italy
| | - Riccardo Spizzo
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Yohann Couté
- University of Grenoble Alpes, CEA, INSERM, BIG-BGE, F-38000 Grenoble, France
| | - Andrea Vecchione
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza,” Santo Andrea Hospital, 00189 Rome, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Monica Schiappacassi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| |
Collapse
|
39
|
Abstract
In higher eukaryotes, DNA damage repair response pathways are orchestrated by several molecular signals including ubiquitination. In particular the repair of DNA interstrand crosslinks, toxic to transcription and replication processes, involve the activation of the Fanconi anemia repair pathway. At the heart of this pathway lies the monoubiquitination of FANCD2 and FANCI proteins, which triggers the recruitment of DNA repair factors. A major road block in our understanding of this fundamental repair pathway arises from the challenge with generating sufficient quantities of site-specifically monoubiquitinated FANCD2 and FANCI proteins to enable mechanistic and molecular studies. Current in vitro methods rely on the purification of a large (~0.8MDa), multiprotein E3 complex that can only partially monoubiquitinate a FANCD2-FANCI-DNA complex. In this chapter, we describe detailed protocols for the preparation of homogeneously and natively monoubiquitinated FANCD2 and FANCI proteins in isolation. The method relies on the use of a minimal E3 module and an engineered E2 variant that together drive site-specific ubiquitination of the isolated substrates, without the requirement of DNA cofactors. Using the enzymatic approach, we also demonstrate how added functionalities such as a fluorescently labeled ubiquitin can be conjugated on the FANCD2 and FANCI substrates, thus enabling multiple downstream applications.
Collapse
|
40
|
Khanal S, Galloway DA. High-risk human papillomavirus oncogenes disrupt the Fanconi anemia DNA repair pathway by impairing localization and de-ubiquitination of FancD2. PLoS Pathog 2019; 15:e1007442. [PMID: 30818369 PMCID: PMC6413947 DOI: 10.1371/journal.ppat.1007442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent expression of high-risk HPV oncogenes is necessary for the development of anogenital and oropharyngeal cancers. Here, we show that E6/E7 expressing cells are hypersensitive to DNA crosslinking agent cisplatin and have defects in repairing DNA interstrand crosslinks (ICL). Importantly, we elucidate how E6/E7 attenuate the Fanconi anemia (FA) DNA crosslink repair pathway. Though E6/E7 activated the pathway by increasing FancD2 monoubiquitination and foci formation, they inhibited the completion of the repair by multiple mechanisms. E6/E7 impaired FancD2 colocalization with double-strand breaks (DSB), which subsequently hindered the recruitment of the downstream protein Rad51 to DSB in E6 cells. Further, E6 expression caused delayed FancD2 de-ubiquitination, an important process for effective ICL repair. Delayed FancD2 de-ubiquitination was associated with the increased chromatin retention of FancD2 hindering USP1 de-ubiquitinating activity, and persistently activated ATR/CHK-1/pS565 FancI signaling. E6 mediated p53 degradation did not hamper the cell cycle specific process of FancD2 modifications but abrogated repair by disrupting FancD2 de-ubiquitination. Further, E6 reduced the expression and foci formation of Palb2, which is a repair protein downstream of FancD2. These findings uncover unique mechanisms by which HPV oncogenes contribute to genomic instability and the response to cisplatin therapies.
Collapse
Affiliation(s)
- Sujita Khanal
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Denise A. Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
41
|
Suan Lim K, Li H, Roberts EA, Gaudiano EF, Clairmont C, Sambel L, Ponnienselvan K, Liu JC, Yang C, Kozono D, Parmar K, Yusufzai T, Zheng N, D’Andrea AD. USP1 Is Required for Replication Fork Protection in BRCA1-Deficient Tumors. Mol Cell 2018; 72:925-941.e4. [PMID: 30576655 PMCID: PMC6390489 DOI: 10.1016/j.molcel.2018.10.045] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 08/23/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
Abstract
BRCA1-deficient tumor cells have defects in homologous-recombination repair and replication fork stability, resulting in PARP inhibitor sensitivity. Here, we demonstrate that a deubiquitinase, USP1, is upregulated in tumors with mutations in BRCA1. Knockdown or inhibition of USP1 resulted in replication fork destabilization and decreased viability of BRCA1-deficient cells, revealing a synthetic lethal relationship. USP1 binds to and is stimulated by fork DNA. A truncated form of USP1, lacking its DNA-binding region, was not stimulated by DNA and failed to localize and protect replication forks. Persistence of monoubiquitinated PCNA at the replication fork was the mechanism of cell death in the absence of USP1. Taken together, USP1 exhibits DNA-mediated activation at the replication fork, protects the fork, and promotes survival in BRCA1-deficient cells. Inhibition of USP1 may be a useful treatment for a subset of PARP-inhibitor-resistant BRCA1-deficient tumors with acquired replication fork stabilization.
Collapse
Affiliation(s)
- Kah Suan Lim
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Heng Li
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Emma A. Roberts
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Emily F. Gaudiano
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Connor Clairmont
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Larissa Sambel
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA,Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Jessica C. Liu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Chunyu Yang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA,Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA,Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Timur Yusufzai
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA,Howard Hughes Medical Institute, Box 357280, Seattle, WA
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA,Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| |
Collapse
|
42
|
USP1 inhibition destabilizes KPNA2 and suppresses breast cancer metastasis. Oncogene 2018; 38:2405-2419. [DOI: 10.1038/s41388-018-0590-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/18/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
|
43
|
Arkinson C, Chaugule VK, Toth R, Walden H. Specificity for deubiquitination of monoubiquitinated FANCD2 is driven by the N-terminus of USP1. Life Sci Alliance 2018; 1:e201800162. [PMID: 30456385 PMCID: PMC6238601 DOI: 10.26508/lsa.201800162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022] Open
Abstract
Deubiquitination of FANCD2, FANCI, and PCNA by USP1 is essential for DNA repair signalling. Reconstitution of the system reveals that USP1-mediated specificity towards K561 of FANCD2 is directed by a unique sequence at USP1's N-terminus. The Fanconi anemia pathway for DNA interstrand crosslink repair and the translesion synthesis pathway for DNA damage tolerance both require cycles of monoubiquitination and deubiquitination. The ubiquitin-specific protease-1 (USP1), in complex with USP1-associated factor 1, regulates multiple DNA repair pathways by deubiquitinating monoubiquitinated Fanconi anemia group D2 protein (FANCD2), Fanconi anemia group I protein (FANCI), and proliferating cell nuclear antigen (PCNA). Loss of USP1 activity gives rise to chromosomal instability. Whereas many USPs hydrolyse ubiquitin–ubiquitin linkages, USP1 targets ubiquitin–substrate conjugates at specific sites. The molecular basis of USP1's specificity for multiple substrates is poorly understood. Here, we reconstitute deubiquitination of purified monoubiquitinated FANCD2, FANCI, and PCNA and show that molecular determinants for substrate deubiquitination by USP1 reside within the highly conserved and extended N-terminus. We found that the N-terminus of USP1 harbours a FANCD2-specific binding sequence required for deubiquitination of K561 on FANCD2. In contrast, the N-terminus is not required for direct PCNA or FANCI deubiquitination. Furthermore, we show that the N-terminus of USP1 is sufficient to engineer specificity in a more promiscuous USP.
Collapse
Affiliation(s)
- Connor Arkinson
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Viduth K Chaugule
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Rachel Toth
- The Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
44
|
Yates M, Maréchal A. Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. Int J Mol Sci 2018; 19:E2909. [PMID: 30257459 PMCID: PMC6213728 DOI: 10.3390/ijms19102909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
The complete and accurate replication of the genome is a crucial aspect of cell proliferation that is often perturbed during oncogenesis. Replication stress arising from a variety of obstacles to replication fork progression and processivity is an important contributor to genome destabilization. Accordingly, cells mount a complex response to this stress that allows the stabilization and restart of stalled replication forks and enables the full duplication of the genetic material. This response articulates itself on three important platforms, Replication Protein A/RPA-coated single-stranded DNA, the DNA polymerase processivity clamp PCNA and the FANCD2/I Fanconi Anemia complex. On these platforms, the recruitment, activation and release of a variety of genome maintenance factors is regulated by post-translational modifications including mono- and poly-ubiquitylation. Here, we review recent insights into the control of replication fork stability and restart by the ubiquitin system during replication stress with a particular focus on human cells. We highlight the roles of E3 ubiquitin ligases, ubiquitin readers and deubiquitylases that provide the required flexibility at stalled forks to select the optimal restart pathways and rescue genome stability during stressful conditions.
Collapse
Affiliation(s)
- Maïlyn Yates
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
45
|
Cheung RS, Castella M, Abeyta A, Gafken PR, Tucker N, Taniguchi T. Ubiquitination-Linked Phosphorylation of the FANCI S/TQ Cluster Contributes to Activation of the Fanconi Anemia I/D2 Complex. Cell Rep 2018. [PMID: 28636932 DOI: 10.1016/j.celrep.2017.05.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Repair of interstrand crosslinks by the Fanconi anemia (FA) pathway requires both monoubiquitination and de-ubiquitination of the FANCI/FANCD2 (FANCI/D2) complex. In the standing model, the phosphorylation of six sites in the FANCI S/TQ cluster domain occurs upstream of, and promotes, FANCI/D2 monoubiquitination. We generated phospho-specific antibodies against three different S/TQ cluster sites (serines 556, 559, and 565) on human FANCI and found that, in contrast to the standing model, distinct FANCI sites were phosphorylated either predominantly upstream (ubiquitination independent; serine 556) or downstream (ubiquitination-linked; serines 559 and 565) of FANCI/D2 monoubiquitination. Ubiquitination-linked FANCI phosphorylation inhibited FANCD2 de-ubiquitination and bypassed the need to de-ubiquitinate FANCD2 to achieve effective interstrand crosslink repair. USP1 depletion suppressed ubiquitination-linked FANCI phosphorylation despite increasing FANCI/D2 monoubiquitination, providing an explanation of why FANCD2 de-ubiquitination is important for function of the FA pathway. Our work results in a refined model of how FANCI phosphorylation activates the FANCI/D2 complex.
Collapse
Affiliation(s)
- Ronald S Cheung
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Maria Castella
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Antonio Abeyta
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Philip R Gafken
- Proteomics Core Facility, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nyka Tucker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Toshiyasu Taniguchi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
46
|
Federico MB, Campodónico P, Paviolo NS, Gottifredi V. Beyond interstrand crosslinks repair: contribution of FANCD2 and other Fanconi Anemia proteins to the replication of DNA. Mutat Res 2018; 808:83-92. [PMID: 29031493 DOI: 10.1016/j.mrfmmm.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Biallelic mutations of FANCD2 and other components of the Fanconi Anemia (FA) pathway cause a disease characterized by bone marrow failure, cancer predisposition and a striking sensitivity to agents that induce crosslinks between the two complementary DNA strands (inter-strand crosslinks-ICL). Such genotoxins were used to characterize the contribution of the FA pathway to the genomic stability of cells, thus unravelling the biological relevance of ICL repair in the context of the disease. Notwithstanding this, whether the defect in ICL repair as the sole trigger for the multiple physiological alterations observed in FA patients is still under investigation. Remarkably, ICL-independent functions of FANCD2 and other components of the FA pathway were recently reported. FANCD2 contributes to the processing of very challenging double strand ends (DSEs: one ended Double Strand Breaks -DSBs- created during DNA replication). Other ICL-independent functions of FANCD2 include prevention of DNA breakage at stalled replication forks and facilitation of chromosome segregation at the end of M phase. The current understanding of replication-associated functions of FANCD2 and its relevance for the survival of genomically stable cells is herein discussed.
Collapse
Affiliation(s)
- Maria B Federico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Paola Campodónico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Natalia S Paviolo
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
47
|
Bhattacharjee S, Nandi S. DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Commun Signal 2017; 15:41. [PMID: 29017571 PMCID: PMC5635482 DOI: 10.1186/s12964-017-0195-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Fanconi Anemia (FA) is a rare, inherited genomic instability disorder, caused by mutations in genes involved in the repair of interstrand DNA crosslinks (ICLs). The FA signaling network contains a unique nuclear protein complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. FA proteins act at different steps of ICL repair in sensing, recognition and processing of DNA lesions. The multi-protein network is tightly regulated by complex mechanisms, such as ubiquitination, phosphorylation, and degradation signals that are critical for the maintenance of genome integrity and suppressing tumorigenesis. Here, we discuss recent advances in our understanding of how the FA proteins participate in ICL repair and regulation of the FA signaling network that assures the safeguard of the genome. We further discuss the potential application of designing small molecule inhibitors that inhibit the FA pathway and are synthetic lethal with DNA repair enzymes that can be used for cancer therapeutics.
Collapse
|
48
|
Federico MB, Campodónico P, Paviolo NS, Gottifredi V. ACCIDENTAL DUPLICATION: Beyond interstrand crosslinks repair: Contribution of FANCD2 and other Fanconi Anemia proteins to the replication of DNA. Mutat Res 2017:S0027-5107(17)30167-7. [PMID: 28966006 DOI: 10.1016/j.mrfmmm.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 11/30/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/ 10.1016/j.mrfmmm.2017.09.006. This duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Maria B Federico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Paola Campodónico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Natalia S Paviolo
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
49
|
Cheung RS, Taniguchi T. Recent insights into the molecular basis of Fanconi anemia: genes, modifiers, and drivers. Int J Hematol 2017; 106:335-344. [PMID: 28631178 PMCID: PMC5904331 DOI: 10.1007/s12185-017-2283-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/14/2017] [Indexed: 02/06/2023]
Abstract
Fanconi anemia (FA), the most common form of inherited bone marrow failure, predisposes to leukemia and solid tumors. FA is caused by the genetic disruption of a cellular pathway that repairs DNA interstrand crosslinks. The impaired function of this pathway, and the genetic instability that results, is considered the main pathogenic mechanism behind this disease. The identification of breast cancer susceptibility genes (for example, BRCA1/FANCS and BRCA2/FANCD1) as being major players in the FA pathway has led to a surge in molecular studies, resulting in the concept of the FA-BRCA pathway. In this review, we discuss recent advances in the molecular pathogenesis of FA from three viewpoints: (a) new FA genes, (b) modifier pathways that influence the cellular and clinical phenotypes of FA and (c) non-canonical functions of FA genes that may drive disease progression independently of deficient DNA repair. Potential therapeutic approaches for FA that are relevant to each will also be proposed.
Collapse
Affiliation(s)
- Ronald S Cheung
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA, 98109-1024, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA, 98109-1024, USA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA, 98109-1024, USA
| | - Toshiyasu Taniguchi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA, 98109-1024, USA.
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA, 98109-1024, USA.
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
50
|
NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Sci Rep 2017; 7:5445. [PMID: 28710492 PMCID: PMC5511132 DOI: 10.1038/s41598-017-05325-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 11/11/2022] Open
Abstract
NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.
Collapse
|