1
|
Xu Y, Zhang H, Nie D. Histone modifications and metabolic reprogramming in tumor-associated macrophages: a potential target of tumor immunotherapy. Front Immunol 2025; 16:1521550. [PMID: 40375990 PMCID: PMC12078272 DOI: 10.3389/fimmu.2025.1521550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/09/2025] [Indexed: 05/18/2025] Open
Abstract
Histone modifications, including methylation, acetylation, lactylation, phosphorylation, ubiquitination, SUMOylation, ADP-ribosylation, and crotonylation, critically regulate tumor-associated macrophages (TAMs) polarization by modulating gene expression and functional states. Reprogramming TAMs from M2 to M1 phenotypes through epigenetic targeting has emerged as a promising strategy to enhance anti-tumor immunity and improve the efficacy of cancer immunotherapy. This review explores the role of histone modifications in TAM biology, their interplay with metabolic reprogramming, and the opportunities and challenges in developing epigenetic-based therapies to advance cancer immunotherapy.
Collapse
Affiliation(s)
- Yiting Xu
- The Second Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Han Zhang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dengyun Nie
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Chhetri KB. DNA compaction and chromatin dynamics: The role of cationic polyamines and proteins. Biochem Biophys Res Commun 2025; 756:151538. [PMID: 40058308 DOI: 10.1016/j.bbrc.2025.151538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
DNA compaction by polyaminic cations and proteins involves reversible condensation mechanisms. Polyamines, metal cations, and histone proteins are utilized to compact lengthy DNA chains. Chromatin organization begins with nucleosomal arrays, further compacted by linker histones. Various factors such as DNA methylation, histone modifications, and non-histone proteins influence chromatin structure. Posttranslational modifications like acetylation and methylation alter nucleosome shape. Polyamines induce significant phase transitions, while cationic surfactants drive conformational changes in DNA. In sperm cells, protamines replace histones, leading to dense DNA packing. Despite advances, unresolved aspects persist in understanding the dynamic regulation of chromatin structure, highlighting avenues for future research. An overview of current knowledge and cutting-edge discoveries in the field of reversible DNA compaction induced by charged polyamines and histone proteins is presented in this work, highlighting emerging mechanisms of chromatin compaction and their relevance to cellular function, disease, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal.
| |
Collapse
|
3
|
Kincaid S, Setenet G, Preveza NJ, Arndt KC, Gwin P, Lin Y, Xie H, Jarome TJ. Increasing H2B Monoubiquitination Improves the Transcriptome and Memory in the Aged Hippocampus. eNeuro 2025; 12:ENEURO.0037-25.2025. [PMID: 40194842 PMCID: PMC11998965 DOI: 10.1523/eneuro.0037-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
A decline in cognitive abilities is associated with the aging process, affecting nearly 33% of US adults over the age of 70, and is a risk factor for the development of dementia and Alzheimer's disease. Several studies have reported age-related alterations in the transcriptome in the hippocampus, a major site of memory storage that is among the first regions impacted with age, dementia, and Alzheimer's disease. However, much remains unknown about why these transcriptional changes exist in the aged hippocampus and how this impacts memory late in life. Here, we show that monoubiquitination of histone H2B (H2Bubi), an epigenetic mechanism recently reported to be major regulator of the epigenome and transcriptome during memory formation in the young adult brain, decreases with age in the hippocampus of male rats. In vivo CRISPR-dCas9-mediated upregulation of Rnf20, the only ubiquitin E3 ligase for H2B, in the hippocampus significantly improved memory retention in aged rats. Remarkably, RNA-seq analysis revealed that in addition to the 18 genes typically upregulated in the aged rat hippocampus following contextual fear conditioning, Rnf20 upregulation caused learning-related increases and decreases in 40 and 11 unique genes, respectively, suggesting that these 51 genes may be among those most critical for improving memory in advanced age. Together, these data suggest that H2B monoubiquitination is a significant regulator of age-related dysregulation of the transcriptome and impairments in memory.
Collapse
Affiliation(s)
- Shannon Kincaid
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Gueladouan Setenet
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Natalie J Preveza
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Kaiser C Arndt
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Phillip Gwin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Yu Lin
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Hehuang Xie
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Timothy J Jarome
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
4
|
Schüle KM, Probst S. Epigenetic control of cell identities from epiblast to gastrulation. FEBS J 2025. [PMID: 39985220 DOI: 10.1111/febs.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic modifications of chromatin are essential for the establishment of cell identities during embryogenesis. Between embryonic days 3.5-7.5 of murine development, major cell lineage decisions are made that discriminate extraembryonic and embryonic tissues, and the embryonic primary germ layers are formed, thereby laying down the basic body plan. In this review, we cover the contribution of dynamic chromatin modifications by DNA methylation, changes of chromatin accessibility, and histone modifications, that in combination with transcription factors control gene expression programs of different cell types. We highlight the differences in regulation of enhancer and promoter marks and discuss their requirement in cell lineage specification. Importantly, in many cases, lineage-specific targeting of epigenetic modifiers is carried out by pioneer or master transcription factors, that in sum mediate the chromatin landscape and thereby control the transcription of cell-type-specific gene programs and thus, cell identities.
Collapse
Affiliation(s)
- Katrin M Schüle
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Simone Probst
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
| |
Collapse
|
5
|
Szabó K, Balogh F, Romhányi D, Erdei L, Toldi B, Gyulai R, Kemény L, Groma G. Epigenetic Regulatory Processes Involved in the Establishment and Maintenance of Skin Homeostasis-The Role of Microbiota. Int J Mol Sci 2025; 26:438. [PMID: 39859154 PMCID: PMC11764776 DOI: 10.3390/ijms26020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Epigenetic mechanisms are central to the regulation of all biological processes. This manuscript reviews the current understanding of diverse epigenetic modifications and their role in the establishment and maintenance of normal skin functions. In healthy skin, these mechanisms allow for the precise control of gene expression, facilitating the dynamic balance between cell proliferation and differentiation necessary for effective barrier function. Furthermore, as the skin ages, alterations in epigenetic marks can lead to impaired regenerative capacity and increased susceptibility to environmental stressors. The interaction between skin microbiota and epigenetic regulation will also be explored, highlighting how microbial communities can influence skin health by modulating the host gene expression. Future research should focus on the development of targeted interventions to promote skin development, resilience, and longevity, even in an ever-changing environment. This underscores the need for integrative approaches to study these complex regulatory networks.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Dóra Romhányi
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lilla Erdei
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Blanka Toldi
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Gergely Groma
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
6
|
Lopes M, Lund PJ, Garcia BA. Optimized and Robust Workflow for Quantifying the Canonical Histone Ubiquitination Marks H2AK119ub and H2BK120ub by LC-MS/MS. J Proteome Res 2024; 23:5405-5420. [PMID: 39556659 PMCID: PMC11932154 DOI: 10.1021/acs.jproteome.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here, we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones, followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nano-LC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.
Collapse
Affiliation(s)
- Mariana Lopes
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Peder J. Lund
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A. Garcia
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Dept. of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
7
|
El-Gamal R, Zalata A, Mazroa SA, Comhaire F, Gamal A, Shaker OG, Hazem NM. Evaluation of circANKLE2 & circL3MBTL4 -RNAs Expression in Fertile and Infertile Men. Biochem Genet 2024:10.1007/s10528-024-10963-7. [PMID: 39580773 DOI: 10.1007/s10528-024-10963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
There are many factors that affect male fertility such as chronic health problems, psychological factors, and illnesses. Male infertility can be caused abnormal sperm function, low sperm production or even blockages that prevent the delivery of sperm. The aim of the work is to determine the expression pattern of the circularANKLE2 and circularL3MBTL4 RNA in spermatozoa from fertile and infertile males, as well as the relationship between these circRNA transcripts and sperm quality. The study involved two groups: a control group comprising 40 healthy, fertile men and an experimental group of 90 infertile males. Semen samples were collected and processed for analysis using computer-assisted semen analysis. Following RNA extraction from sperm samples, reverse transcription and real-time PCR were performed to assess the levels of circular ANKLE2 and circular L3MBTL4 RNA. There was a significant up-regulation of circularANKLE2 RNA expression (p < 0.05), and a significant down-regulation of circularL3MBTL4 RNA expression (p < 0.05) in asthenozoospermia, astheno-teratozoospermia, and oligo-astheno-teratozoospermia groups, as well as, in immature spermatozoa separated from normozoospermic samples. Moreover, the altered expression of both circular L3MBTL4 and circular ANKLE2 RNA showed significant correlations with the associated sperm parameters. In conclusion, the expression of circular ANKLE2 RNA and circular L3MBTL4 RNA may play a significant role in male fertility and could serve as potential biomarkers of sperm quality, warranting further investigation for their application in infertility diagnostics.
Collapse
Affiliation(s)
- Randa El-Gamal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Faculty of Medicine, Medical Experimental Research Center, Mansoura University, Mansoura, 35516, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, Horus University, New Damietta, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, New Mansoura University, Mansoura, Egypt
| | - Adel Zalata
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Delta University for Science and Technology, New Mansoura, Egypt
| | - Shireen A Mazroa
- Histology and Cell Biology Department, Mansoura University, Mansoura, 35516, Egypt
- Histology Department, Faculty of Medicine, Delta University for Science and Technology, New Mansoura, Egypt
| | - Frank Comhaire
- Emeritus Professor of Andrology, Ghent University Hospital, Ghent, Belgium
| | - Ahmed Gamal
- Andrology, Sexology and STIs, Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Noha M Hazem
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Faculty of Medicine, Medical Experimental Research Center, Mansoura University, Mansoura, 35516, Egypt
- Pathological Sciences Department- MBBS Program, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Kasai H, Yamashita A, Akaike Y, Tanaka T, Matsuura Y, Moriishi K. HCV infection activates the proteasome via PA28γ acetylation and heptamerization to facilitate the degradation of RNF2, a catalytic component of polycomb repressive complex 1. mBio 2024; 15:e0169124. [PMID: 39329491 PMCID: PMC11559043 DOI: 10.1128/mbio.01691-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
We previously reported that hepatitis C virus (HCV) infection or HCV core protein expression induces HOX gene expression by impairing histone H2A monoubiquitination via a proteasome-dependent reduction in the level of RNF2, a key catalytic component of polycomb repressive complex 1 (H. Kasai, K. Mochizuki, T. Tanaka, A. Yamashita, et al., J Virol 95:e01784-20, 2021, https://doi.org/10.1128/jvi.01784-20). In this study, we aimed to investigate the mechanism by which HCV infection accelerates RNF2 degradation. Yeast two-hybrid screening and an immunoprecipitation assay revealed that RNF2 is a PA28γ-binding protein. The proteasome activator PA28γ destabilized the RNF2 protein in a proteasome-dependent manner, since RNF2 degradation was impaired by PA28γ knockout or MG132 treatment. HCV infection or core protein expression reduced the levels of RNF2 and histone H2A K119 monoubiquitination and induced the expression of HOX genes in the presence of PA28γ, while PA28γ knockout reversed these changes. Treatment with a lysine acetyltransferase inhibitor inhibited the acetylation of PA28γ at K195 and the degradation of the RNF2 protein, while treatment with a lysine deacetylase inhibitor accelerated these events in a PA28γ-dependent manner. RNF2 protein degradation was increased by expression of the acetylation mimetic PA28γ mutant but not by expression of the acetylation-defective mutant or the proteasome activation-defective mutant. Furthermore, HCV infection or core protein expression facilitated the interaction between PA28γ and the lysine acetyltransferase CBP/p300 and then accelerated PA28γ acetylation and heptazmerization to promote RNF2 degradation. These data suggest that HCV infection accelerates the acetylation-dependent heptamerization of PA28γ to increase the proteasomal targeting of RNF2.IMPORTANCEHCV is a causative agent of HCV-related liver diseases, including hepatic steatosis, cirrhosis, and hepatocellular carcinoma. PA28γ, which, in heptameric form, activates the 20S core proteasome for the degradation of PA28γ-binding proteins, is responsible for HCV-related liver diseases. HCV core protein expression or HCV infection accelerates RNF2 degradation, leading to the induction of HOX gene expression via a decrease in the level of H2Aub on HOX gene promoters. However, the mechanism of RNF2 degradation in HCV-infected cells has not been clarified. The data presented in this study suggest that PA28γ acetylation and heptamerization are promoted by HCV infection or by core protein expression to activate the proteasome for the degradation of RNF2 and are responsible for HCV propagation. This study provides novel insights valuable for the development of therapies targeting both HCV propagation and HCV-related diseases.
Collapse
Affiliation(s)
- Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Yasunori Akaike
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
9
|
Zhou X, Zhang L, Aryal S, Veasey V, Tajik A, Restelli C, Moreira S, Zhang P, Zhang Y, Hope KJ, Zhou Y, Cheng C, Bhatia R, Lu R. Epigenetic regulation of noncanonical menin targets modulates menin inhibitor response in acute myeloid leukemia. Blood 2024; 144:2018-2032. [PMID: 39158067 PMCID: PMC11561541 DOI: 10.1182/blood.2023023644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
ABSTRACT Menin inhibitors that disrupt the menin-MLL interaction hold promise for treating specific acute myeloid leukemia (AML) subtypes, including those with KMT2A rearrangements (KMT2A-r), yet resistance remains a challenge. Here, through systematic chromatin-focused CRISPR screens, along with genetic, epigenetic, and pharmacologic studies in a variety of human and mouse KMT2A-r AML models, we uncovered a potential resistance mechanism independent of canonical menin-MLL targets. We show that a group of noncanonical menin targets, which are bivalently cooccupied by active menin and repressive H2AK119ub marks, are typically downregulated after menin inhibition. Loss of polycomb repressive complex 1.1 (PRC1.1) subunits, such as polycomb group ring finger 1 (PCGF1) or BCL6 corepressor (BCOR), leads to menin inhibitor resistance by epigenetic reactivation of these noncanonical targets, including MYC. Genetic and pharmacological inhibition of MYC can resensitize PRC1.1-deficient leukemia cells to menin inhibition. Moreover, we demonstrate that leukemia cells with the loss of PRC1.1 subunits exhibit reduced monocytic gene signatures and are susceptible to BCL2 inhibition, and that combinational treatment with venetoclax overcomes the resistance to menin inhibition in PRC1.1-deficient leukemia cells. These findings highlight the important roles of PRC1.1 and its regulated noncanonical menin targets in modulating the menin inhibitor response and provide potential strategies to treat leukemia with compromised PRC1.1 function.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Epigenesis, Genetic/drug effects
- Mice
- Animals
- Gene Expression Regulation, Leukemic/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Cell Line, Tumor
- Polycomb Repressive Complex 1/genetics
- Polycomb Repressive Complex 1/metabolism
- Polycomb Repressive Complex 1/antagonists & inhibitors
- Sulfonamides/pharmacology
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Xinyue Zhou
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Lixia Zhang
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sajesan Aryal
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Virginia Veasey
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Amanda Tajik
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Cecilia Restelli
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Steven Moreira
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Pengcheng Zhang
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Yanfeng Zhang
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Kristin J. Hope
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL
| | - Changde Cheng
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Ravi Bhatia
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| |
Collapse
|
10
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
12
|
Dasgupta A, Nandi S, Gupta S, Roy S, Das C. To Ub or not to Ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195033. [PMID: 38750882 DOI: 10.1016/j.bbagrm.2024.195033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
A dynamic array of histone post-translational modifications (PTMs) regulate diverse cellular processes in the eukaryotic chromatin. Among them, histone ubiquitination is particularly complex as it alters nucleosome surface area fostering intricate cross-talk with other chromatin modifications. Ubiquitin signaling profoundly impacts DNA replication, repair, and transcription. Histones can undergo varied extent of ubiquitination such as mono, multi-mono, and polyubiquitination, which brings about distinct cellular fates. Mechanistic studies of the ubiquitin landscape in chromatin have unveiled a fascinating tapestry of events that orchestrate gene regulation. In this review, we summarize the key contributors involved in mediating different histone ubiquitination and deubiquitination events, and discuss their mechanism which impacts cell transcriptional identity and DNA damage response. We also focus on the proteins bearing epigenetic reader modules critical in discerning site-specific histone ubiquitination, pivotal for establishing complex epigenetic crosstalk. Moreover, we highlight the role of histone ubiquitination in different human diseases including neurodevelopmental disorders and cancer. Overall the review elucidates the intricate orchestration of histone ubiquitination impacting diverse cellular functions and disease pathogenesis, and provides insights into the current challenges of targeting them for therapeutic interventions.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sayan Gupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
13
|
Lopes M, Lund PJ, Garcia BA. An optimized and robust workflow for quantifying the canonical histone ubiquitination marks H2AK119ub and H2BK120ub by LC-MS/MS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.596744. [PMID: 38915586 PMCID: PMC11195131 DOI: 10.1101/2024.06.11.596744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nanoLC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.
Collapse
Affiliation(s)
- Mariana Lopes
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Peder J. Lund
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A. Garcia
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Dept. of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
14
|
Rivard RS, Chang YC, Ragland RL, Thu YM, Kassab M, Mandal RS, Van Riper SK, Kulej K, Higgins L, Markowski TM, Shang D, Hedberg J, Erber L, Garcia B, Chen Y, Bielinsky AK, Brown EJ. Improved detection of DNA replication fork-associated proteins. Cell Rep 2024; 43:114178. [PMID: 38703364 PMCID: PMC12034227 DOI: 10.1016/j.celrep.2024.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Innovative methods to retrieve proteins associated with actively replicating DNA have provided a glimpse into the molecular dynamics of replication fork stalling. We report that a combination of density-based replisome enrichment by isolating proteins on nascent DNA (iPOND2) and label-free quantitative mass spectrometry (iPOND2-DRIPPER) substantially increases both replication factor yields and the dynamic range of protein quantification. Replication protein abundance in retrieved nascent DNA is elevated up to 300-fold over post-replicative controls, and recruitment of replication stress factors upon fork stalling is observed at similar levels. The increased sensitivity of iPOND2-DRIPPER permits direct measurement of ubiquitination events without intervening retrieval of diglycine tryptic fragments of ubiquitin. Using this approach, we find that stalled replisomes stimulate the recruitment of a diverse cohort of DNA repair factors, including those associated with poly-K63-ubiquitination. Finally, we uncover the temporally controlled association of stalled replisomes with nuclear pore complex components and nuclear cytoskeleton networks.
Collapse
Affiliation(s)
- Rebecca S Rivard
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan L Ragland
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yee-Mon Thu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Muzaffer Kassab
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul Shubhra Mandal
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan K Van Riper
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna Kulej
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Todd M Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - David Shang
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Eric J Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Xu BY, Yu XL, Gao WX, Gao TT, Hu HY, Wu TT, Shen C, Huang XY, Zheng B, Wu YB. RNF187 governs the maintenance of mouse GC-2 cell development by facilitating histone H3 ubiquitination at K57/80. Asian J Androl 2024; 26:272-281. [PMID: 38156805 PMCID: PMC11156453 DOI: 10.4103/aja202368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024] Open
Abstract
RING finger 187 (RNF187), a ubiquitin-ligating (E3) enzyme, plays a crucial role in the proliferation of cancer cells. However, it remains unclear whether RNF187 exhibits comparable functionality in the development of germline cells. To investigate the potential involvement of RNF187 in germ cell development, we conducted interference and overexpression assays using GC-2 cells, a mouse spermatocyte-derived cell line. Our findings reveal that the interaction between RNF187 and histone H3 increases the viability, proliferation, and migratory capacity of GC-2 cells. Moreover, we provide evidence demonstrating that RNF187 interacts with H3 and mediates the ubiquitination of H3 at lysine 57 (K57) or lysine 80 (K80), directly or indirectly resulting in increased cellular transcription. This is a study to report the role of RNF187 in maintaining the development of GC-2 cells by mediating histone H3 ubiquitination, thus highlighting the involvement of the K57 and K80 residues of H3 in the epistatic regulation of gene transcription. These discoveries provide a new theoretical foundation for further comprehensive investigations into the function of RNF187 in the reproductive system.
Collapse
Affiliation(s)
- Bing-Ya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Xiang-Ling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Wen-Xin Gao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Ting-Ting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Hao-Yue Hu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Tian-Tian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Xiao-Yan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yi-Bo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Zhao J, Lan J, Wang M, Liu C, Fang Z, Song A, Zhang T, Wang L, Zhu B, Chen P, Yu J, Li G. H2AK119ub1 differentially fine-tunes gene expression by modulating canonical PRC1- and H1-dependent chromatin compaction. Mol Cell 2024; 84:1191-1205.e7. [PMID: 38458202 DOI: 10.1016/j.molcel.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Polycomb repressive complex 1 (PRC1) is a key transcriptional regulator in development via modulating chromatin structure and catalyzing histone H2A ubiquitination at Lys119 (H2AK119ub1). H2AK119ub1 is one of the most abundant histone modifications in mammalian cells. However, the function of H2AK119ub1 in polycomb-mediated gene silencing remains debated. In this study, we reveal that H2AK119ub1 has two distinct roles in gene expression, through differentially modulating chromatin compaction mediated by canonical PRC1 and the linker histone H1. Interestingly, we find that H2AK119ub1 plays a positive role in transcription through interfering with the binding of canonical PRC1 to nucleosomes and therefore counteracting chromatin condensation. Conversely, we demonstrate that H2AK119ub1 facilitates H1-dependent chromatin condensation and enhances the silencing of developmental genes in mouse embryonic stem cells, suggesting that H1 may be one of several possible pathways for H2AK119ub1 in repressing transcription. These results provide insights and molecular mechanisms by which H2AK119ub1 differentially fine-tunes developmental gene expression.
Collapse
Affiliation(s)
- Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Lan
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Fang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Aoqun Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tiantian Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Wang
- Beijing Advanced Innovation Center for Structure Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
17
|
Ryan CW, Peirent ER, Regan SL, Guxholli A, Bielas SL. H2A monoubiquitination: insights from human genetics and animal models. Hum Genet 2024; 143:511-527. [PMID: 37086328 DOI: 10.1007/s00439-023-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.
Collapse
Affiliation(s)
- Charles W Ryan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Medical Science Training Program, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA
| | - Stephanie L Bielas
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA.
| |
Collapse
|
18
|
Chen P, Li G, Li W. Nucleosome Dynamics Derived at the Single-Molecule Level Bridges Its Structures and Functions. JACS AU 2024; 4:866-876. [PMID: 38559720 PMCID: PMC10976579 DOI: 10.1021/jacsau.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024]
Abstract
Nucleosome, the building block of chromatin, plays pivotal roles in all DNA-related processes. While cryogenic-electron microscopy (cryo-EM) has significantly advanced our understanding of nucleosome structures, the emerging field of single-molecule force spectroscopy is illuminating their dynamic properties. This technique is crucial for revealing how nucleosome behavior is influenced by chaperones, remodelers, histone variants, and post-translational modifications, particularly in their folding and unfolding mechanisms under tension. Such insights are vital for deciphering the complex interplay in nucleosome assembly and structural regulation, highlighting the nucleosome's versatility in response to DNA activities. In this Perspective, we aim to consolidate the latest advancements in nucleosome dynamics, with a special focus on the revelations brought forth by single-molecule manipulation. Our objective is to highlight the insights gained from studying nucleosome dynamics through this innovative approach, emphasizing the transformative impact of single-molecule manipulation techniques in the field of chromatin research.
Collapse
Affiliation(s)
- Ping Chen
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Department
of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory
for Tumor Invasion and Metastasis, Capital
Medical University, Beijing 100069, P. R. China
| | - Guohong Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
19
|
Xiong X, Chen H, Zhang Q, Liu Y, Xu C. Uncovering the roles of DNA hemi-methylation in transcriptional regulation using MspJI-assisted hemi-methylation sequencing. Nucleic Acids Res 2024; 52:e24. [PMID: 38261991 PMCID: PMC10954476 DOI: 10.1093/nar/gkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
Hemi-methylated cytosine dyads widely occur on mammalian genomic DNA, and can be stably inherited across cell divisions, serving as potential epigenetic marks. Previous identification of hemi-methylation relied on harsh bisulfite treatment, leading to extensive DNA degradation and loss of methylation information. Here we introduce Mhemi-seq, a bisulfite-free strategy, to efficiently resolve methylation status of cytosine dyads into unmethylation, strand-specific hemi-methylation, or full-methylation. Mhemi-seq reproduces methylomes from bisulfite-based sequencing (BS-seq & hpBS-seq), including the asymmetric hemi-methylation enrichment flanking CTCF motifs. By avoiding base conversion, Mhemi-seq resolves allele-specific methylation and associated imprinted gene expression more efficiently than BS-seq. Furthermore, we reveal an inhibitory role of hemi-methylation in gene expression and transcription factor (TF)-DNA binding, and some displays a similar extent of inhibition as full-methylation. Finally, we uncover new hemi-methylation patterns within Alu retrotransposon elements. Collectively, Mhemi-seq can accelerate the identification of DNA hemi-methylation and facilitate its integration into the chromatin environment for future studies.
Collapse
Affiliation(s)
- Xiong Xiong
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Hengye Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Qifan Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangying Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenhuan Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Ajit K, Alagia A, Burger K, Gullerova M. Tyrosine 1-phosphorylated RNA polymerase II transcribes PROMPTs to facilitate proximal promoter pausing and induce global transcriptional repression in response to DNA damage. Genome Res 2024; 34:201-216. [PMID: 38467418 PMCID: PMC10984383 DOI: 10.1101/gr.278644.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
DNA damage triggers a complex transcriptional response that involves both activation and repression of gene expression. In this study, we investigated global changes in transcription in response to ionizing irradiation (IR), which induces double-strand breaks in DNA. We used mNET-seq to profile nascent transcripts bound to different phosphorylated forms of the RNA polymerase II (RNA Pol II) C-terminal domain (CTD). We found that IR leads to global transcriptional repression of protein-coding genes, accompanied by an increase in antisense transcripts near promoters, called PROMPTs, transcribed by RNA Pol II phosphorylated on tyrosine 1 (Y1P) residue of the CTD. These Y1P-transcribed PROMPTs are enriched for PRC2 binding sites and associated with RNA Pol II proximal promoter pausing. We show the interaction between Y1P RNA Pol II and PRC2, as well as PRC2 binding to PROMPTs. Inhibition of PROMPTs or depletion of PRC2 leads to loss of transcriptional repression. Our results reveal a novel function of Y1P-dependent PROMPTs in mediating PRC2 recruitment to chromatin and RNA Pol II promoter pausing in response to DNA damage.
Collapse
Affiliation(s)
- Kamal Ajit
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom
| | - Adele Alagia
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom
| | - Kaspar Burger
- Mildred Scheel Early Career Center for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Monika Gullerova
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom;
| |
Collapse
|
21
|
Shen X, Chen C, Wang Y, Zheng W, Zheng J, Jones AE, Zhu B, Zhang H, Lyons C, Rijal A, Moley JA, Cao G, Liu K, Winn R, Dickinson A, Zhang K, Wang H. Role of histone variants H2BC1 and H2AZ.2 in H2AK119ub nucleosome organization and Polycomb gene silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575234. [PMID: 38293106 PMCID: PMC10827191 DOI: 10.1101/2024.01.16.575234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ubiquitination of histone H2A at lysine 119 residue (H2AK119ub) plays critical roles in a wide range of physiological processes, including Polycomb gene silencing 1,2 , replication 3-5 , DNA damage repair 6-10 , X inactivation 11,12 , and heterochromatin organization 13,14 . However, the underlying mechanism and structural basis of H2AK119ub remains largely elusive. In this study, we report that H2AK119ub nucleosomes have a unique composition, containing histone variants H2BC1 and H2AZ.2, and importantly, this composition is required for H2AK119ub and Polycomb gene silencing. Using the UAB domain of RSF1, we purified H2AK119ub nucleosomes to a sufficient amount and purity. Mass spectrometry analyses revealed that H2AK119ub nucleosomes contain the histone variants H2BC1 and H2AZ.2. A cryo-EM study resolved the structure of native H2AK119ub nucleosomes to a 2.6A resolution, confirming H2BC1 in one subgroup of H2AK119ub nucleosomes. Tandem GST-UAB pulldown, Flag-H2AZ.2, and HA-H2BC1 immunoprecipitation revealed that H2AK119ub nucleosomes could be separated into distinct subgroups, suggesting their composition heterogeneity and potential dynamic organization. Knockout or knockdown of H2BC1 or H2AZ.2 reduced cellular H2AK119ub levels, establishing H2BC1 and H2AZ.2 as critical determinants of H2AK119ub. Furthermore, genomic binding profiles of H2BC1 and H2AZ.2 overlapped significantly with H2AK119ub binding, with the most significant overlapping in the gene body and intergenic regions. Finally, assays in developing embryos reveal an interaction of H2AZ.2, H2BC1, and RING1A in vivo . Thus, this study revealed, for the first time, that the H2AK119ub nucleosome has a unique composition, and this composition is required for H2AK119ub and Polycomb gene silencing.
Collapse
|
22
|
Blaszczak E, Pasquier E, Le Dez G, Odrzywolski A, Lazarewicz N, Brossard A, Fornal E, Moskalek P, Wysocki R, Rabut G. Dissecting Ubiquitylation and DNA Damage Response Pathways in the Yeast Saccharomyces cerevisiae Using a Proteome-Wide Approach. Mol Cell Proteomics 2024; 23:100695. [PMID: 38101750 PMCID: PMC10803944 DOI: 10.1016/j.mcpro.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
In response to genotoxic stress, cells evolved with a complex signaling network referred to as the DNA damage response (DDR). It is now well established that the DDR depends upon various posttranslational modifications; among them, ubiquitylation plays a key regulatory role. Here, we profiled ubiquitylation in response to the DNA alkylating agent methyl methanesulfonate (MMS) in the budding yeast Saccharomyces cerevisiae using quantitative proteomics. To discover new proteins ubiquitylated upon DNA replication stress, we used stable isotope labeling by amino acids in cell culture, followed by an enrichment of ubiquitylated peptides and LC-MS/MS. In total, we identified 1853 ubiquitylated proteins, including 473 proteins that appeared upregulated more than 2-fold in response to MMS treatment. This enabled us to localize 519 ubiquitylation sites potentially regulated upon MMS in 435 proteins. We demonstrated that the overexpression of some of these proteins renders the cells sensitive to MMS. We also assayed the abundance change upon MMS treatment of a selection of yeast nuclear proteins. Several of them were differentially regulated upon MMS treatment. These findings corroborate the important role of ubiquitin-proteasome-mediated degradation in regulating the DDR.
Collapse
Affiliation(s)
- Ewa Blaszczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland; Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Lublin, Poland.
| | - Emeline Pasquier
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Gaëlle Le Dez
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Lublin, Poland
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland; Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Audrey Brossard
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Emilia Fornal
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Lublin, Poland
| | - Piotr Moskalek
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland.
| | - Gwenaël Rabut
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France.
| |
Collapse
|
23
|
Dagar G, Kumar R, Yadav KK, Singh M, Pandita TK. Ubiquitination and deubiquitination: Implications on cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194979. [PMID: 37633647 DOI: 10.1016/j.bbagrm.2023.194979] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The ubiquitin proteasomal system (UPS) represents a highly regulated protein degradation pathway essential for maintaining cellular homeostasis. This system plays a critical role in several cellular processes, which include DNA damage repair, cell cycle checkpoint control, and immune response regulation. Recently, the UPS has emerged as a promising target for cancer therapeutics due to its involvement in oncogenesis and tumor progression. Here we aim to summarize the key aspects of the UPS and its significance in cancer therapeutics. We begin by elucidating the fundamental components of the UPS, highlighting the role of ubiquitin, E1-E3 ligases, and the proteasome in protein degradation. Furthermore, we discuss the intricate process of ubiquitination and proteasomal degradation, emphasizing the specificity and selectivity achieved through various signaling pathways. The dysregulation of the UPS has been implicated in cancer development and progression. Aberrant ubiquitin-mediated degradation of key regulatory proteins, such as tumor suppressors and oncoproteins, can lead to uncontrolled cell proliferation, evasion of apoptosis, and metastasis. We outline the pivotal role of the UPS in modulating crucial oncogenic pathways, including the regulation of cyclins, transcription factors, Replication stress components and DNA damage response. The increasing recognition of the UPS as a target for cancer therapeutics has spurred the development of small molecules, peptides, and proteasome inhibitors with the potential to restore cellular balance and disrupt tumor growth. We provide an overview of current therapeutic strategies aimed at exploiting the UPS, including the use of proteasome inhibitors, deubiquitinating enzyme inhibitors, and novel E3 ligase modulators. We further discuss novel emerging strategies for the development of next-generation drugs that target proteasome inhibitors. Exploiting the UPS for cancer therapeutics offers promising avenues for developing innovative and effective treatment strategies, providing hope for improved patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India.
| | - Kamlesh K Yadav
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA; School of Engineering Medicine, Texas A&M University, School of Medicine, Houston, TX 77030, USA.
| | - Mayank Singh
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Zheng SY, Guan BB, Yuan DY, Zhao QQ, Ge W, Tan LM, Chen SS, Li L, Chen S, Xu RM, He XJ. Dual roles of the Arabidopsis PEAT complex in histone H2A deubiquitination and H4K5 acetylation. MOLECULAR PLANT 2023; 16:1847-1865. [PMID: 37822080 DOI: 10.1016/j.molp.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Histone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana. UBP5 functions as an H2A deubiquitinase in a nucleosome substrate-dependent manner in vitro and mediates H2A deubiquitination at the whole-genome level in vivo. HAM1/2 are shared subunits of the PEAT complex and the conserved NuA4 histone acetyltransferase complex, and are responsible for histone H4K5 acetylation. Within the PEAT complex, the PWWP components (PWWP1, PWWP2, and PWWP3) directly interact with UBP5 and are necessary for UBP5-mediated H2A deubiquitination, while the EPCR components (EPCR1 and EPCR2) directly interact with HAM1/2 and are required for HAM1/2-mediated H4K5 acetylation. Collectively, our study not only identifies dual roles of the PEAT complex in H2A deubiquitination and H4K5 acetylation but also illustrates how these processes collaborate at the whole-genome level to regulate the transcription and development in plants.
Collapse
Affiliation(s)
- Si-Yao Zheng
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Bin-Bin Guan
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | | | - Weiran Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, Beijing, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
25
|
Chai X, Tao Q, Li L. The role of RING finger proteins in chromatin remodeling and biological functions. Epigenomics 2023; 15:1053-1068. [PMID: 37964749 DOI: 10.2217/epi-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Mammalian DNA duplexes are highly condensed with different components, including histones, enabling chromatin formation. Chromatin remodeling is involved in multiple biological processes, including gene transcription regulation and DNA damage repair. Recent research has highlighted the significant involvement of really interesting new gene (RING) finger proteins in chromatin remodeling, primarily attributed to their E3 ubiquitin ligase activities. In this review, we highlight the pivotal role of RING finger proteins in chromatin remodeling and provide an overview of their capacity to ubiquitinate specific histones, modulate ATP-dependent chromatin remodeling complexes and interact with various histone post-translational modifications. We also discuss the diverse biological effects of RING finger protein-mediated chromatin remodeling and explore potential therapeutic strategies for targeting these proteins.
Collapse
Affiliation(s)
- Xiaoxue Chai
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
26
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Johan MF. Proteomic Alteration in the Progression of Multiple Myeloma: A Comprehensive Review. Diagnostics (Basel) 2023; 13:2328. [PMID: 37510072 PMCID: PMC10378430 DOI: 10.3390/diagnostics13142328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. Most MM patients are diagnosed at a late stage because the early symptoms of the disease can be uncertain and nonspecific, often resembling other, more common conditions. Additionally, MM patients are commonly associated with rapid relapse and an inevitable refractory phase. MM is characterized by the abnormal proliferation of monoclonal plasma cells in the bone marrow. During the progression of MM, massive genomic alterations occur that target multiple signaling pathways and are accompanied by a multistep process involving differentiation, proliferation, and invasion. Moreover, the transformation of healthy plasma cell biology into genetically heterogeneous MM clones is driven by a variety of post-translational protein modifications (PTMs), which has complicated the discovery of effective treatments. PTMs have been identified as the most promising candidates for biomarker detection, and further research has been recommended to develop promising surrogate markers. Proteomics research has begun in MM, and a comprehensive literature review is available. However, proteomics applications in MM have yet to make significant progress. Exploration of proteomic alterations in MM is worthwhile to improve understanding of the pathophysiology of MM and to search for new treatment targets. Proteomics studies using mass spectrometry (MS) in conjunction with robust bioinformatics tools are an excellent way to learn more about protein changes and modifications during disease progression MM. This article addresses in depth the proteomic changes associated with MM disease transformation.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
27
|
Vriend J, Klonisch T. Genes of the Ubiquitin Proteasome System Qualify as Differential Markers in Malignant Glioma of Astrocytic and Oligodendroglial Origin. Cell Mol Neurobiol 2023; 43:1425-1452. [PMID: 35896929 PMCID: PMC10079750 DOI: 10.1007/s10571-022-01261-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
We have mined public genomic datasets to identify genes coding for components of the ubiquitin proteasome system (UPS) that may qualify as potential diagnostic and therapeutic targets in the three major glioma types, astrocytoma (AS), glioblastoma (GBM), and oligodendroglioma (ODG). In the Sun dataset of glioma (GEO ID: GSE4290), expression of the genes UBE2S and UBE2C, which encode ubiquitin conjugases important for cell-cycle progression, distinguished GBM from AS and ODG. KEGG analysis showed that among the ubiquitin E3 ligase genes differentially expressed, the Notch pathway was significantly over-represented, whereas among the E3 ligase adaptor genes the Hippo pathway was over-represented. We provide evidence that the UPS gene contributions to the Notch and Hippo pathway signatures are related to stem cell pathways and can distinguish GBM from AS and ODG. In the Sun dataset, AURKA and TPX2, two cell-cycle genes coding for E3 ligases, and the cell-cycle gene coding for the E3 adaptor CDC20 were upregulated in GBM. E3 ligase adaptor genes differentially expressed were also over-represented for the Hippo pathway and were able to distinguish classic, mesenchymal, and proneural subtypes of GBM. Also over-expressed in GBM were PSMB8 and PSMB9, genes encoding subunits of the immunoproteasome. Our transcriptome analysis provides a strong rationale for UPS members as attractive therapeutic targets for the development of more effective treatment strategies in malignant glioma. Ubiquitin proteasome system and glioblastoma: E1-ubiquitin-activating enzyme, E2-ubiquitin-conjugating enzyme, E3-ubiquitin ligase. Ubiquitinated substrates of E3 ligases may be degraded by the proteasome. Expression of genes for specific E2 conjugases, E3 ligases, and genes for proteasome subunits may serve as differential markers of subtypes of glioblastoma.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm34, BMSB, 745 Bannatyne Ave, Winnipeg, MB, R3E0J9, Canada.
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm34, BMSB, 745 Bannatyne Ave, Winnipeg, MB, R3E0J9, Canada
| |
Collapse
|
28
|
Qiu R, Zhao S, Lu C, Xu Z, Shu E, Weng Q, Chen W, Fang S, Chen W, Zheng L, Zhao Z, Yang Y, Ji J. Proteomic analysis of DZIP3 interactome and its role in proliferation and metastasis in gastric cancer cells. Exp Cell Res 2023; 425:113525. [PMID: 36841324 DOI: 10.1016/j.yexcr.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Gastric cancer is a serious malignant tumor in the world, accounting for the third cause of cancer death worldwide. The pathogenesis of gastric cancer is very complex, in which epigenetic inheritance plays an important role. In our study, we found that DZIP3 was significantly up-regulated in gastric cancer tissues as compared to adjacent normal tissue, which suggested it may be play a crucial part in gastric cancer. To clarify the mechanism of it, we further analyzed the interacting proteome and transcriptome of DZIP3. An association between DZIP3 and some epigenetic regulators, such as CUL4B complex, was verified. We also present the first proteomic characterization of the protein-protein interaction (PPI) network of DZIP3. Then, the transcriptome analysis of DZIP3 demonstrated that knockdown DZIP3 increased a cohort of genes, including SETD7 and ZBTB4, which have essential role in tumors. We also revealed that DZIP3 promotes proliferation and metastasis of gastric cancer cells. And the higher expression of DZIP3 is positively associated with the poor prognosis of several cancers. In summary, our study revealed a mechanistic role of DZIP3 in promoting proliferation and metastasis in gastric cancer, supporting the pursuit of DZIP3 as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Siyu Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Ziwei Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Enfen Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| |
Collapse
|
29
|
Characterizing crosstalk in epigenetic signaling to understand disease physiology. Biochem J 2023; 480:57-85. [PMID: 36630129 PMCID: PMC10152800 DOI: 10.1042/bcj20220550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Epigenetics, the inheritance of genomic information independent of DNA sequence, controls the interpretation of extracellular and intracellular signals in cell homeostasis, proliferation and differentiation. On the chromatin level, signal transduction leads to changes in epigenetic marks, such as histone post-translational modifications (PTMs), DNA methylation and chromatin accessibility to regulate gene expression. Crosstalk between different epigenetic mechanisms, such as that between histone PTMs and DNA methylation, leads to an intricate network of chromatin-binding proteins where pre-existing epigenetic marks promote or inhibit the writing of new marks. The recent technical advances in mass spectrometry (MS) -based proteomic methods and in genome-wide DNA sequencing approaches have broadened our understanding of epigenetic networks greatly. However, further development and wider application of these methods is vital in developing treatments for disorders and pathologies that are driven by epigenetic dysregulation.
Collapse
|
30
|
Rosti V, Gorini F, Santarelli P, Sarnicola ML, Magnani S, Lanzuolo C. Polycomb Bodies Detection in Murine Fibromuscular Stroma from Skin, Skeletal Muscles, and Aortic Tissues. Methods Mol Biol 2023; 2655:125-146. [PMID: 37212994 DOI: 10.1007/978-1-0716-3143-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of chromatin structure depends on a dynamic, multiple mechanisms that modulate gene expression and constitute the epigenome. The Polycomb group (PcG) of proteins are epigenetic factors involved in the transcriptional repression. Among their multilevel, chromatin-associated functions, PcG proteins mediate the establishment and maintenance of higher-order structures at target genes, allowing the transmission of transcriptional programs throughout the cell cycle.In the nucleus, PcG proteins localize close to the pericentric heterochromatin forming microscopically foci, called Polycomb bodies. Here, to visualize the tissue-specific PcG distribution in the aorta, dorsal skin and hindlimb muscles, we combine a fluorescence-activated cell sorter (FACS)-based method with an immunofluorescence staining.
Collapse
Affiliation(s)
- Valentina Rosti
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", INGM, Milan, Italy
| | - Francesca Gorini
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", INGM, Milan, Italy
| | - Philina Santarelli
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", INGM, Milan, Italy
| | - Maria Lucia Sarnicola
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", INGM, Milan, Italy
| | | | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", INGM, Milan, Italy.
| |
Collapse
|
31
|
Xu Q, Huang S, Guo G, Yang C, Wang M, Zeng X, Wang Y. Inferring regulatory element landscapes and gene regulatory networks from integrated analysis in eight hulless barley varieties under abiotic stress. BMC Genomics 2022; 23:843. [PMID: 36539685 PMCID: PMC9769044 DOI: 10.1186/s12864-022-09070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The cis-regulatory element became increasingly important for resistance breeding. There were many DNA variations identified by resequencing. To investigate the links between the DNA variations and cis-regulatory element was the fundamental work. DNA variations in cis-regulatory elements caused phenotype variations in general. RESULTS We used WGBS, ChIP-seq and RNA-seq technology to decipher the regulatory element landscape from eight hulless barley varieties under four kinds of abiotic stresses. We discovered 231,440 lowly methylated regions (LMRs) from the methylome data of eight varieties. The LMRs mainly distributed in the intergenic regions. A total of 97,909 enhancer-gene pairs were identified from the correlation analysis between methylation degree and expression level. A lot of enriched motifs were recognized from the tolerant-specific LMRs. The key transcription factors were screened out and the transcription factor regulatory network was inferred from the enhancer-gene pairs data for drought stress. The NAC transcription factor was predicted to target to TCP, bHLH, bZIP transcription factor genes. We concluded that the H3K27me3 modification regions overlapped with the LMRs more than the H3K4me3. The variation of single nucleotide polymorphism was more abundant in LMRs than the remain regions of the genome. CONCLUSIONS Epigenetic regulation is an important mechanism for organisms to adapt to complex environments. Through the study of DNA methylation and histone modification, we found that many changes had taken place in enhancers and transcription factors in the abiotic stress of hulless barley. For example, transcription factors including NAC may play an important role. This enriched the molecular basis of highland barley stress response.
Collapse
Affiliation(s)
- Qijun Xu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850002 China ,grid.464485.f0000 0004 1777 7975Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002 China
| | - Shunmou Huang
- grid.108266.b0000 0004 1803 0494College of Forestry, Henan Agricultural University, Zhengzhou, 450002 People’s Republic of China
| | - Ganggang Guo
- grid.410727.70000 0001 0526 1937Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chunbao Yang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850002 China ,grid.464485.f0000 0004 1777 7975Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002 China
| | - Mu Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850002 China ,grid.464485.f0000 0004 1777 7975Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002 China
| | - Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850002 China ,grid.464485.f0000 0004 1777 7975Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002 China
| | - Yulin Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850002 China ,grid.464485.f0000 0004 1777 7975Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002 China
| |
Collapse
|
32
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
33
|
Li X, Ye Y, Peng K, Zeng Z, Chen L, Zeng Y. Histones: The critical players in innate immunity. Front Immunol 2022; 13:1030610. [PMID: 36479112 PMCID: PMC9720293 DOI: 10.3389/fimmu.2022.1030610] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
The highly conserved histones in different species seem to represent a very ancient and universal innate host defense system against microorganisms in the biological world. Histones are the essential part of nuclear matter and act as a control switch for DNA transcription. However, histones are also found in the cytoplasm, cell membranes, and extracellular fluid, where they function as host defenses and promote inflammatory responses. In some cases, extracellular histones can act as damage-associated molecular patterns (DAMPs) and bind to pattern recognition receptors (PRRs), thereby triggering innate immune responses and causing initial organ damage. Histones and their fragments serve as antimicrobial peptides (AMPs) to directly eliminate bacteria, viruses, fungi, and parasites in vitro and in vivo. Histones are also involved in phagocytes-related innate immune response as components of neutrophil extracellular traps (NETs), neutrophil activators, and plasminogen receptors. In addition, as a considerable part of epigenetic regulation, histone modifications play a vital role in regulating the innate immune response and expression of corresponding defense genes. Here, we review the regulatory role of histones in innate immune response, which provides a new strategy for the development of antibiotics and the use of histones as therapeutic targets for inflammatory diseases, sepsis, autoimmune diseases, and COVID-19.
Collapse
Affiliation(s)
- Xia Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Youyuan Ye
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Kailan Peng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhuo Zeng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Li Chen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yanhua Zeng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China,Department of Dermatology and Venereology, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China,*Correspondence: Yanhua Zeng, ;
| |
Collapse
|
34
|
Scholl A, De S. Epigenetic Regulation by Polycomb Complexes from Drosophila to Human and Its Relation to Communicable Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms232012285. [PMID: 36293135 PMCID: PMC9603650 DOI: 10.3390/ijms232012285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Although all cells in the human body are made of the same DNA, these cells undergo differentiation and behave differently during development, through integration of external and internal stimuli via 'specific mechanisms.' Epigenetics is one such mechanism that comprises DNA/RNA, histone modifications, and non-coding RNAs that regulate transcription without changing the genetic code. The discovery of the first Polycomb mutant phenotype in Drosophila started the study of epigenetics more than 80 years ago. Since then, a considerable number of Polycomb Group (PcG) genes in Drosophila have been discovered to be preserved in mammals, including humans. PcG proteins exert their influence through gene repression by acting in complexes, modifying histones, and compacting the chromatin within the nucleus. In this article, we discuss how our knowledge of the PcG repression mechanism in Drosophila translates to human communicable disease research.
Collapse
|
35
|
Qin W, Steinek C, Kolobynina K, Forné I, Imhof A, Cardoso M, Leonhardt H. Probing protein ubiquitination in live cells. Nucleic Acids Res 2022; 50:e125. [PMID: 36189882 PMCID: PMC9757074 DOI: 10.1093/nar/gkac805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
The reversible attachment of ubiquitin governs the interaction, activity and degradation of proteins whereby the type and target of this conjugation determine the biological response. The investigation of this complex and multi-faceted protein ubiquitination mostly relies on painstaking biochemical analyses. Here, we employ recombinant binding domains to probe the ubiquitination of proteins in living cells. We immobilize GFP-fused proteins of interest at a distinct cellular structure and detect their ubiquitination state with red fluorescent ubiquitin binders. With this ubiquitin fluorescent three-hybrid (ubiF3H) assay we identified HP1β as a novel ubiquitination target of UHRF1. The use of linkage specific ubiquitin binding domains enabled the discrimination of K48 and K63 linked protein ubiquitination. To enhance signal-to-noise ratio, we implemented fluorescence complementation (ubiF3Hc) with split YFP. Using in addition a cell cycle marker we could show that HP1β is mostly ubiquitinated by UHRF1 during S phase and deubiquitinated by the protease USP7. With this complementation assay we could also directly detect the ubiquitination of the tumor suppressor p53 and monitor its inhibition by the anti-cancer drug Nutlin-3. Altogether, we demonstrate the utility of the ubiF3H assay to probe the ubiquitination of specific proteins and to screen for ligases, proteases and small molecules controlling this posttranslational modification.
Collapse
Affiliation(s)
- Weihua Qin
- Correspondence may also be addressed to Weihua Qin. Tel: +49 89 2180 71132; Fax: +49 89 2180 74236;
| | - Clemens Steinek
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Ksenia Kolobynina
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Heinrich Leonhardt
- To whom correspondence should be addressed. Tel: +49 89 2180 74232; Fax: +49 89 2180 74236;
| |
Collapse
|
36
|
Critical Roles of Polycomb Repressive Complexes in Transcription and Cancer. Int J Mol Sci 2022; 23:ijms23179574. [PMID: 36076977 PMCID: PMC9455514 DOI: 10.3390/ijms23179574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.
Collapse
|
37
|
Oss-Ronen L, Sarusi T, Cohen I. Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells 2022; 11:cells11152404. [PMID: 35954248 PMCID: PMC9368181 DOI: 10.3390/cells11152404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Collapse
Affiliation(s)
| | | | - Idan Cohen
- Correspondence: ; Tel.: +972-8-6477593; Fax: +972-8-6477626
| |
Collapse
|
38
|
Atypical Ubiquitination and Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23073705. [PMID: 35409068 PMCID: PMC8998352 DOI: 10.3390/ijms23073705] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination (the covalent attachment of ubiquitin molecules to target proteins) is one of the main post-translational modifications of proteins. Historically, the type of polyubiquitination, which involves K48 lysine residues of the monomeric ubiquitin, was the first studied type of ubiquitination. It usually targets proteins for their subsequent proteasomal degradation. All the other types of ubiquitination, including monoubiquitination; multi-monoubiquitination; and polyubiquitination involving lysine residues K6, K11, K27, K29, K33, and K63 and N-terminal methionine, were defined as atypical ubiquitination (AU). Good evidence now exists that AUs, participating in the regulation of various cellular processes, are crucial for the development of Parkinson's disease (PD). These AUs target various proteins involved in PD pathogenesis. The K6-, K27-, K29-, and K33-linked polyubiquitination of alpha-synuclein, the main component of Lewy bodies, and DJ-1 (another PD-associated protein) is involved in the formation of insoluble aggregates. Multifunctional protein kinase LRRK2 essential for PD is subjected to K63- and K27-linked ubiquitination. Mitophagy mediated by the ubiquitin ligase parkin is accompanied by K63-linked autoubiquitination of parkin itself and monoubiquitination and polyubiquitination of mitochondrial proteins with the formation of both classical K48-linked ubiquitin chains and atypical K6-, K11-, K27-, and K63-linked polyubiquitin chains. The ubiquitin-specific proteases USP30, USP33, USP8, and USP15, removing predominantly K6-, K11-, and K63-linked ubiquitin conjugates, antagonize parkin-mediated mitophagy.
Collapse
|
39
|
Yadav P, Subbarayalu P, Medina D, Nirzhor S, Timilsina S, Rajamanickam S, Eedunuri VK, Gupta Y, Zheng S, Abdelfattah N, Huang Y, Vadlamudi R, Hromas R, Meltzer P, Houghton P, Chen Y, Rao MK. M6A RNA Methylation Regulates Histone Ubiquitination to Support Cancer Growth and Progression. Cancer Res 2022; 82:1872-1889. [PMID: 35303054 DOI: 10.1158/0008-5472.can-21-2106] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is the most common malignancy of the bone, yet the survival for osteosarcoma patients is virtually unchanged over the past 30 years. This is principally because development of new therapies is hampered by a lack of recurrent mutations that can be targeted in osteosarcoma. Here, we report that epigenetic changes via mRNA methylation holds great promise to better understand the mechanisms of osteosarcoma growth and to develop targeted therapeutics. In osteosarcoma patients, the RNA demethylase ALKBH5 was amplified and higher expression correlated with copy number changes. ALKBH5 was critical for promoting osteosarcoma growth and metastasis, yet it was dispensable for normal cell survival. Me-RIP-seq analysis and functional studies showed that ALKBH5 mediates its pro-tumorigenic function by regulating m6A levels of histone deubiquitinase USP22 and the ubiquitin ligase RNF40. ALKBH5-mediated m6A deficiency in osteosarcoma led to increased expression of USP22 and RNF40 that resulted in inhibition of histone H2A monoubiquitination and induction of key pro-tumorigenic genes, consequently driving unchecked cell cycle progression, incessant replication and DNA repair. RNF40, which is historically known to ubiquitinate H2B, inhibited H2A ubiquitination in cancer by interacting with and affecting the stability of DDB1-CUL4-based ubiquitin E3 ligase complex. Taken together, this study directly links increased activity of ALKBH5 with dysregulation of USP22/RNF40 and histone ubiquitination in cancers. More broadly, these results suggest that m6A RNA methylation works in concert with other epigenetic mechanisms to control cancer growth.
Collapse
Affiliation(s)
- Pooja Yadav
- Greehey Children's Cancer Research Institute, United States
| | | | - Daisy Medina
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Saif Nirzhor
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Santosh Timilsina
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Subapriya Rajamanickam
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | | | - Yogesh Gupta
- UT Health Science Center at San Antonio, San Antonio, TX, United States
| | - Siyuan Zheng
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | | | - Yufei Huang
- The University of Texas at San Antonio, San Antonio, Texas, United States
| | - Ratna Vadlamudi
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Robert Hromas
- The University of Texas Health Science Center at San Antonio, United States
| | - Paul Meltzer
- National Cancer Institute, Bethesda, MD, United States
| | - Peter Houghton
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yidong Chen
- The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Manjeet K Rao
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
40
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
41
|
Hu R, Liu C, Lu W, Wei G, Yu D, Li W, Chen P, Li G, Zhao Q. Probing the Effect of Ubiquitinated Histone on Mononucleosomes by Translocation Dynamics Study through Solid-State Nanopores. NANO LETTERS 2022; 22:888-895. [PMID: 35060726 DOI: 10.1021/acs.nanolett.1c02978] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-translational modifications (PTMs), such as ubiquitination, are critically important in regulating genetic expressions by adjusting the nucleosome stability. A fast and label-free technology inspecting dynamic nucleosome structures can facilitate the interrogation of PTMs effects. Here we leverage the advantages of mechanically stable solid-state nanopores and detect the effect of a ubiquitinated histone on mononucleosomes at the single-molecule level. By comparing the translocation dynamics of natural and cross-linked mononucleosomes, we verified that the nucleosomal DNA unravelled from histones in natural mononucleosomes. Furthermore, we found that a turning point of voltage corresponds to the onset of nucleosome rupture. More importantly, we reveal that ubH2A stabilizes the nucleosome by shifting the turning point to a larger value and investigated the effect of ubiquitination on different histones (ubH2A and ubH2B). These findings open promising possibilities for developing a miniaturized and portable device for the fast screening of PTMs on nucleosomes.
Collapse
Affiliation(s)
- Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Dapeng Yu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Institute for Quantum Science and Technology and Department of Physics, South University of Science and Technology of China (SUSTech), Shenzhen 518055, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
42
|
Niu Y, Chen J, Qiao Y. Epigenetic Modifications in Tumor-Associated Macrophages: A New Perspective for an Old Foe. Front Immunol 2022; 13:836223. [PMID: 35140725 PMCID: PMC8818998 DOI: 10.3389/fimmu.2022.836223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Tumorigenesis is frequently accompanied by chronic inflammation, and the tumor microenvironment (TME) can be considered an ecosystem that consists of tumor cells, endotheliocytes, fibroblasts, immune cells and acellular components such as extracellular matrix. For tumor cells, their survival advantages are dependent on both genetic and epigenetic alterations, while other cells mainly present epigenetic modifications. Macrophages are the most plastic type of immune cells and undergo diverse epigenetic alterations in the TME. Some of these epigenetic modifications mitigate against cancer progression, and others accelerate this process. Due to the complex roles of macrophages in the TME, it is urgent to understand their epigenetic modifications associated with the TME. Here, we mainly summarize recent findings on TME-associated epigenetic alterations of tumor-associated macrophages (TAMs), including DNA methylation, posttranslational modifications of histone proteins, chromatin remodeling, and noncoding RNA-mediated epigenetic regulation. At the end of this review, we also discuss the translational potential of these epigenetic modifications for developing novel cancer therapies targeting TAMs.
Collapse
Affiliation(s)
- Yuqin Niu
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jianxiang Chen
- School of Pharmacy, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| |
Collapse
|
43
|
Salvo J, Sandoval C. Role of copper nanoparticles in wound healing for chronic wounds: literature review. BURNS & TRAUMA 2022; 10:tkab047. [PMID: 35071652 PMCID: PMC8778594 DOI: 10.1093/burnst/tkab047] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Chronic wounds are defined as wounds that fail to proceed through the normal phases of wound healing in an orderly and timely manner. The most common and inevitable impairment to wound healing is the installation of an infection, usually in the case of chronic wounds. Therefore, the objective of the present review was to identify the importance of copper nanoparticles in dressings for wound healing. Nanoparticles such as silver, gold and copper combat infectious processes through the inhibition of protein synthesis, peroxidation of the cell membrane and destroying the nucleic acids of bacteria and viruses. Among bioactive nanoparticles, copper plays a complex role in various cells, it modulates several cytokines and growth factor mechanisms of action and is essentially involved in all stages of the wound healing process. More importantly, copper plays a key role in skin regeneration and angiogenesis and accelerates the healing process through induction of vascular endothelial growth factor (VEGF) and angiogenesis by hypoxia-induced factor-1-alpha (HIF-1α) action where copper enhances HIF-1α expression and HIF-1α binding to the critical motifs in the promoter and putative enhancer regions of HIF-1-regulated genes.
Collapse
Affiliation(s)
- Jessica Salvo
- Escuela de Enfermería, Facultad de Ciencias, Universidad Mayor, Chile
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de la Frontera, Av. Francisco Salazar 01145, 4811230, Temuco, Chile
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, 5310431, Osorno, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de la Frontera, Av. Francisco Salazar 01145, 4811230, Temuco, Chile
| |
Collapse
|
44
|
Wang YZ, Liu C, Zhao J, Yu J, Luo A, Xiao X, Dou SX, Ma L, Wang PY, Li M, Li G, Yan J, Chen P, Li W. H2A mono-ubiquitination differentiates FACT's functions in nucleosome assembly and disassembly. Nucleic Acids Res 2021; 50:833-846. [PMID: 34951461 PMCID: PMC8789066 DOI: 10.1093/nar/gkab1271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
The histone chaperone FACT (FAcilitates Chromatin Transcription) plays an essential role in transcription and DNA replication by its dual functions on nucleosome assembly to maintain chromatin integrity and nucleosome disassembly to destabilize nucleosome and facilitate its accessibility simultaneously. Mono-ubiquitination at Lysine 119 of H2A (ubH2A) has been suggested to repress transcription by preventing the recruitment of FACT at early elongation process. However, up to date, how ubH2A directly affects FACT on nucleosome assembly and disassembly remains elusive. In this study, we demonstrated that the dual functions of FACT are differently regulated by ubH2A. The H2A ubiquitination does not affect FACT’s chaperone function in nucleosome assembly and FACT can deposit ubH2A–H2B dimer on tetrasome to form intact nucleosome. However, ubH2A greatly restricts FACT binding on nucleosome and inhibits its activity of nucleosome disassembly. Interestingly, deubiquitination of ubH2A rescues the nucleosome disassembly function of FACT to activate gene transcription. Our findings provide mechanistic insights of how H2A ubiquitination affects FACT in breaking nucleosome and maintaining its integrity, which sheds light on the biological function of ubH2A and various FACT’s activity under different chromatin states.
Collapse
Affiliation(s)
- Yi-Zhou Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anfeng Luo
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ming Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
45
|
Liu S, Aldinger KA, Cheng CV, Kiyama T, Dave M, McNamara HK, Zhao W, Stafford JM, Descostes N, Lee P, Caraffi SG, Ivanovski I, Errichiello E, Zweier C, Zuffardi O, Schneider M, Papavasiliou AS, Perry MS, Humberson J, Cho MT, Weber A, Swale A, Badea TC, Mao CA, Garavelli L, Dobyns WB, Reinberg D. NRF1 association with AUTS2-Polycomb mediates specific gene activation in the brain. Mol Cell 2021; 81:4663-4676.e8. [PMID: 34637754 PMCID: PMC8604784 DOI: 10.1016/j.molcel.2021.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.
Collapse
Affiliation(s)
- Sanxiong Liu
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Chi Vicky Cheng
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Mitali Dave
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Hanna K McNamara
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Wukui Zhao
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Nicolas Descostes
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Pedro Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Stefano G Caraffi
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ivan Ivanovski
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Edoardo Errichiello
- Dipartimento di Medicina Molecolare, Università di Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054 Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Orsetta Zuffardi
- Dipartimento di Medicina Molecolare, Università di Pavia, Pavia, Italy
| | - Michael Schneider
- Carle Physicians Group, Section of Neurology, St. Christopher's Hospital for Children, Urbana, IL, USA
| | | | - M Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neuroscience Center, Cook Children's Medical Center, Fort Worth, TX 76104, USA
| | - Jennifer Humberson
- Division of Genetics, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA, USA
| | | | | | - Andrew Swale
- Liverpool Women's Hospital, Liverpool, UK; Manchester Centre for Genomic Medicine, Manchester, UK
| | - Tudor C Badea
- National Eye Institute, NIH, Bethesda, MD 20892, USA; Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Livia Garavelli
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics (Genetic Medicine), University of Washington, Seattle, WA, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
46
|
Dasgupta A, Mondal P, Dalui S, Das C, Roy S. Molecular characterization of substrate-induced ubiquitin transfer by UBR7-PHD finger, a newly identified histone H2BK120 ubiquitin ligase. FEBS J 2021; 289:1842-1857. [PMID: 34739193 DOI: 10.1111/febs.16262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 01/01/2023]
Abstract
Monoubiquitination of histone H2B at lysine 120 plays a vital role in active transcription and DNA damage response pathways. Ubiquitin protein ligase E3 component N-recognin 7 (UBR7) has been recently identified as an H2BK120 monoubiquitin ligase. However, the molecular details of its ubiquitin transfer mechanism are not well understood. Here, we report that the plant homeodomain (PHD) finger of UBR7 is essential for its association with E2 UbcH6 and consequent ubiquitin transfer to its substrate histone H2B. We also identified the critical region of UbcH6 involved in this function and shown that the residues stretching from 114 to 125 of histone H2B C-terminal tail are sufficient for UBR7/UbcH6-mediated ubiquitin transfer. We also employed antibody-independent mass spectrometry to confirm UBR7-mediated ubiquitination of the H2B C-terminal tail. We demonstrated that the PHD finger of UBR7 forms a dimer and this dimerization is essential for ubiquitination of histone H2B. We mapped the critical residues involved in the dimerization and mutation of these residues that abrogate E3 ligase activity and are associated with cancer. Furthermore, we compared the mode of ubiquitin discharge from UbcH6 mediated by UBR7 and RING finger protein 20 (RNF20) through a thioester hydrolysis assay. Interestingly, binding of substrate H2B to UBR7 induces a conformational change in the PHD finger, which triggers ubiquitin transfer from UbcH6. However, the RNF20 RING finger alone is sufficient to promote the release of ubiquitin from UbcH6. Overall, the mechanism of ubiquitin transfer by the newly identified E3 ubiquitin ligase UBR7 is markedly different from that of RNF20.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology, Kolkata, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhaba National Institute, Mumbai, India
| | - Sambit Dalui
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhaba National Institute, Mumbai, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
47
|
Dobrinić P, Szczurek AT, Klose RJ. PRC1 drives Polycomb-mediated gene repression by controlling transcription initiation and burst frequency. Nat Struct Mol Biol 2021; 28:811-824. [PMID: 34608337 PMCID: PMC7612713 DOI: 10.1038/s41594-021-00661-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The Polycomb repressive system plays a fundamental role in controlling gene expression during mammalian development. To achieve this, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) bind target genes and use histone modification-dependent feedback mechanisms to form Polycomb chromatin domains and repress transcription. The inter-relatedness of PRC1 and PRC2 activity at these sites has made it difficult to discover the specific components of Polycomb chromatin domains that drive gene repression and to understand mechanistically how this is achieved. Here, by exploiting rapid degron-based approaches and time-resolved genomics, we kinetically dissect Polycomb-mediated repression and discover that PRC1 functions independently of PRC2 to counteract RNA polymerase II binding and transcription initiation. Using single-cell gene expression analysis, we reveal that PRC1 acts uniformly within the cell population and that repression is achieved by controlling transcriptional burst frequency. These important new discoveries provide a mechanistic and conceptual framework for Polycomb-dependent transcriptional control.
Collapse
Affiliation(s)
- Paula Dobrinić
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
48
|
Flora P, Dalal G, Cohen I, Ezhkova E. Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells. Genes (Basel) 2021; 12:1485. [PMID: 34680880 PMCID: PMC8535826 DOI: 10.3390/genes12101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms' lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Gil Dalal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| |
Collapse
|
49
|
Sugishita H, Kondo T, Ito S, Nakayama M, Yakushiji-Kaminatsui N, Kawakami E, Koseki Y, Ohinata Y, Sharif J, Harachi M, Blackledge NP, Klose RJ, Koseki H. Variant PCGF1-PRC1 links PRC2 recruitment with differentiation-associated transcriptional inactivation at target genes. Nat Commun 2021; 12:5341. [PMID: 34504070 PMCID: PMC8429492 DOI: 10.1038/s41467-021-24894-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Polycomb repressive complexes-1 and -2 (PRC1 and 2) silence developmental genes in a spatiotemporal manner during embryogenesis. How Polycomb group (PcG) proteins orchestrate down-regulation of target genes upon differentiation, however, remains elusive. Here, by differentiating embryonic stem cells into embryoid bodies, we reveal a crucial role for the PCGF1-containing variant PRC1 complex (PCGF1-PRC1) to mediate differentiation-associated down-regulation of a group of genes. Upon differentiation cues, transcription is down-regulated at these genes, in association with PCGF1-PRC1-mediated deposition of histone H2AK119 mono-ubiquitination (H2AK119ub1) and PRC2 recruitment. In the absence of PCGF1-PRC1, both H2AK119ub1 deposition and PRC2 recruitment are disrupted, leading to aberrant expression of target genes. PCGF1-PRC1 is, therefore, required for initiation and consolidation of PcG-mediated gene repression during differentiation. Polycomb repressive complexes (PRC1 and PRC2) repress genes that are crucial for development via epigenetic modifications; however, their role in differentiation is not well known. Here the authors reveal that a PCGF1-containing PRC1 variant facilitates exit from pluripotency by downregulating target genes and recruiting PRC2.
Collapse
Affiliation(s)
- Hiroki Sugishita
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Cellular and Molecular Medicine, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan.,International Research Center for Neurointelligence (IRCN), Institutes for Advanced Study, The University of Tokyo, Bunkyo-ku, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shinsuke Ito
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Japan
| | | | - Eiryo Kawakami
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Healthcare and Medical Data Driven AI based Predictive Reasoning Development Unit, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Cellular and Molecular Medicine, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhide Ohinata
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Cellular and Molecular Medicine, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mio Harachi
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Cellular and Molecular Medicine, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
50
|
Guha S, Bhaumik SR. Transcription-coupled DNA double-strand break repair. DNA Repair (Amst) 2021; 109:103211. [PMID: 34883263 DOI: 10.1016/j.dnarep.2021.103211] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022]
Abstract
The genomic DNA is constantly under attack by cellular and/or environmental factors. Fortunately, the cell is armed to safeguard its genome by various mechanisms such as nucleotide excision, base excision, mismatch and DNA double-strand break repairs. While these processes maintain the integrity of the genome throughout, DNA repair occurs preferentially faster at the transcriptionally active genes. Such transcription-coupled repair phenomenon plays important roles to maintain active genome integrity, failure of which would interfere with transcription, leading to an altered gene expression (and hence cellular pathologies/diseases). Among the various DNA damages, DNA double-strand breaks are quite toxic to the cells. If DNA double-strand break occurs at the active gene, it would interfere with transcription/gene expression, thus threatening cellular viability. Such DNA double-strand breaks are found to be repaired faster at the active gene in comparison to its inactive state or the inactive gene, thus supporting the existence of a new phenomenon of transcription-coupled DNA double-strand break repair. Here, we describe the advances of this repair process.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA.
| |
Collapse
|