1
|
Leger MM, Gawryluk RMR. Evolution: A gene-rich mitochondrial genome sheds light on the last eukaryotic common ancestor. Curr Biol 2024; 34:R776-R779. [PMID: 39163838 DOI: 10.1016/j.cub.2024.06.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
A new mitochondrial genome is the most gene-rich one found in a major division of eukaryotes - and it shares remarkable features with that of one of its most distant relatives.
Collapse
Affiliation(s)
- Michelle M Leger
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Ryan M R Gawryluk
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
2
|
Weidenbach K, Gutt M, Cassidy L, Chibani C, Schmitz RA. Small Proteins in Archaea, a Mainly Unexplored World. J Bacteriol 2022; 204:e0031321. [PMID: 34543104 PMCID: PMC8765429 DOI: 10.1128/jb.00313-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In recent years, increasing numbers of small proteins have moved into the focus of science. Small proteins have been identified and characterized in all three domains of life, but the majority remains functionally uncharacterized, lack secondary structure, and exhibit limited evolutionary conservation. While quite a few have already been described for bacteria and eukaryotic organisms, the amount of known and functionally analyzed archaeal small proteins is still very limited. In this review, we compile the current state of research, show strategies for systematic approaches for global identification of small archaeal proteins, and address selected functionally characterized examples. Besides, we document exemplarily for one archaeon the tool development and optimization to identify small proteins using genome-wide approaches.
Collapse
Affiliation(s)
- Katrin Weidenbach
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Miriam Gutt
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Liam Cassidy
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Cynthia Chibani
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
3
|
Warshamanage R, Yamashita K, Murshudov GN. EMDA: A Python package for Electron Microscopy Data Analysis. J Struct Biol 2021; 214:107826. [PMID: 34915128 PMCID: PMC8935390 DOI: 10.1016/j.jsb.2021.107826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022]
Abstract
An open-source Python library EMDA for cryo-EM map and model manipulation is presented with a specific focus on validation. The use of several functionalities in the library is presented through several examples. The utility of local correlation as a metric for identifying map-model differences and unmodeled regions in maps, and how it is used as a metric of map-model validation is demonstrated. The mapping of local correlation to individual atoms, and its use to draw insights on local signal variations are discussed. EMDA’s likelihood-based map overlay is demonstrated by carrying out a superposition of two domains in two related structures. The overlay is carried out first to bring both maps into the same coordinate frame and then to estimate the relative movement of domains. Finally, the map magnification refinement in EMDA is presented with an example to highlight the importance of adjusting the map magnification in structural comparison studies.
Collapse
Affiliation(s)
- Rangana Warshamanage
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Keitaro Yamashita
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
4
|
Petrů M, Dohnálek V, Füssy Z, Doležal P. Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments. Mol Biol Evol 2021; 38:5241-5254. [PMID: 34436602 PMCID: PMC8662606 DOI: 10.1093/molbev/msab253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formation of mitochondria by the conversion of a bacterial endosymbiont was a key moment in the evolution of eukaryotes. It was made possible by outsourcing the endosymbiont's genetic control to the host nucleus, while developing the import machinery for proteins synthesized on cytosolic ribosomes. The original protein export machines of the nascent organelle remained to be repurposed or were completely abandoned. This review follows the evolutionary fates of three prokaryotic inner membrane translocases Sec, Tat, and YidC. Homologs of all three translocases can still be found in current mitochondria, but with different importance for mitochondrial function. Although the mitochondrial YidC homolog, Oxa1, became an omnipresent independent insertase, the other two remained only sporadically present in mitochondria. Only a single substrate is known for the mitochondrial Tat and no function has yet been assigned for the mitochondrial Sec. Finally, this review compares these ancestral mitochondrial proteins with their paralogs operating in the plastids and the endomembrane system.
Collapse
Affiliation(s)
- Markéta Petrů
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
5
|
Lateral gate dynamics of the bacterial translocon during cotranslational membrane protein insertion. Proc Natl Acad Sci U S A 2021; 118:2100474118. [PMID: 34162707 PMCID: PMC8256087 DOI: 10.1073/pnas.2100474118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Membrane proteins are inserted into the phospholipid bilayer through a lateral gate in the translocon, SecYEG in bacteria, which is expected to be closed in the resting state. Here, we use single-molecule FRET to study the translocon dynamics on timescales ranging from submilliseconds to seconds. We show that the lateral gate is highly dynamic, fluctuating through a continuum of states from open to closed. The insertase YidC facilitates the insertion of transmembrane helices by shifting the fluctuations toward more open conformations. Spontaneous fluctuations allow the gate to rapidly release newly synthesized transmembrane segments into the phospholipid bilayer during ongoing translation. The results highlight the important role of rapid spontaneous fluctuations during the key step in the biogenesis of inner-membrane proteins. During synthesis of membrane proteins, transmembrane segments (TMs) of nascent proteins emerging from the ribosome are inserted into the central pore of the translocon (SecYEG in bacteria) and access the phospholipid bilayer through the open lateral gate formed of two helices of SecY. Here we use single-molecule fluorescence resonance energy transfer to monitor lateral-gate fluctuations in SecYEG embedded in nanodiscs containing native membrane phospholipids. We find the lateral gate to be highly dynamic, sampling the whole range of conformations between open and closed even in the absence of ligands, and we suggest a statistical model-free approach to evaluate the ensemble dynamics. Lateral gate fluctuations take place on both short (submillisecond) and long (subsecond) timescales. Ribosome binding and TM insertion do not halt fluctuations but tend to increase sampling of the open state. When YidC, a constituent of the holotranslocon, is bound to SecYEG, TM insertion facilitates substantial opening of the gate, which may aid in the folding of YidC-dependent polytopic membrane proteins. Mutations in lateral gate residues showing in vivo phenotypes change the range of favored states, underscoring the biological significance of lateral gate fluctuations. The results suggest how rapid fluctuations of the lateral gate contribute to the biogenesis of inner-membrane proteins.
Collapse
|
6
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Vimer S, Ben-Nissan G, Sharon M. Direct characterization of overproduced proteins by native mass spectrometry. Nat Protoc 2020; 15:236-265. [PMID: 31942081 DOI: 10.1038/s41596-019-0233-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Proteins derived by recombinant technologies must be characterized to ensure quality, consistency and optimal production. These properties are usually assayed following purification procedures that are time consuming and labor intensive. Here, we describe a native mass spectrometry (MS) approach, direct-MS, for rapid characterization of intact overexpressed proteins immediately from crude samples. In this protocol, we discuss the multiple applications of the method and outline the necessary steps required for sample preparation, data collection and interpretation of results. We begin with the sample preparation workflows, which are relevant for recombinant proteins produced within bacteria, those analyzed straight from crude cell lysate, and secreted proteins generated in eukaryotic expression systems that are assessed directly from the growth culture medium. We continue with the mass acquisition steps that enable immediate definition of properties such as expressibility, solubility, assembly state, folding, overall structure, stability, post-translational modifications and associations with biomolecules. We demonstrate the applicability of the method by presenting the characterization of a computationally designed toxin-antitoxin heterodimer, activity and protein-interaction determination of a regulatory protein and detailed glycosylation analysis of a designed intact antibody. Overall, we describe a simple and rapid protocol that is relevant to both prokaryotic and eukaryotic expression systems and can be carried out on multiple mass spectrometers, such as Orbitrap and quadrupole time-of-flight (QTOF)-based mass spectroscopy platforms, that enable intact protein detection. The procedure takes from 30 min to several hours, from sample collection to data acquisition, depending on the depth of MS analysis.
Collapse
Affiliation(s)
- Shay Vimer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Abstract
Single-molecule studies provide unprecedented details about processes that are difficult to grasp by bulk biochemical assays that yield ensemble-averaged results. One of these processes is the translocation and insertion of proteins across and into the bacterial cytoplasmic membrane. This process is facilitated by the universally conserved secretion (Sec) system, a multi-subunit membrane protein complex that consists of dissociable cytoplasmic targeting components, a molecular motor, a protein-conducting membrane pore, and accessory membrane proteins. Here, we review recent insights into the mechanisms of protein translocation and membrane protein insertion from single-molecule studies.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Current affiliation: Biophysics Group, AMOLF, 1098 XG Amsterdam, Netherlands
| | - Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
9
|
Lang S, Nguyen D, Pfeffer S, Förster F, Helms V, Zimmermann R. Functions and Mechanisms of the Human Ribosome-Translocon Complex. Subcell Biochem 2019; 93:83-141. [PMID: 31939150 DOI: 10.1007/978-3-030-28151-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane of the endoplasmic reticulum (ER) in human cells harbors the protein translocon, which facilitates membrane insertion and translocation of almost every newly synthesized polypeptide targeted to organelles of the secretory pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins, which are associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, Sec61 channel opening and closing, and modification of precursor polypeptides in transit through the Sec61 complex. Recently, cryoelectron tomography of translocons in native ER membranes has given unprecedented insights into the architecture and dynamics of the native, ribosome-associated translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion or translocation of newly synthesized polypeptides as well as the possible roles of the Sec61 channel as a passive ER calcium leak channel and regulator of ATP/ADP exchange between cytosol and ER.
Collapse
Affiliation(s)
- Sven Lang
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany.
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- ZMBH, 69120, Heidelberg, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany
| |
Collapse
|
10
|
Mandon EC, Butova C, Lachapelle A, Gilmore R. Conserved motifs on the cytoplasmic face of the protein translocation channel are critical for the transition between resting and active conformations. J Biol Chem 2018; 293:13662-13672. [PMID: 29986881 DOI: 10.1074/jbc.ra118.004123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The Sec61 complex is the primary cotranslational protein translocation channel in yeast (Saccharomyces cerevisiae). The structural transition between the closed inactive conformation of the Sec61 complex and its open and active conformation is thought to be promoted by binding of the ribosome nascent-chain complex to the cytoplasmic surface of the Sec61 complex. Here, we have analyzed new yeast Sec61 mutants that selectively interfere with cotranslational translocation across the endoplasmic reticulum. We found that a single substitution at the junction between transmembrane segment TM7 and the L6/7 loop interferes with cotranslational translocation by uncoupling ribosome binding to the L6/7 loop from the separation of the lateral gate transmembrane spans. Substitutions replacing basic residues with acidic residues in the C-terminal tail of Sec61 had an unanticipated impact upon binding of ribosomes to the Sec61 complex. We found that similar charge-reversal mutations in the N-terminal tail and in cytoplasmic loop L2/3 did not alter ribosome binding but interfered with translocation channel gating. These findings indicated that these segments are important for the structural transition between the inactive and active conformations of the Sec61 complex. In summary our results have identified additional cytosolic segments of the Sec61 complex important for promoting the structural transition between the closed and open conformations of the complex. We conclude that positively charged residues in multiple cytosolic segments, as well as bulky hydrophobic residues in the L6/7-TM7 junction, are required for cotranslational translocation or integration of membrane proteins by the Sec61 complex.
Collapse
Affiliation(s)
- Elisabet C Mandon
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Cameron Butova
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Amber Lachapelle
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Reid Gilmore
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
11
|
Draycheva A, Lee S, Wintermeyer W. Cotranslational protein targeting to the membrane: Nascent-chain transfer in a quaternary complex formed at the translocon. Sci Rep 2018; 8:9922. [PMID: 29967439 PMCID: PMC6028451 DOI: 10.1038/s41598-018-28262-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/20/2018] [Indexed: 11/29/2022] Open
Abstract
Membrane proteins in bacteria are cotranslationally inserted into the plasma membrane through the SecYEG translocon. Ribosomes exposing the signal-anchor sequence (SAS) of a membrane protein are targeted to the translocon by the signal recognition particle (SRP) pathway. SRP scans translating ribosomes and forms high-affinity targeting complexes with those exposing a SAS. Recognition of the SAS activates SRP for binding to its receptor, FtsY, which, in turn, is primed for SRP binding by complex formation with SecYEG, resulting in a quaternary targeting complex. Here we examine the effect of SecYEG docking to ribosome-nascent-chain complexes (RNCs) on SRP binding and SAS transfer, using SecYEG embedded in phospholipid-containing nanodiscs and monitoring FRET between fluorescence-labeled constituents of the targeting complex. SecYEG–FtsY binding to RNC–SRP complexes lowers the affinity of SRP to both ribosome and FtsY, indicating a general weakening of the complex due to partial binding competition near the ribosomal peptide exit. The rearrangement of the quaternary targeting complex to the pre-transfer complex requires an at least partially exposed SAS. The presence of SecYEG-bound FtsY and the length of the nascent chain strongly influence nascent-chain transfer from SRP to the translocon and repositioning of SRP in the post-transfer complex.
Collapse
Affiliation(s)
- Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Sejeong Lee
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Chemistry Research Laboratory, University of Oxford, OX1 3TA, Oxford, UK
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
12
|
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1050-1074. [PMID: 29719757 PMCID: PMC5905289 DOI: 10.3762/bjnano.9.98] [Citation(s) in RCA: 1177] [Impact Index Per Article: 168.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/09/2018] [Indexed: 05/07/2023]
Abstract
Nanomaterials (NMs) have gained prominence in technological advancements due to their tunable physical, chemical and biological properties with enhanced performance over their bulk counterparts. NMs are categorized depending on their size, composition, shape, and origin. The ability to predict the unique properties of NMs increases the value of each classification. Due to increased growth of production of NMs and their industrial applications, issues relating to toxicity are inevitable. The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment. The review presents an overview of the history and classifications of NMs and gives an overview of the various sources of NPs and NSMs, from natural to synthetic, and their toxic effects towards mammalian cells and tissue. Additionally, the types of toxic reactions associated with NPs and NSMs and the regulations implemented by different countries to reduce the associated risks are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Curtin University, CDT250 Miri, Sarawak 98009, Malaysia
| | - Ahmed Barhoum
- Department of Materials and Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
- Chemistry Department, Faculty of Science, Helwan University, 11795 Helwan, Cairo, Egypt
| | - Yen S Chan
- Department of Chemical Engineering, Curtin University, CDT250 Miri, Sarawak 98009, Malaysia
| | - Alain Dufresne
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Michael K Danquah
- Department of Chemical Engineering, Curtin University, CDT250 Miri, Sarawak 98009, Malaysia
| |
Collapse
|
13
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M Crane
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| | - Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| |
Collapse
|
14
|
Vénien-Bryan C, Li Z, Vuillard L, Boutin JA. Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery. Acta Crystallogr F Struct Biol Commun 2017; 73:174-183. [PMID: 28368275 PMCID: PMC5379166 DOI: 10.1107/s2053230x17003740] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
The invention of the electron microscope has greatly enhanced the view scientists have of small structural details. Since its implementation, this technology has undergone considerable evolution and the resolution that can be obtained for biological objects has been extended. In addition, the latest generation of cryo-electron microscopes equipped with direct electron detectors and software for the automated collection of images, in combination with the use of advanced image-analysis methods, has dramatically improved the performance of this technique in terms of resolution. While calculating a sub-10 Å resolution structure was an accomplishment less than a decade ago, it is now common to generate structures at sub-5 Å resolution and even better. It is becoming possible to relatively quickly obtain high-resolution structures of biological molecules, in particular large ones (>500 kDa) which, in some cases, have resisted more conventional methods such as X-ray crystallography or nuclear magnetic resonance (NMR). Such newly resolved structures may, for the first time, shed light on the precise mechanisms that are essential for cellular physiological processes. The ability to attain atomic resolution may support the development of new drugs that target these proteins, allowing medicinal chemists to understand the intimacy of the relationship between their molecules and targets. In addition, recent developments in cryo-electron microscopy combined with image analysis can provide unique information on the conformational variability of macromolecular complexes. Conformational flexibility of macromolecular complexes can be investigated using cryo-electron microscopy and multiconformation reconstruction methods. However, the biochemical quality of the sample remains the major bottleneck to routine cryo-electron microscopy-based determination of structures at very high resolution.
Collapse
Affiliation(s)
- Catherine Vénien-Bryan
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, UPMC, IRD, MNHN, 4 Place Jussieu, 75005 Paris, France
| | - Zhuolun Li
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, UPMC, IRD, MNHN, 4 Place Jussieu, 75005 Paris, France
| | - Laurent Vuillard
- Chimie des Protéines, Pôle d’Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Jean Albert Boutin
- Pôle d’Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| |
Collapse
|
15
|
Jomaa A, Boehringer D, Leibundgut M, Ban N. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat Commun 2016; 7:10471. [PMID: 26804923 PMCID: PMC4737761 DOI: 10.1038/ncomms10471] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022] Open
Abstract
Co-translational protein targeting to membranes is a universally conserved process. Central steps include cargo recognition by the signal recognition particle and handover to the Sec translocon. Here we present snapshots of key co-translational-targeting complexes solved by cryo-electron microscopy at near-atomic resolution, establishing the molecular contacts between the Escherichia coli translating ribosome, the signal recognition particle and the translocon. Our results reveal the conformational changes that regulate the latching of the signal sequence, the release of the heterodimeric domains of the signal recognition particle and its receptor, and the handover of the signal sequence to the translocon. We also observe that the signal recognition particle and the translocon insert-specific structural elements into the ribosomal tunnel to remodel it, possibly to sense nascent chains. Our work provides structural evidence for a conformational state of the signal recognition particle and its receptor primed for translocon binding to the ribosome-nascent chain complex.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| |
Collapse
|
16
|
Prabudiansyah I, Driessen AJM. The Canonical and Accessory Sec System of Gram-positive Bacteria. Curr Top Microbiol Immunol 2016; 404:45-67. [DOI: 10.1007/82_2016_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
CSNAP Is a Stoichiometric Subunit of the COP9 Signalosome. Cell Rep 2015; 13:585-598. [PMID: 26456823 DOI: 10.1016/j.celrep.2015.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/04/2015] [Accepted: 09/08/2015] [Indexed: 11/21/2022] Open
Abstract
The highly conserved COP9 signalosome (CSN) complex is a key regulator of all cullin-RING-ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases. Until now, it was accepted that the CSN is composed of eight canonical components. Here, we report the discovery of an additional integral and stoichiometric subunit that had thus far evaded detection, and we named it CSNAP (CSN acidic protein). We show that CSNAP binds CSN3, CSN5, and CSN6, and its incorporation into the CSN complex is mediated through the C-terminal region involving conserved aromatic residues. Moreover, depletion of this small protein leads to reduced proliferation and a flattened and enlarged morphology. Finally, on the basis of sequence and structural properties shared by both CSNAP and DSS1, a component of the related 19S lid proteasome complex, we propose that CSNAP, the ninth CSN subunit, is the missing paralogous subunit of DSS1.
Collapse
|
18
|
Translation in the mammalian oocyte in space and time. Cell Tissue Res 2015; 363:69-84. [PMID: 26340983 DOI: 10.1007/s00441-015-2269-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023]
Abstract
A hallmark of oocyte development in mammals is the dependence on the translation and utilization of stored RNA and proteins rather than the de novo transcription of genes in order to sustain meiotic progression and early embryo development. In the absence of transcription, the completion of meiosis and early embryo development in mammals relies significantly on maternally synthesized RNAs. Post-transcriptional control of gene expression at the translational level has emerged as an important cellular function in normal development. Therefore, the regulation of gene expression in oocytes is controlled almost exclusively at the level of mRNA and protein stabilization and protein synthesis. This current review is focused on the recently emerged findings on RNA distribution related to the temporal and spatial translational control of the meiotic progression of the mammalian oocyte.
Collapse
|
19
|
Saraogi I, Akopian D, Shan SO. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. ACTA ACUST UNITED AC 2014; 205:693-706. [PMID: 24914238 PMCID: PMC4050729 DOI: 10.1083/jcb.201311028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Active and sequential regulation of the interaction of SRP with translating ribosomes drives efficient and faithful cotranslational protein targeting to the target membrane. Efficient and accurate protein localization is essential to cells and requires protein-targeting machineries to both effectively capture the cargo in the cytosol and productively unload the cargo at the membrane. To understand how these challenges are met, we followed the interaction of translating ribosomes during their targeting by the signal recognition particle (SRP) using a site-specific fluorescent probe in the nascent protein. We show that initial recruitment of SRP receptor (SR) selectively enhances the affinity of SRP for correct cargos, thus committing SRP-dependent substrates to the pathway. Real-time measurement of cargo transfer from the targeting to translocation machinery revealed multiple factors that drive this event, including GTPase rearrangement in the SRP–SR complex, stepwise displacement of SRP from the ribosome and signal sequence by SecYEG, and elongation of the nascent polypeptide. Our results elucidate how active and sequential regulation of the SRP–cargo interaction drives efficient and faithful protein targeting.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
20
|
Vörös A, Simm R, Slamti L, McKay MJ, Hegna IK, Nielsen-LeRoux C, Hassan KA, Paulsen IT, Lereclus D, Økstad OA, Molloy MP, Kolstø AB. SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins. PLoS One 2014; 9:e103326. [PMID: 25083861 PMCID: PMC4118872 DOI: 10.1371/journal.pone.0103326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.
Collapse
Affiliation(s)
- Aniko Vörös
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roger Simm
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Leyla Slamti
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
| | - Matthew J. McKay
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Ida K. Hegna
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Didier Lereclus
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
- AgroParistech, UMR Micalis, Jouy-en-Josas, France
| | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mark P. Molloy
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
21
|
Voorhees RM, Fernández IS, Scheres SHW, Hegde RS. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 2014; 157:1632-43. [PMID: 24930395 PMCID: PMC4081569 DOI: 10.1016/j.cell.2014.05.024] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/27/2022]
Abstract
Cotranslational protein translocation is a universally conserved process for secretory and membrane protein biosynthesis. Nascent polypeptides emerging from a translating ribosome are either transported across or inserted into the membrane via the ribosome-bound Sec61 channel. Here, we report structures of a mammalian ribosome-Sec61 complex in both idle and translating states, determined to 3.4 and 3.9 Å resolution. The data sets permit building of a near-complete atomic model of the mammalian ribosome, visualization of A/P and P/E hybrid-state tRNAs, and analysis of a nascent polypeptide in the exit tunnel. Unprecedented chemical detail is observed for both the ribosome-Sec61 interaction and the conformational state of Sec61 upon ribosome binding. Comparison of the maps from idle and translating complexes suggests how conformational changes to the Sec61 channel could facilitate translocation of a secreted polypeptide. The high-resolution structure of the mammalian ribosome-Sec61 complex provides a valuable reference for future functional and structural studies. A near-complete atomic resolution structure of the mammalian ribosome Snapshot of a translating ribosome with hybrid state tRNAs and nascent polypeptide Structures of the Sec61 translocon bound to idle and translating ribosomes Molecular details of the residues involved in the ribosome-Sec61 interaction
Collapse
Affiliation(s)
- Rebecca M Voorhees
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Israel S Fernández
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
22
|
Visualization of a polytopic membrane protein during SecY-mediated membrane insertion. Nat Commun 2014; 5:4103. [PMID: 24912953 DOI: 10.1038/ncomms5103] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/13/2014] [Indexed: 01/16/2023] Open
Abstract
The biogenesis of polytopic membrane proteins occurs co-translationally on ribosomes that are tightly bound to a membrane-embedded protein-conducting channel: the Sec-complex. The path that is followed by nascent proteins inside the ribosome and the Sec-complex is relatively well established; however, it is not clear what the fate of the N-terminal transmembrane domains (TMDs) of polytopic membrane proteins is when the C-terminal TMDs domains are not yet synthesized. Here, we present the sub-nanometer cryo-electron microscopy structure of an in vivo generated ribosome-SecY complex that carries a membrane insertion intermediate of proteorhodopsin (PR). The structure reveals a pre-opened Sec-complex and the first two TMDs of PR already outside the SecY complex directly in front of its proposed lateral gate. Thus, our structure is in agreement with positioning of N-terminal TMDs at the periphery of SecY, and in addition, it provides clues for the molecular mechanism underlying membrane protein topogenesis.
Collapse
|
23
|
Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31:58-84. [DOI: 10.3109/09687688.2014.907455] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Gogala M, Becker T, Beatrix B, Armache JP, Barrio-Garcia C, Berninghausen O, Beckmann R. Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 2014; 506:107-10. [DOI: 10.1038/nature12950] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022]
|
25
|
Saraogi I, Shan SO. Co-translational protein targeting to the bacterial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1433-41. [PMID: 24513458 DOI: 10.1016/j.bbamcr.2013.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 12/18/2022]
Abstract
Co-translational protein targeting by the Signal Recognition Particle (SRP) is an essential cellular pathway that couples the synthesis of nascent proteins to their proper cellular localization. The bacterial SRP, which contains the minimal ribonucleoprotein core of this universally conserved targeting machine, has served as a paradigm for understanding the molecular basis of protein localization in all cells. In this review, we highlight recent biochemical and structural insights into the molecular mechanisms by which fundamental challenges faced by protein targeting machineries are met in the SRP pathway. Collectively, these studies elucidate how an essential SRP RNA and two regulatory GTPases in the SRP and SRP receptor (SR) enable this targeting machinery to recognize, sense and respond to its biological effectors, i.e. the cargo protein, the target membrane and the translocation machinery, thus driving efficient and faithful co-translational protein targeting. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
26
|
Park E, Ménétret JF, Gumbart JC, Ludtke SJ, Li W, Whynot A, Rapoport TA, Akey CW. Structure of the SecY channel during initiation of protein translocation. Nature 2013; 506:102-6. [PMID: 24153188 PMCID: PMC3948209 DOI: 10.1038/nature12720] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/04/2013] [Indexed: 12/17/2022]
Abstract
Many secretory proteins are targeted by signal sequences to a protein-conducting channel, formed by prokaryotic SecY- or eukaryotic Sec61-complexes, and are translocated across the membrane during their synthesis1,2. Crystal structures of the inactive channel show that the SecY subunit of the heterotrimeric complex consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces the lipid phase3-5. The closed channel has an empty cytoplasmic funnel and an extracellular funnel that is filled with a small helical domain, called the plug. During initiation of translocation, a ribosome–nascent chain complex binds to the SecY/Sec61 complex, resulting in insertion of the nascent chain. However, the mechanism of channel opening during translocation is unclear. Here, we have addressed this question by determining structures of inactive and active ribosome–channel complexes with cryo-electron microscopy. Non-translating ribosome–SecY channel complexes derived from Methanococcus jannaschii or Escherichia coli show the channel in its closed state, and indicate that ribosome binding per se causes only minor changes. The structure of an active E. coli ribosome–channel complex demonstrates that the nascent chain opens the channel, causing mostly rigid body movements of the N- and C-terminal halves of SecY. In this early translocation intermediate, the polypeptide inserts as a loop into the SecY channel with the hydrophobic signal sequence intercalated into the open lateral gate. The nascent chain also forms a loop on the cytoplasmic surface of SecY rather than directly entering the channel.
Collapse
Affiliation(s)
- Eunyong Park
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Jean-François Ménétret
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118-2526, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | - Weikai Li
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Andrew Whynot
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Tom A Rapoport
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Christopher W Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118-2526, USA
| |
Collapse
|
27
|
Ludtke SJ, Serysheva II. Single-particle cryo-EM of calcium release channels: structural validation. Curr Opin Struct Biol 2013; 23:755-62. [PMID: 23831288 PMCID: PMC3805725 DOI: 10.1016/j.sbi.2013.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022]
Abstract
Few tools are available to determine the structure of large integral membrane proteins such as intracellular Ca(2+) release channels, RyRs and IP3Rs. Single particle cryo-EM can readily determine the structure of such channels to intermediate resolution, and can be used to quantitatively assess conformational variability. However, due to the, often low, image contrast of these cryospecimens, methods for validation are critical to insure the accuracy of such structures, and to put limits on their interpretability. The low-resolution structure of RyR has been well established for some time, but high-resolution has been slow to emerge. The structure of IP3R channel by cryo-EM had a number of false-starts, but improved validation methods have recently lead to a demonstrably accurate reconstruction.
Collapse
Affiliation(s)
- Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
28
|
Kedrov A, Kusters I, Driessen AJM. Single-Molecule Studies of Bacterial Protein Translocation. Biochemistry 2013; 52:6740-54. [DOI: 10.1021/bi400913x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexej Kedrov
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Ilja Kusters
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
29
|
Cardone G, Heymann JB, Steven AC. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J Struct Biol 2013; 184:226-36. [PMID: 23954653 DOI: 10.1016/j.jsb.2013.08.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 12/26/2022]
Abstract
The resolution of density maps from single particle analysis is usually measured in terms of the highest spatial frequency to which consistent information has been obtained. This calculation represents an average over the entire reconstructed volume. In practice, however, substantial local variations in resolution may occur, either from intrinsic properties of the specimen or for technical reasons such as a non-isotropic distribution of viewing orientations. To address this issue, we propose the use of a space-frequency representation, the short-space Fourier transform, to assess the quality of a density map, voxel-by-voxel, i.e. by local resolution mapping. In this approach, the experimental volume is divided into small subvolumes and the resolution determined for each of them. It is illustrated in applications both to model data and to experimental density maps. Regions with lower-than-average resolution may be mobile components or ones with incomplete occupancy or result from multiple conformational states. To improve the interpretability of reconstructions, we propose an adaptive filtering approach that reconciles the resolution to which individual features are calculated with the results of the local resolution map.
Collapse
Affiliation(s)
- Giovanni Cardone
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
30
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
31
|
Knyazev DG, Lents A, Krause E, Ollinger N, Siligan C, Papinski D, Winter L, Horner A, Pohl P. The bacterial translocon SecYEG opens upon ribosome binding. J Biol Chem 2013; 288:17941-6. [PMID: 23645666 PMCID: PMC3689939 DOI: 10.1074/jbc.m113.477893] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which has the conductivity of the plug deletion mutant. The number of ion-conducting channels inserted into the planar bilayer per fusion event roughly equals the number of SecYEG channels counted by fluorescence correlation spectroscopy in a single proteoliposome. Thus, the open probability of the channel must be close to unity. To prevent the otherwise lethal proton leak, a closed post-translational conformation of the SecYEG complex bound to a ribosome must exist.
Collapse
Affiliation(s)
- Denis G Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
![]()
Quantitative
measurement of proteins is one of the most fundamental analytical
tasks in a biochemistry laboratory, but widely used immunochemical
methods often have limited specificity and high measurement variation.
In this review, we discuss applications of multiple-reaction monitoring
(MRM) mass spectrometry, which allows sensitive, precise quantitative
analyses of peptides and the proteins from which they are derived.
Systematic development of MRM assays is permitted by databases of
peptide mass spectra and sequences, software tools for analysis design
and data analysis, and rapid evolution of tandem mass spectrometer
technology. Key advantages of MRM assays are the ability to target
specific peptide sequences, including variants and modified forms,
and the capacity for multiplexing that allows analysis of dozens to
hundreds of peptides. Different quantitative standardization methods
provide options that balance precision, sensitivity, and assay cost.
Targeted protein quantitation by MRM and related mass spectrometry
methods can advance biochemistry by transforming approaches to protein
measurement.
Collapse
Affiliation(s)
- Daniel C Liebler
- Department of Biochemistry and Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6350, United States.
| | | |
Collapse
|
33
|
Abstract
The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.
Collapse
Affiliation(s)
- David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kuang Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
34
|
Akopian D, Dalal K, Shen K, Duong F, Shan SO. SecYEG activates GTPases to drive the completion of cotranslational protein targeting. ACTA ACUST UNITED AC 2013; 200:397-405. [PMID: 23401005 PMCID: PMC3575545 DOI: 10.1083/jcb.201208045] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SecYEG drives conformational changes in the cotranslational targeting complex to activate it for GTP hydrolysis and the handover of the translating ribosome. Signal recognition particle (SRP) and its receptor (SR) comprise a highly conserved cellular machine that cotranslationally targets proteins to a protein-conducting channel, the bacterial SecYEG or eukaryotic Sec61p complex, at the target membrane. Whether SecYEG is a passive recipient of the translating ribosome or actively regulates this targeting machinery remains unclear. Here we show that SecYEG drives conformational changes in the cargo-loaded SRP–SR targeting complex that activate it for GTP hydrolysis and for handover of the translating ribosome. These results provide the first evidence that SecYEG actively drives the efficient delivery and unloading of translating ribosomes at the target membrane.
Collapse
Affiliation(s)
- David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
35
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
36
|
Mandon EC, Trueman SF, Gilmore R. Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013342. [PMID: 23251026 DOI: 10.1101/cshperspect.a013342] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
37
|
Behrens C, Hartmann E, Kalies KU. Single rRNA Helices Bind Independently to the Protein-Conducting Channel SecYEG. Traffic 2013; 14:274-81. [DOI: 10.1111/tra.12033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/04/2012] [Accepted: 12/07/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Christina Behrens
- Department of Neuropathology; Georg August University Göttingen; Robert-Koch-Street 40; 37075; Göttingen; Germany
| | - Enno Hartmann
- Institute of Biology, CSCM; University of Lübeck; Ratzeburger Allee 160; 23562; Lübeck; Germany
| | - Kai-Uwe Kalies
- Institute of Biology, CSCM; University of Lübeck; Ratzeburger Allee 160; 23562; Lübeck; Germany
| |
Collapse
|
38
|
Park E, Rapoport TA. Bacterial protein translocation requires only one copy of the SecY complex in vivo. ACTA ACUST UNITED AC 2012; 198:881-93. [PMID: 22927464 PMCID: PMC3432775 DOI: 10.1083/jcb.201205140] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In vivo probing of the oligomeric state of SecY during co- and post-translational translocation reveals that oligomerization is not required for this process. The transport of proteins across the plasma membrane in bacteria requires a channel formed from the SecY complex, which cooperates with either a translating ribosome in cotranslational translocation or the SecA ATPase in post-translational translocation. Whether translocation requires oligomers of the SecY complex is an important but controversial issue: it determines channel size, how the permeation of small molecules is prevented, and how the channel interacts with the ribosome and SecA. Here, we probe in vivo the oligomeric state of SecY by cross-linking, using defined co- and post-translational translocation intermediates in intact Escherichia coli cells. We show that nontranslocating SecY associated transiently through different interaction surfaces with other SecY molecules inside the membrane. These interactions were significantly reduced when a translocating polypeptide inserted into the SecY channel co- or post-translationally. Mutations that abolish the interaction between SecY molecules still supported viability of E. coli. These results show that a single SecY molecule is sufficient for protein translocation.
Collapse
Affiliation(s)
- Eunyong Park
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Lycklama A Nijeholt JA, Driessen AJM. The bacterial Sec-translocase: structure and mechanism. Philos Trans R Soc Lond B Biol Sci 2012; 367:1016-28. [PMID: 22411975 DOI: 10.1098/rstb.2011.0201] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most bacterial secretory proteins pass across the cytoplasmic membrane via the translocase, which consists of a protein-conducting channel SecYEG and an ATP-dependent motor protein SecA. The ancillary SecDF membrane protein complex promotes the final stages of translocation. Recent years have seen a major advance in our understanding of the structural and biochemical basis of protein translocation, and this has led to a detailed model of the translocation mechanism.
Collapse
Affiliation(s)
- Jelger A Lycklama A Nijeholt
- Department of Molecular Microbiology, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands.
| | | |
Collapse
|
40
|
Henderson R, Sali A, Baker ML, Carragher B, Devkota B, Downing KH, Egelman EH, Feng Z, Frank J, Grigorieff N, Jiang W, Ludtke SJ, Medalia O, Penczek PA, Rosenthal PB, Rossmann MG, Schmid MF, Schröder GF, Steven AC, Stokes DL, Westbrook JD, Wriggers W, Yang H, Young J, Berman HM, Chiu W, Kleywegt GJ, Lawson CL. Outcome of the first electron microscopy validation task force meeting. Structure 2012; 20:205-14. [PMID: 22325770 PMCID: PMC3328769 DOI: 10.1016/j.str.2011.12.014] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/29/2011] [Accepted: 12/29/2011] [Indexed: 11/10/2022]
Abstract
This Meeting Review describes the proceedings and conclusions from the inaugural meeting of the Electron Microscopy Validation Task Force organized by the Unified Data Resource for 3DEM (http://www.emdatabank.org) and held at Rutgers University in New Brunswick, NJ on September 28 and 29, 2010. At the workshop, a group of scientists involved in collecting electron microscopy data, using the data to determine three-dimensional electron microscopy (3DEM) density maps, and building molecular models into the maps explored how to assess maps, models, and other data that are deposited into the Electron Microscopy Data Bank and Protein Data Bank public data archives. The specific recommendations resulting from the workshop aim to increase the impact of 3DEM in biology and medicine.
Collapse
Affiliation(s)
- Richard Henderson
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu ZC, de Keyzer J, Kedrov A, Driessen AJM. Competitive binding of the SecA ATPase and ribosomes to the SecYEG translocon. J Biol Chem 2012; 287:7885-95. [PMID: 22267723 DOI: 10.1074/jbc.m111.297911] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During co-translational membrane insertion of membrane proteins with large periplasmic domains, the bacterial SecYEG complex needs to interact both with the ribosome and the SecA ATPase. Although the binding sites for SecA and the ribosome overlap, it has been suggested that these ligands can interact simultaneously with SecYEG. We used surface plasmon resonance and fluorescence correlation spectroscopy to examine the interaction of SecA and ribosomes with the SecYEG complex present in membrane vesicles and the purified SecYEG complex present in a detergent-solubilized state or reconstituted into nanodiscs. Ribosome binding to the SecYEG complex is strongly stimulated when the ribosomes are charged with nascent chains of the monotopic membrane protein FtsQ. This binding is competed by an excess of SecA, indicating that binding of SecA and ribosomes to SecYEG is mutually exclusive.
Collapse
Affiliation(s)
- Zht Cheng Wu
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
42
|
Nannenga BL, Baneyx F. Folding engineering strategies for efficient membrane protein production in E. coli. Methods Mol Biol 2012; 899:187-202. [PMID: 22735954 DOI: 10.1007/978-1-61779-921-1_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Membrane proteins are notoriously difficult to produce at the high levels required for structural and biochemical characterization. Among the various expression systems used to date, the enteric bacterium Escherichia coli remains one of the best characterized and most versatile. However, membrane protein overexpression in E. coli is often accompanied by toxicity and low yields of functional product. Here, we briefly review the involvement of signal recognition particle, trigger factor, and YidC in α-helical membrane protein biogenesis and describe a set of strains, vectors, and chaperone co-expression plasmids that can lead to significant gains in the production of recombinant membrane proteins in E. coli. Methods to quantify membrane proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis are also provided.
Collapse
Affiliation(s)
- Brent L Nannenga
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
43
|
Abstract
The Sec61 or SecY channel, a universally conserved protein-conducting channel, translocates proteins across and integrates proteins into the eukaryotic endoplasmic reticulum (ER) membrane and the prokaryotic plasma membrane. Depending on channel-binding partners, polypeptides are moved by different mechanisms. In cotranslational translocation, the ribosome feeds the polypeptide chain directly into the channel. In posttranslational translocation, a ratcheting mechanism is used by the ER-lumenal chaperone BiP in eukaryotes, and a pushing mechanism is utilized by the SecA ATPase in bacteria. In prokaryotes, posttranslational translocation is facilitated through the function of the SecD/F protein. Recent structural and biochemical data show how the channel opens during translocation, translocates soluble proteins, releases hydrophobic segments of membrane proteins into the lipid phase, and maintains the barrier for small molecules.
Collapse
Affiliation(s)
- Eunyong Park
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
44
|
Lycklama A Nijeholt JA, Wu ZC, Driessen AJM. Conformational dynamics of the plug domain of the SecYEG protein-conducting channel. J Biol Chem 2011; 286:43881-43890. [PMID: 22033919 PMCID: PMC3243504 DOI: 10.1074/jbc.m111.297507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/20/2011] [Indexed: 11/06/2022] Open
Abstract
The central pore of the SecYEG preprotein-conducting channel is closed at the periplasmic face of the membrane by a plug domain. To study its conformational dynamics, the plug was labeled site-specifically with an environment-sensitive fluorophore. In the presence of a stable preprotein translocation inter-mediate, the SecY plug showed an enhanced solvent exposure consistent with a displacement from the hydrophobic central pore region. In contrast, binding and insertion of a ribosome-bound nascent membrane protein did not alter the plug conformation. These data indicate different plug dynamics depending on the ligand bound state of the SecYEG channel.
Collapse
Affiliation(s)
- Jelger A Lycklama A Nijeholt
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Zht Cheng Wu
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
45
|
Luirink J, Yu Z, Wagner S, de Gier JW. Biogenesis of inner membrane proteins in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:965-76. [PMID: 22201544 DOI: 10.1016/j.bbabio.2011.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/05/2011] [Accepted: 12/12/2011] [Indexed: 11/26/2022]
Abstract
The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Joen Luirink
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Dalal K, Duong F. The SecY complex: conducting the orchestra of protein translocation. Trends Cell Biol 2011; 21:506-14. [DOI: 10.1016/j.tcb.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
47
|
Nannenga BL, Baneyx F. Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli. Protein Sci 2011; 20:1411-20. [PMID: 21633988 DOI: 10.1002/pro.669] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/22/2011] [Indexed: 11/10/2022]
Abstract
Because membrane proteins are difficult to express, our understanding of their structure and function is lagging. In Escherichia coli, α-helical membrane protein biogenesis usually involves binding of a nascent transmembrane segment (TMS) by the signal recognition particle (SRP), delivery of the SRP-ribosome nascent chain complexes (RNC) to FtsY, a protein that serves as SRP receptor and docks to the SecYEG translocon, cotranslational insertion of the growing chain into the translocon, and lateral transfer, packing and folding of TMS in the lipid bilayer in a process that may involve chaperone YidC. Here, we explored the feasibility of reprogramming this pathway to improve the production of recombinant membrane proteins in exponentially growing E. coli with a focus on: (i) eliminating competition between SRP and chaperone trigger factor (TF) at the ribosome through gene deletion; (ii) improving RNC delivery to the inner membrane via SRP overexpression; and (iii) promoting substrate insertion and folding in the lipid bilayer by increasing YidC levels. Using a bitopic histidine kinase and two heptahelical rhodopsins as model systems, we show that the use of TF-deficient cells improves the yields of membrane-integrated material threefold to sevenfold relative to the wild type, and that whereas YidC coexpression is beneficial to the production of polytopic proteins, higher levels of SRP have the opposite effect. The implications of our results on the interplay of TF, SRP, YidC, and SecYEG in membrane protein biogenesis are discussed.
Collapse
Affiliation(s)
- Brent L Nannenga
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, USA
| | | |
Collapse
|
48
|
Trueman SF, Mandon EC, Gilmore R. Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity. Mol Biol Cell 2011; 22:2983-93. [PMID: 21737680 PMCID: PMC3164448 DOI: 10.1091/mbc.e11-01-0070] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transition between the closed and open conformations of the protein translocation channel controls the efficiency of protein translocation and the fidelity of signal sequence recognition. Mutations in Sec61 that delay or accelerate this structural transition have antagonistic effects on translocation efficiency and fidelity. The transition between the closed and open conformations of the Sec61 complex permits nascent protein insertion into the translocation channel. A critical event in this structural transition is the opening of the lateral translocon gate that is formed by four transmembrane (TM) spans (TM2, TM3, TM7, and TM8 in Sec61p) to expose the signal sequence–binding site. To gain mechanistic insight into lateral gate opening, mutations were introduced into a lumenal loop (L7) that connects TM7 and TM8. The sec61 L7 mutants were found to have defects in both the posttranslational and cotranslational translocation pathways due to a kinetic delay in channel gating. The translocation defect caused by L7 mutations could be suppressed by the prl class of sec61 alleles, which reduce the fidelity of signal sequence recognition. The prl mutants are proposed to act by destabilizing the closed conformation of the translocation channel. Our results indicate that the equilibrium between the open and closed conformations of the protein translocation channel maintains a balance between translocation activity and signal sequence recognition fidelity.
Collapse
Affiliation(s)
- Steven F Trueman
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
49
|
Martínez-Gil L, Saurí A, Marti-Renom MA, Mingarro I. Membrane protein integration into the endoplasmic reticulum. FEBS J 2011; 278:3846-58. [PMID: 21592307 DOI: 10.1111/j.1742-4658.2011.08185.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most integral membrane proteins are targeted, inserted and assembled in the endoplasmic reticulum membrane. The sequential and potentially overlapping events necessary for membrane protein integration take place at sites termed translocons, which comprise a specific set of membrane proteins acting in concert with ribosomes and, probably, molecular chaperones to ensure the success of the whole process. In this minireview, we summarize our current understanding of helical membrane protein integration at the endoplasmic reticulum, and highlight specific characteristics that affect the biogenesis of multispanning membrane proteins.
Collapse
Affiliation(s)
- Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | | | | | | |
Collapse
|
50
|
Abstract
During their synthesis, many water-soluble proteins and nearly all membrane proteins transit through a protein-conducting channel in the membrane, the Sec translocon, from where they are inserted into the lipid bilayer. Increasing evidence indicates that folding of the nascent protein begins already within the ribosomal exit tunnel in a sequence- and environment-dependent fashion. To examine the effects of the translocon on the nascent-chain folding, we have calculated the potential of mean force for α-helix formation of a 10-alanine oligopeptide as a function of its position within the translocon channel. We find that the predominant conformational states, α-helical and extended, reflect those found for the peptide in water. However, the translocon, via its surface properties and its variable diameter, shifts the equilibrium in favor of the α-helical state. Thus, we suggest that the translocon facilitates not only the insertion of membrane proteins into the bilayer but also their folding.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics, University of Illinois at Urbana-Champaign Urbana, Illinois 61801
- Beckman Institute, University of Illinois at Urbana-Champaign Urbana, Illinois 61801
| | - Christophe Chipot
- Beckman Institute, University of Illinois at Urbana-Champaign Urbana, Illinois 61801
- Equipe de Dynamique des Assemblages Membranaires, UMR Centre National de la Recherche Scientifique/UHP 7565, Nancy Université BP 239, Nancy, France
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign Urbana, Illinois 61801
- Beckman Institute, University of Illinois at Urbana-Champaign Urbana, Illinois 61801
| |
Collapse
|