1
|
Kompatscher M, Gonnella I, Erlacher M. Studying the Function of tRNA Modifications: Experimental Challenges and Opportunities. J Mol Biol 2025:168934. [PMID: 39756793 DOI: 10.1016/j.jmb.2024.168934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
tRNAs are essential molecules in protein synthesis, responsible for translating the four-nucleotide genetic code into the corresponding amino acid sequence. RNA modifications play a crucial role in influencing tRNA folding, structure, and function. These modifications, ranging from simple methylations to complex hypermodified species, are distributed throughout the tRNA molecule. Depending on their type and position, they contribute to the accuracy and efficiency of decoding by participating in a complex network of interactions. The enzymatic processes introducing these modifications are equally intricate and diverse, adding further complexity. As a result, studying tRNA modifications faces limitations at multiple levels. This review addresses the challenges involved in manipulating and studying the function of tRNA modifications and discusses experimental strategies and possibilities to overcome these obstacles.
Collapse
Affiliation(s)
- Maria Kompatscher
- Institute of Genomics and RNomics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Isabell Gonnella
- Institute of Genomics and RNomics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Matthias Erlacher
- Institute of Genomics and RNomics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Kompatscher M, Bartosik K, Erharter K, Plangger R, Juen F, Kreutz C, Micura R, Westhof E, Erlacher M. Contribution of tRNA sequence and modifications to the decoding preferences of E. coli and M. mycoides tRNAGlyUCC for synonymous glycine codons. Nucleic Acids Res 2024; 52:1374-1386. [PMID: 38050960 PMCID: PMC10853795 DOI: 10.1093/nar/gkad1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.
Collapse
Affiliation(s)
- Maria Kompatscher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kevin Erharter
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Fabian Sebastian Juen
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Matthias D Erlacher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Coller J, Ignatova Z. tRNA therapeutics for genetic diseases. Nat Rev Drug Discov 2024; 23:108-125. [PMID: 38049504 DOI: 10.1038/s41573-023-00829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/06/2023]
Abstract
Transfer RNAs (tRNAs) have a crucial role in protein synthesis, and in recent years, their therapeutic potential for the treatment of genetic diseases - primarily those associated with a mutation altering mRNA translation - has gained significant attention. Engineering tRNAs to readthrough nonsense mutation-associated premature termination of mRNA translation can restore protein synthesis and function. In addition, supplementation of natural tRNAs can counteract effects of missense mutations in proteins crucial for tRNA biogenesis and function in translation. This Review will present advances in the development of tRNA therapeutics with high activity and safety in vivo and discuss different formulation approaches for single or chronic treatment modalities. The field of tRNA therapeutics is still in its early stages, and a series of challenges related to tRNA efficacy and stability in vivo, delivery systems with tissue-specific tropism, and safe and efficient manufacturing need to be addressed.
Collapse
Affiliation(s)
- Jeff Coller
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
6
|
Cozma E, Rao M, Dusick M, Genereaux J, Rodriguez-Mias RA, Villén J, Brandl CJ, Berg MD. Anticodon sequence determines the impact of mistranslating tRNA Ala variants. RNA Biol 2023; 20:791-804. [PMID: 37776539 PMCID: PMC10543346 DOI: 10.1080/15476286.2023.2257471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/02/2023] Open
Abstract
Transfer RNAs (tRNAs) maintain translation fidelity through accurate charging by their cognate aminoacyl-tRNA synthetase and codon:anticodon base pairing with the mRNA at the ribosome. Mistranslation occurs when an amino acid not specified by the genetic message is incorporated into proteins and has applications in biotechnology, therapeutics and is relevant to disease. Since the alanyl-tRNA synthetase uniquely recognizes a G3:U70 base pair in tRNAAla and the anticodon plays no role in charging, tRNAAla variants with anticodon mutations have the potential to mis-incorporate alanine. Here, we characterize the impact of the 60 non-alanine tRNAAla anticodon variants on the growth of Saccharomyces cerevisiae. Overall, 36 tRNAAla anticodon variants decreased growth in single- or multi-copy. Mass spectrometry analysis of the cellular proteome revealed that 52 of 57 anticodon variants, not decoding alanine or stop codons, induced mistranslation when on single-copy plasmids. Variants with G/C-rich anticodons resulted in larger growth deficits than A/U-rich variants. In most instances, synonymous anticodon variants impact growth differently, with anticodons containing U at base 34 being the least impactful. For anticodons generating the same amino acid substitution, reduced growth generally correlated with the abundance of detected mistranslation events. Differences in decoding specificity, even between synonymous anticodons, resulted in each tRNAAla variant mistranslating unique sets of peptides and proteins. We suggest that these differences in decoding specificity are also important in determining the impact of tRNAAla anticodon variants.
Collapse
Affiliation(s)
- Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Megha Rao
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Madison Dusick
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Porter JJ, Heil CS, Lueck JD. Therapeutic promise of engineered nonsense suppressor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1641. [PMID: 33567469 PMCID: PMC8244042 DOI: 10.1002/wrna.1641] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nonsense mutations change an amino acid codon to a premature termination codon (PTC) generally through a single-nucleotide substitution. The generation of a PTC results in a defective truncated protein and often in severe forms of disease. Because of the exceedingly high prevalence of nonsense-associated diseases and a unifying mechanism, there has been a concerted effort to identify PTC therapeutics. Most clinical trials for PTC therapeutics have been conducted with small molecules that promote PTC read through and incorporation of a near-cognate amino acid. However, there is a need for PTC suppression agents that recode PTCs with the correct amino acid while being applicable to PTC mutations in many different genomic landscapes. With these characteristics, a single therapeutic will be able to treat several disease-causing PTCs. In this review, we will focus on the use of nonsense suppression technologies, in particular, suppressor tRNAs (sup-tRNAs), as possible therapeutics for correcting PTCs. Sup-tRNAs have many attractive qualities as possible therapeutic agents although there are knowledge gaps on their function in mammalian cells and technical hurdles that need to be overcome before their promise is realized. This article is categorized under: RNA Processing > tRNA Processing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Joseph J. Porter
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Christina S. Heil
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
8
|
Albers S, Beckert B, Matthies MC, Mandava CS, Schuster R, Seuring C, Riedner M, Sanyal S, Torda AE, Wilson DN, Ignatova Z. Repurposing tRNAs for nonsense suppression. Nat Commun 2021; 12:3850. [PMID: 34158503 PMCID: PMC8219837 DOI: 10.1038/s41467-021-24076-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the TΨC-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 Å resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon.
Collapse
Affiliation(s)
- Suki Albers
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Bertrand Beckert
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marco C. Matthies
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Chandra Sekhar Mandava
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Raphael Schuster
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | | | - Maria Riedner
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | - Suparna Sanyal
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew E. Torda
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Daniel N. Wilson
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Samatova E, Daberger J, Liutkute M, Rodnina MV. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Front Microbiol 2021; 11:619430. [PMID: 33505387 PMCID: PMC7829197 DOI: 10.3389/fmicb.2020.619430] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
Protein homeostasis of bacterial cells is maintained by coordinated processes of protein production, folding, and degradation. Translational efficiency of a given mRNA depends on how often the ribosomes initiate synthesis of a new polypeptide and how quickly they read the coding sequence to produce a full-length protein. The pace of ribosomes along the mRNA is not uniform: periods of rapid synthesis are separated by pauses. Here, we summarize recent evidence on how ribosome pausing affects translational efficiency and protein folding. We discuss the factors that slow down translation elongation and affect the quality of the newly synthesized protein. Ribosome pausing emerges as important factor contributing to the regulatory programs that ensure the quality of the proteome and integrate the cellular and environmental cues into regulatory circuits of the cell.
Collapse
Affiliation(s)
- Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jan Daberger
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
10
|
Disruption of evolutionarily correlated tRNA elements impairs accurate decoding. Proc Natl Acad Sci U S A 2020; 117:16333-16338. [PMID: 32601241 DOI: 10.1073/pnas.2004170117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial transfer RNAs (tRNAs) contain evolutionarily conserved sequences and modifications that ensure uniform binding to the ribosome and optimal translational accuracy despite differences in their aminoacyl attachments and anticodon nucleotide sequences. In the tRNA anticodon stem-loop, the anticodon sequence is correlated with a base pair in the anticodon loop (nucleotides 32 and 38) to tune the binding of each tRNA to the decoding center in the ribosome. Disruption of this correlation renders the ribosome unable to distinguish correct from incorrect tRNAs. The molecular basis for how these two tRNA features combine to ensure accurate decoding is unclear. Here, we solved structures of the bacterial ribosome containing either wild-type [Formula: see text] or [Formula: see text] containing a reversed 32-38 pair on cognate and near-cognate codons. Structures of wild-type [Formula: see text] bound to the ribosome reveal 23S ribosomal RNA (rRNA) nucleotide A1913 positional changes that are dependent on whether the codon-anticodon interaction is cognate or near cognate. Further, the 32-38 pair is destabilized in the context of a near-cognate codon-anticodon pair. Reversal of the pairing in [Formula: see text] ablates A1913 movement regardless of whether the interaction is cognate or near cognate. These results demonstrate that disrupting 32-38 and anticodon sequences alters interactions with the ribosome that directly contribute to misreading.
Collapse
|
11
|
A tRNA-mimic Strategy to Explore the Role of G34 of tRNA Gly in Translation and Codon Frameshifting. Int J Mol Sci 2019; 20:ijms20163911. [PMID: 31405256 PMCID: PMC6720975 DOI: 10.3390/ijms20163911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Decoding of the 61 sense codons of the genetic code requires a variable number of tRNAs that establish codon-anticodon interactions. Thanks to the wobble base pairing at the third codon position, less than 61 different tRNA isoacceptors are needed to decode the whole set of codons. On the tRNA, a subtle distribution of nucleoside modifications shapes the anticodon loop structure and participates to accurate decoding and reading frame maintenance. Interestingly, although the 61 anticodons should exist in tRNAs, a strict absence of some tRNAs decoders is found in several codon families. For instance, in Eukaryotes, G34-containing tRNAs translating 3-, 4- and 6-codon boxes are absent. This includes tRNA specific for Ala, Arg, Ile, Leu, Pro, Ser, Thr, and Val. tRNAGly is the only exception for which in the three kingdoms, a G34-containing tRNA exists to decode C3 and U3-ending codons. To understand why G34-tRNAGly exists, we analysed at the genome wide level the codon distribution in codon +1 relative to the four GGN Gly codons. When considering codon GGU, a bias was found towards an unusual high usage of codons starting with a G whatever the amino acid at +1 codon. It is expected that GGU codons are decoded by G34-containing tRNAGly, decoding also GGC codons. Translation studies revealed that the presence of a G at the first position of the downstream codon reduces the +1 frameshift by stabilizing the G34•U3 wobble interaction. This result partially explains why G34-containing tRNAGly exists in Eukaryotes whereas all the other G34-containing tRNAs for multiple codon boxes are absent.
Collapse
|
12
|
Hoernes TP, Faserl K, Juen MA, Kremser J, Gasser C, Fuchs E, Shi X, Siewert A, Lindner H, Kreutz C, Micura R, Joseph S, Höbartner C, Westhof E, Hüttenhofer A, Erlacher MD. Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions. Nat Commun 2018; 9:4865. [PMID: 30451861 PMCID: PMC6242847 DOI: 10.1038/s41467-018-07321-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/25/2018] [Indexed: 01/16/2023] Open
Abstract
The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Elisabeth Fuchs
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Xinying Shi
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0314, USA
| | - Aaron Siewert
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0314, USA
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS UPR9002/University of Strasbourg, Strasbourg, 67084, France
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
13
|
RNA modification landscape of the human mitochondrial tRNA Lys regulates protein synthesis. Nat Commun 2018; 9:3966. [PMID: 30262910 PMCID: PMC6160436 DOI: 10.1038/s41467-018-06471-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/06/2018] [Indexed: 01/15/2023] Open
Abstract
Post-transcriptional RNA modifications play a critical role in the pathogenesis of human mitochondrial disorders, but the mechanisms by which specific modifications affect mitochondrial protein synthesis remain poorly understood. Here we used a quantitative RNA sequencing approach to investigate, at nucleotide resolution, the stoichiometry and methyl modifications of the entire mitochondrial tRNA pool, and establish the relevance to human disease. We discovered that a N1-methyladenosine (m1A) modification is missing at position 58 in the mitochondrial tRNALys of patients with the mitochondrial DNA mutation m.8344 A > G associated with MERRF (myoclonus epilepsy, ragged-red fibers). By restoring the modification on the mitochondrial tRNALys, we demonstrated the importance of the m1A58 to translation elongation and the stability of selected nascent chains. Our data indicates regulation of post-transcriptional modifications on mitochondrial tRNAs is finely tuned for the control of mitochondrial gene expression. Collectively, our findings provide novel insight into the regulation of mitochondrial tRNAs and reveal greater complexity to the molecular pathogenesis of MERRF.
Collapse
|
14
|
Abstract
Accurate translation of the genetic code is critical to ensure expression of proteins with correct amino acid sequences. Certain tRNAs can cause a shift out of frame (i.e., frameshifting) due to imbalances in tRNA concentrations, lack of tRNA modifications or insertions or deletions in tRNAs (called frameshift suppressors). Here, we determined the structural basis for how frameshift-suppressor tRNASufA6 (a derivative of tRNAPro) reprograms the mRNA frame to translate a 4-nt codon when bound to the bacterial ribosome. After decoding at the aminoacyl (A) site, the crystal structure of the anticodon stem-loop of tRNASufA6 bound in the peptidyl (P) site reveals ASL conformational changes that allow for recoding into the +1 mRNA frame. Furthermore, a crystal structure of full-length tRNASufA6 programmed in the P site shows extensive conformational rearrangements of the 30S head and body domains similar to what is observed in a translocation intermediate state containing elongation factor G (EF-G). The 30S movement positions tRNASufA6 toward the 30S exit (E) site disrupting key 16S rRNA-mRNA interactions that typically define the mRNA frame. In summary, this tRNA-induced 30S domain change in the absence of EF-G causes the ribosome to lose its grip on the mRNA and uncouples the canonical forward movement of the tRNAs during elongation.
Collapse
|
15
|
Interaction of rRNA with mRNA and tRNA in Translating Mammalian Ribosome: Functional Implications in Health and Disease. Biomolecules 2018; 8:biom8040100. [PMID: 30261607 PMCID: PMC6316650 DOI: 10.3390/biom8040100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023] Open
Abstract
RNA-RNA interaction slowly emerges as a critical component for the smooth functioning of gene expression processes, in particular in translation where the central actor is an RNA powered molecular machine. Overall, ribosome dynamic results from sequential interactions between three main RNA species: ribosomal, transfer and messenger RNA (rRNA, tRNA and mRNA). In recent decades, special attention has been paid to the physical principles governing codon-anticodon pairing, whereas individual RNA positioning mostly relies on ribosomal RNA framework. Here, we provide a brief overview on the actual knowledge of RNA infrastructure throughout the process of translation in mammalian cells: where and how do these physical contacts occur? What are their potential roles and functions? Are they involved in disease development? What will be the main challenges ahead?
Collapse
|
16
|
Blewett NH, Maraia RJ. La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:361-372. [PMID: 29397330 DOI: 10.1016/j.bbagrm.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 10/25/2022]
Abstract
The conserved nuclear RNA-binding factor known as La protein arose in an ancient eukaryote, phylogenetically associated with another eukaryotic hallmark, synthesis of tRNA by RNA polymerase III (RNAP III). Because 3'-oligo(U) is the sequence-specific signal for transcription termination by RNAP III as well as the high affinity binding site for La, the latter is linked to the intranuclear posttranscriptional processing of eukaryotic precursor-tRNAs. The pre-tRNA processing pathway must accommodate a variety of substrates that are destined for both common steps as well as tRNA-specific events. The order of intranuclear pre-tRNA processing steps is mediated in part by three activities derived from interaction with La protein: 3'-end protection from untimely decay by 3' exonucleases, nuclear retention and chaperone activity that helps prevent pre-tRNA misfolding and mischanneling into offline pathways. A focus of this perspective will be on differences between yeast and mammals in the subcellular partitioning of pre-tRNA intermediates and differential interactions with La. We review how this is most relevant to pre-tRNA splicing which occurs in the cytoplasm of yeasts but in nuclei of higher eukaryotes. Also divergent is La architecture, comprised of three RNA-binding domains in organisms in all examined branches of the eukaryal tree except yeast, which have lost the C-terminal RNA recognition motif-2α (RRM2α) domain. We also review emerging data that suggest mammalian La interacts with nuclear pre-tRNA splicing intermediates and may impact this branch of the tRNA maturation pathway. Finally, because La is involved in intranuclear tRNA biogenesis we review relevant aspects of tRNA-associated neurodegenerative diseases. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Commissioned Corps, U.S. Public Health Service, Rockville, MD, USA.
| |
Collapse
|
17
|
Rodnina MV, Fischer N, Maracci C, Stark H. Ribosome dynamics during decoding. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0182. [PMID: 28138068 PMCID: PMC5311926 DOI: 10.1098/rstb.2016.0182] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
18
|
Zhang Z, Xu H, Si L, Chen Y, Zhang B, Wang Y, Wu Y, Zhou X, Zhang L, Zhou D. Construction of an inducible stable cell line for efficient incorporation of unnatural amino acids in mammalian cells. Biochem Biophys Res Commun 2017; 489:490-496. [DOI: 10.1016/j.bbrc.2017.05.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
19
|
Loveland AB, Demo G, Grigorieff N, Korostelev AA. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 2017; 546:113-117. [PMID: 28538735 PMCID: PMC5657493 DOI: 10.1038/nature22397] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Gene translation depends on accurate decoding of mRNA, the structural mechanism of which remains poorly understood. Ribosomes decode mRNA codons by selecting cognate aminoacyl-tRNAs delivered by elongation factor Tu (EF-Tu). Here we present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Both cognate and near-cognate tRNA anticodons explore the aminoacyl-tRNA-binding site (A site) of an open 30S subunit, while inactive EF-Tu is separated from the 50S subunit. A transient conformation of decoding-centre nucleotide G530 stabilizes the cognate codon-anticodon helix, initiating step-wise 'latching' of the decoding centre. The resulting closure of the 30S subunit docks EF-Tu at the sarcin-ricin loop of the 50S subunit, activating EF-Tu for GTP hydrolysis and enabling accommodation of the aminoacyl-tRNA. By contrast, near-cognate complexes fail to induce the G530 latch, thus favouring open 30S pre-accommodation intermediates with inactive EF-Tu. This work reveals long-sought structural differences between the pre-accommodation of cognate and near-cognate tRNAs that elucidate the mechanism of accurate decoding.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/ultrastructure
- Codon/chemistry
- Codon/genetics
- Codon/ultrastructure
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/ultrastructure
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/ultrastructure
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Models, Molecular
- Peptide Elongation Factor Tu/metabolism
- Peptide Elongation Factor Tu/ultrastructure
- Protein Biosynthesis
- Protein Domains
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Amino Acyl/ultrastructure
- Ribosome Subunits/chemistry
- Ribosome Subunits/metabolism
- Ribosome Subunits/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- Anna B. Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology. University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology. University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Andrei A. Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology. University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| |
Collapse
|
20
|
Ranjan N, Rodnina MV. Thio-Modification of tRNA at the Wobble Position as Regulator of the Kinetics of Decoding and Translocation on the Ribosome. J Am Chem Soc 2017; 139:5857-5864. [PMID: 28368583 DOI: 10.1021/jacs.7b00727] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uridine 34 (U34) at the wobble position of the tRNA anticodon is post-transcriptionally modified, usually to mcm5s2, mcm5, or mnm5. The lack of the mcm5 or s2 modification at U34 of tRNALys, tRNAGlu, and tRNAGln causes ribosome pausing at the respective codons in yeast. The pauses occur during the elongation step, but the mechanism that triggers ribosome pausing is not known. Here, we show how the s2 modification in yeast tRNALys affects mRNA decoding and tRNA-mRNA translocation. Using real-time kinetic analysis we show that mcm5-modified tRNALys lacking the s2 group has a lower affinity of binding to the cognate codon and is more efficiently rejected than the fully modified tRNALys. The lack of the s2 modification also slows down the rearrangements in the ribosome-EF-Tu-GDP-Pi-Lys-tRNALys complex following GTP hydrolysis by EF-Tu. Finally, tRNA-mRNA translocation is slower with the s2-deficient tRNALys. These observations explain the observed ribosome pausing at AAA codons during translation and demonstrate how the s2 modification helps to ensure the optimal translation rates that maintain proteome homeostasis of the cell.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
21
|
Maraia RJ, Arimbasseri AG. Factors That Shape Eukaryotic tRNAomes: Processing, Modification and Anticodon-Codon Use. Biomolecules 2017; 7:biom7010026. [PMID: 28282871 PMCID: PMC5372738 DOI: 10.3390/biom7010026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Transfer RNAs (tRNAs) contain sequence diversity beyond their anticodons and the large variety of nucleotide modifications found in all kingdoms of life. Some modifications stabilize structure and fit in the ribosome whereas those to the anticodon loop modulate messenger RNA (mRNA) decoding activity more directly. The identities of tRNAs with some universal anticodon loop modifications vary among distant and parallel species, likely to accommodate fine tuning for their translation systems. This plasticity in positions 34 (wobble) and 37 is reflected in codon use bias. Here, we review convergent evidence that suggest that expansion of the eukaryotic tRNAome was supported by its dedicated RNA polymerase III transcription system and coupling to the precursor-tRNA chaperone, La protein. We also review aspects of eukaryotic tRNAome evolution involving G34/A34 anticodon-sparing, relation to A34 modification to inosine, biased codon use and regulatory information in the redundancy (synonymous) component of the genetic code. We then review interdependent anticodon loop modifications involving position 37 in eukaryotes. This includes the eukaryote-specific tRNA modification, 3-methylcytidine-32 (m3C32) and the responsible gene, TRM140 and homologs which were duplicated and subspecialized for isoacceptor-specific substrates and dependence on i6A37 or t6A37. The genetics of tRNA function is relevant to health directly and as disease modifiers.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Commissioned Corps, U.S. Public Health Service, Rockville, MD, 20016, USA.
| | - Aneeshkumar G Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
22
|
Lehmann J. Induced fit of the peptidyl-transferase center of the ribosome and conformational freedom of the esterified amino acids. RNA (NEW YORK, N.Y.) 2017; 23:229-239. [PMID: 27879432 PMCID: PMC5238797 DOI: 10.1261/rna.057273.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
The catalytic site of most enzymes can efficiently handle only one substrate. In contrast, the ribosome is capable of polymerizing at a similar rate at least 20 different kinds of amino acids from aminoacyl-tRNA carriers while using just one catalytic site, the peptidyl-transferase center (PTC). An induced-fit mechanism has been uncovered in the PTC, but a possible connection between this mechanism and the uniform handling of the substrates has not been investigated. We present an analysis of published ribosome structures supporting the hypothesis that the induced fit eliminates unreactive rotamers predominantly populated for some A-site aminoacyl esters before induction. We show that this hypothesis is fully consistent with the wealth of kinetic data obtained with these substrates. Our analysis reveals that induction constrains the amino acids into a reactive conformation in a side-chain independent manner. It allows us to highlight the rationale of the PTC structural organization, which confers to the ribosome the very unusual ability to handle large as well as small substrates.
Collapse
Affiliation(s)
- Jean Lehmann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Campus Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
23
|
Arimbasseri AG, Iben J, Wei FY, Rijal K, Tomizawa K, Hafner M, Maraia RJ. Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37. RNA (NEW YORK, N.Y.) 2016; 22:1400-10. [PMID: 27354703 PMCID: PMC4986895 DOI: 10.1261/rna.056259.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/24/2016] [Indexed: 05/10/2023]
Abstract
Post-transcriptional modifications of anticodon loop (ACL) nucleotides impact tRNA structure, affinity for the ribosome, and decoding activity, and these activities can be fine-tuned by interactions between nucleobases on either side of the anticodon. A recently discovered ACL modification circuit involving positions 32, 34, and 37 is disrupted by a human disease-associated mutation to the gene encoding a tRNA modification enzyme. We used tRNA-HydroSeq (-HySeq) to examine (3)methyl-cytidine-32 (m(3)C32), which is found in yeast only in the ACLs of tRNAs(Ser) and tRNAs(Thr) In contrast to that reported for Saccharomyces cerevisiae in which all m(3)C32 depends on a single gene, TRM140, the m(3)C32 of tRNAs(Ser) and tRNAs(Thr) of the fission yeast S. pombe, are each dependent on one of two related genes, trm140(+) and trm141(+), homologs of which are found in higher eukaryotes. Interestingly, mammals and other vertebrates contain a third homolog and also contain m(3)C at new sites, positions 32 on tRNAs(Arg) and C47:3 in the variable arm of tRNAs(Ser) More significantly, by examining S. pombe mutants deficient for other modifications, we found that m(3)C32 on the three tRNAs(Ser) that contain anticodon base A36, requires N(6)-isopentenyl modification of A37 (i(6)A37). This new C32-A37 ACL circuitry indicates that i(6)A37 is a pre- or corequisite for m(3)C32 on these tRNAs. Examination of the tRNA database suggests that such circuitry may be more expansive than observed here. The results emphasize two contemporary themes, that tRNA modifications are interconnected, and that some specific modifications on tRNAs of the same anticodon identity are species-specific.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan
| | - Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan
| | - Markus Hafner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Maraia
- Commissioned Corps, US Public Health Service, Washington, DC 20201, USA
| |
Collapse
|
24
|
Rodnina MV. The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci 2016; 25:1390-406. [PMID: 27198711 DOI: 10.1002/pro.2950] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is shaped by the combined activities of the gene expression and quality control machineries. While transcription plays an undoubtedly important role, in recent years also translation emerged as a key step that defines the composition and quality of the proteome and the functional activity of proteins in the cell. Among the different post-transcriptional control mechanisms, translation initiation and elongation provide multiple checkpoints that can affect translational efficiency. A multitude of specific signals in mRNAs can determine the frequency of translation initiation, choice of the open reading frame, global and local elongation velocities, and the folding of the emerging protein. In addition to specific signatures in the mRNAs, also variations in the global pools of translation components, including ribosomes, tRNAs, mRNAs, and translation factors can alter translational efficiencies. The cellular outcomes of phenomena such as mRNA codon bias are sometimes difficult to understand due to the staggering complexity of covariates that affect codon usage, translation, and protein folding. Here we summarize the experimental evidence on how the ribosome-together with the other components of the translational machinery-can alter translational efficiencies of mRNA at the initiation and elongation stages and how translation velocity affects protein folding. We seek to explain these findings in the context of mechanistic work on the ribosome. The results argue in favour of a new understanding of translation control as a hub that links mRNA homeostasis to production and quality control of proteins in the cell.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| |
Collapse
|
25
|
Protein Elongation, Co-translational Folding and Targeting. J Mol Biol 2016; 428:2165-85. [DOI: 10.1016/j.jmb.2016.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022]
|
26
|
Doerfel LK, Rodnina MV. Elongation factor P: Function and effects on bacterial fitness. Biopolymers 2016; 99:837-45. [PMID: 23828669 DOI: 10.1002/bip.22341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/19/2013] [Indexed: 12/22/2022]
Abstract
The elongation phase of translation is promoted by three universal elongation factors, EF-Tu, EF-Ts, and EF-G in bacteria and their homologs in archaea and eukaryotes. Recent findings demonstrate that the translation of a subset of mRNAs requires a fourth elongation factor, EF-P in bacteria or the homologs factors a/eIF5A in other kingdoms of life. EF-P prevents the ribosome from stalling during the synthesis of proteins containing consecutive Pro residues, such as PPG, PPP, or longer Pro clusters. The efficient and coordinated synthesis of such proteins is required for bacterial growth, motility, virulence, and stress response. EF-P carries a unique post-translational modification, which contributes to its catalytic proficiency. The modification enzymes, which are lacking in higher eukaryotes, provide attractive new targets for the development of new, highly specific antimicrobials.
Collapse
Affiliation(s)
- Lili K Doerfel
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Goettingen, Germany
| | | |
Collapse
|
27
|
Lian X, Guo J, Gu W, Cui Y, Zhong J, Jin J, He QY, Wang T, Zhang G. Genome-Wide and Experimental Resolution of Relative Translation Elongation Speed at Individual Gene Level in Human Cells. PLoS Genet 2016; 12:e1005901. [PMID: 26926465 PMCID: PMC4771717 DOI: 10.1371/journal.pgen.1005901] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
In the process of translation, ribosomes first assemble on mRNAs (translation initiation) and then translate along the mRNA (elongation) to synthesize proteins. Elongation pausing is deemed highly relevant to co-translational folding of nascent peptides and the functionality of protein products, which positioned the evaluation of elongation speed as one of the central questions in the field of translational control. By integrating three types of RNA-seq methods, we experimentally and computationally resolved elongation speed, with our proposed elongation velocity index (EVI), a relative measure at individual gene level and under physiological condition in human cells. We successfully distinguished slow-translating genes from the background translatome. We demonstrated that low-EVI genes encoded more stable proteins. We further identified cell-specific slow-translating codons, which might serve as a causal factor of elongation deceleration. As an example for the biological relevance, we showed that the relatively slow-translating genes tended to be associated with the maintenance of malignant phenotypes per pathway analyses. In conclusion, EVI opens a new view to understand why human cells tend to avoid simultaneously speeding up translation initiation and decelerating elongation, and the possible cancer relevance of translating low-EVI genes to gain better protein quality. In protein synthesis, ribosome assembles to mRNA to initiate translation, followed by the process of elongation to read the codons along the mRNA molecule for polypeptide chain production. It is known that slowing down the elongation speed at certain regions of mRNA is critical for the correct folding of numerous proteins—the so-called “pause-to-fold”. However, it has been an open question to evaluate elongation speed under cellular physiological conditions in genome-wide scale. Here, we used three types of next-generation sequencing approaches to experimentally and computationally address this question. With a new relative measure of elongation velocity index (EVI), we successfully distinguished slow-translating genes. Their protein products are more stable than the background genes. We found that different cell types tended to have distinct slow-translating codons, which might be relevant to the cell/tissue specific tRNA composition. Such elongation deceleration is potentially disease-relevant: cancer cells tend to slow down numerous cancer-favorable genes, and vice versa. Furthermore, we justified that translation initiation and elongation are evolutionarily synergistic as no gene with both high initiation efficiency and low elongation speed was observed: that would cause a traffic jam of ribosomes that should be maximally avoided per evolution.
Collapse
Affiliation(s)
- Xinlei Lian
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Jiahui Guo
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Wei Gu
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Yizhi Cui
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Jiayong Zhong
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Jingjie Jin
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
- * E-mail: (GZ); (TW); (QYH)
| | - Tong Wang
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
- * E-mail: (GZ); (TW); (QYH)
| | - Gong Zhang
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
- * E-mail: (GZ); (TW); (QYH)
| |
Collapse
|
28
|
Structural Insights into tRNA Dynamics on the Ribosome. Int J Mol Sci 2015; 16:9866-95. [PMID: 25941930 PMCID: PMC4463622 DOI: 10.3390/ijms16059866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022] Open
Abstract
High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation.
Collapse
|
29
|
Abstract
An RNA World that predated the modern world of polypeptide and polynucleotide is one of the most widely accepted models in origin of life research. In this model, the translation system shepherded the RNA World into the extant biology of DNA, RNA, and protein. Here, we examine the RNA World Hypothesis in the context of increasingly detailed information available about the origins, evolution, functions, and mechanisms of the translation system. We conclude that the translation system presents critical challenges to RNA World Hypotheses. Firstly, a timeline of the RNA World is problematic when the ribosome is incorporated. The mechanism of peptidyl transfer of the ribosome appears distinct from evolved enzymes, signaling origins in a chemical rather than biological milieu. Secondly, we have no evidence that the basic biochemical toolset of life is subject to substantive change by Darwinian evolution, as required for the transition from the RNA world to extant biology. Thirdly, we do not see specific evidence for biological takeover of ribozyme function by protein enzymes. Finally, we can find no basis for preservation of the ribosome as ribozyme or the universality of translation, if it were the case that other information transducing ribozymes, such as ribozyme polymerases, were replaced by protein analogs and erased from the phylogenetic record. We suggest that an updated model of the RNA World should address the current state of knowledge of the translation system.
Collapse
|
30
|
Fagan CE, Maehigashi T, Dunkle JA, Miles SJ, Dunham CM. Structural insights into translational recoding by frameshift suppressor tRNASufJ. RNA (NEW YORK, N.Y.) 2014; 20:1944-54. [PMID: 25352689 PMCID: PMC4238358 DOI: 10.1261/rna.046953.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/02/2014] [Indexed: 05/25/2023]
Abstract
The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5' or 3' direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNA(SufJ), a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNA(SufJ) contains an insertion 5' to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASL(SufJ) or tRNA(SufJ) does not affect its affinity for the A site of the ribosome. Structural analyses of both ASL(SufJ) and ASL(Thr) bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34-37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASL(SufJ) imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNA(SufJ) during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting.
Collapse
MESH Headings
- Anticodon/genetics
- Anticodon/ultrastructure
- Crystallography, X-Ray
- Escherichia coli
- Genes, Suppressor
- Nucleic Acid Conformation
- Nucleotides/chemistry
- Nucleotides/genetics
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/ultrastructure
- Ribosomes/genetics
- Thermus thermophilus/genetics
Collapse
Affiliation(s)
- Crystal E Fagan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Tatsuya Maehigashi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jack A Dunkle
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Stacey J Miles
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
31
|
Rudorf S, Thommen M, Rodnina MV, Lipowsky R. Deducing the kinetics of protein synthesis in vivo from the transition rates measured in vitro. PLoS Comput Biol 2014; 10:e1003909. [PMID: 25358034 PMCID: PMC4214572 DOI: 10.1371/journal.pcbi.1003909] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/14/2014] [Indexed: 02/02/2023] Open
Abstract
The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo rates from their in-vitro values. The method has two basic components. First, we introduce the kinetic distance, a new concept by which we can quantitatively compare the kinetics of a multistep process in different environments. The kinetic distance depends logarithmically on the transition rates and can be interpreted in terms of the underlying free energy barriers. Second, we minimize the kinetic distance between the in-vitro and the in-vivo process, imposing the constraint that the deduced rates reproduce a known global property such as the overall in-vivo speed. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression. We describe the latter process by a codon-specific Markov model with three reaction pathways, corresponding to the initial binding of cognate, near-cognate, and non-cognate tRNA, for which we determine all individual transition rates in vitro. We then predict the in-vivo rates by the constrained minimization procedure and validate these rates by three independent sets of in-vivo data, obtained for codon-dependent translation speeds, codon-specific translation dynamics, and missense error frequencies. In all cases, we find good agreement between theory and experiment without adjusting any fit parameter. The deduced in-vivo rates lead to smaller error frequencies than the known in-vitro rates, primarily by an improved initial selection of tRNA. The method introduced here is relatively simple from a computational point of view and can be applied to any biomolecular process, for which we have detailed information about the in-vitro kinetics. The proverb ‘life is motion’ also applies to the molecular scale. Indeed, if we looked into any living cell with molecular resolution, we would observe a large variety of highly dynamic processes. One particularly striking aspect of these dynamics is that all macromolecules within the cell are continuously synthesized, modified, and degraded by complex biomolecular machines. These ‘nanorobots’ follow intricate reaction pathways that form networks of molecular transitions or transformation steps. Each of these steps is stochastic and takes, on average, a certain amount of time. A fundamentally important question is how these individual step times or the corresponding transition rates determine the overall speed of the process in the cell. This question is difficult to answer, however, because the step times can only be measured in vitro but not in vivo. Here, we develop a general computational method by which one can deduce the individual step times in vivo from their in-vitro values. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression, and validate the deduced step times by three independent sets of in-vivo data.
Collapse
Affiliation(s)
- Sophia Rudorf
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Michael Thommen
- Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lipowsky
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
32
|
Lin HC, Yandek LE, Gjermeni I, Harris ME. Determination of relative rate constants for in vitro RNA processing reactions by internal competition. Anal Biochem 2014; 467:54-61. [PMID: 25173512 DOI: 10.1016/j.ab.2014.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Studies of RNA recognition and catalysis typically involve measurement of rate constants for reactions of individual RNA sequence variants by fitting changes in substrate or product concentration to exponential or linear functions. A complementary approach is determination of relative rate constants by internal competition, which involves quantifying the time-dependent changes in substrate or product ratios in reactions containing multiple substrates. Here, we review approaches for determining relative rate constants by analysis of both substrate and product ratios and illustrate their application using the in vitro processing of precursor transfer RNA (tRNA) by ribonuclease P as a model system. The presence of inactive substrate populations is a common complicating factor in analysis of reactions involving RNA substrates, and approaches for quantitative correction of observed rate constants for these effects are illustrated. These results, together with recent applications in the literature, indicate that internal competition offers an alternate method for analyzing RNA processing kinetics using standard molecular biology methods that directly quantifies substrate specificity and may be extended to a range of applications.
Collapse
Affiliation(s)
- Hsuan-Chun Lin
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lindsay E Yandek
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ino Gjermeni
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
33
|
Yikilmaz E, Chapman SJ, Schrader JM, Uhlenbeck OC. The interface between Escherichia coli elongation factor Tu and aminoacyl-tRNA. Biochemistry 2014; 53:5710-20. [PMID: 25094027 PMCID: PMC4159200 DOI: 10.1021/bi500533x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Nineteen of the highly conserved
residues of Escherichia
coli (E. coli) Elongation factor Tu (EF-Tu)
that form the binding interface with aa-tRNA were mutated to alanine
to better understand how modifying the thermodynamic properties of
EF-Tu–tRNA interaction can affect the decoding properties of
the ribosome. Comparison of ΔΔGo values for binding EF-Tu to aa-tRNA show that the majority of the
interface residues stabilize the ternary complex and their thermodynamic
contribution can depend on the tRNA species that is used. Experiments
with a very tight binding mutation of tRNATyr indicate
that interface amino acids distant from the tRNA mutation can contribute
to the specificity. For nearly all of the mutations, the values of
ΔΔGo were identical to those
previously determined at the orthologous positions of Thermus
thermophilus (T. thermophilus) EF-Tu indicating
that the thermodynamic properties of the interface were conserved
between distantly related bacteria. Measurement of the rate of GTP
hydrolysis on programmed ribosomes revealed that nearly all of the
interface mutations were able to function in ribosomal decoding. The
only interface mutation with greatly impaired GTPase activity was
R223A which is the only one that also forms a direct contact with
the ribosome. Finally, the ability of the EF-Tu interface mutants
to destabilize the EF-Tu–aa-tRNA interaction on the ribosome
after GTP hydrolysis were evaluated by their ability to suppress the
hyperstable T1 tRNATyr variant where EF-Tu release is sufficiently
slow to limit the rate of peptide bond formation (kpep) . In general, interface mutations that destabilize
EF-Tu binding are also able to stimulate kpep of T1 tRNATyr, suggesting that the thermodynamic properties
of the EF-Tu–aa-tRNA interaction on the ribosome are quite
similar to those found in the free ternary complex.
Collapse
Affiliation(s)
- Emine Yikilmaz
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | |
Collapse
|
34
|
Abstract
Each peptide bond of a protein is generated at the peptidyl transferase center (PTC) of the ribosome and then moves through the exit tunnel, which accommodates ever-changing segments of ≈ 40 amino acids of newly translated polypeptide. A class of proteins, called ribosome arrest peptides, contains specific sequences of amino acids (arrest sequences) that interact with distinct components of the PTC-exit tunnel region of the ribosome and arrest their own translation continuation, often in a manner regulated by environmental cues. Thus, the ribosome that has translated an arrest sequence is inactivated for peptidyl transfer, translocation, or termination. The stalled ribosome then changes the configuration or localization of mRNA, resulting in specific biological outputs, including regulation of the target gene expression and downstream events of mRNA/polypeptide maturation or localization. Living organisms thus seem to have integrated potentially harmful arrest sequences into elaborate regulatory mechanisms to express genetic information in productive directions.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| | | |
Collapse
|
35
|
Mittelstaet J, Konevega AL, Rodnina MV. A kinetic safety gate controlling the delivery of unnatural amino acids to the ribosome. J Am Chem Soc 2013; 135:17031-8. [PMID: 24079513 DOI: 10.1021/ja407511q] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improving the yield of unnatural amino acid incorporation is an important challenge in producing novel designer proteins with unique chemical properties. Here we examine the mechanisms that restrict the incorporation of the fluorescent unnatural amino acid εNH2-Bodipy576/589-lysine (BOP-Lys) into a model protein. While the delivery of BOP-Lys-tRNA(Lys) to the ribosome is limited by its poor binding to elongation factor Tu (EF-Tu), the yield of incorporation into peptide is additionally controlled at the step of BOP-Lys-tRNA release from EF-Tu into the ribosome. The unnatural amino acid appears to disrupt the interactions that balance the strength of tRNA binding to EF-Tu-GTP with the velocity of tRNA dissociation from EF-Tu-GDP on the ribosome, which ensure uniform incorporation of standard amino acids. Circumventing this potential quality control checkpoint that specifically prevents incorporation of unnatural amino acids into proteins may provide a new strategy to increase yields of unnatural polymers.
Collapse
Affiliation(s)
- Joerg Mittelstaet
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | | | | |
Collapse
|
36
|
Relative amino acid composition signatures of organisms and environments. PLoS One 2013; 8:e77319. [PMID: 24204807 PMCID: PMC3808408 DOI: 10.1371/journal.pone.0077319] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/09/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. METHODOLOGIES/PRINCIPAL FINDINGS To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. CONCLUSIONS Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms.
Collapse
|
37
|
Sahu B, Khade PK, Joseph S. Highly conserved base A55 of 16S ribosomal RNA is important for the elongation cycle of protein synthesis. Biochemistry 2013; 52:6695-701. [PMID: 24025161 PMCID: PMC11849674 DOI: 10.1021/bi4008879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate decoding of mRNA requires the precise interaction of protein factors and tRNAs with the ribosome. X-ray crystallography and cryo-electron microscopy have provided detailed structural information about the 70S ribosome with protein factors and tRNAs trapped during translation. Crystal structures showed that one of the universally conserved 16S rRNA bases, A55, in the shoulder domain of the 30S subunit interacts with elongation factors Tu and G (EF-Tu and EF-G, respectively). The exact functional role of A55 in protein synthesis is not clear. We changed A55 to U and analyzed the effect of the mutation on the elongation cycle of protein synthesis using functional assays. Expression of 16S rRNA with the A55U mutation in cells confers a dominant lethal phenotype. Additionally, ribosomes with the A55U mutation in 16S rRNA show substantially reduced in vitro protein synthesis activity. Equilibrium binding studies showed that the A55U mutation considerably inhibited the binding of the EF-Tu·GTP·tRNA ternary complex to the ribosome. Furthermore, the A55U mutation slightly inhibited the peptidyl transferase reaction, the binding of EF-G·GTP to the ribosome, and mRNA-tRNA translocation. These results indicate that A55 is important for fine-tuning the activity of the ribosome during the elongation cycle of protein synthesis.
Collapse
Affiliation(s)
- Bhubanananda Sahu
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Prashant K. Khade
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| |
Collapse
|
38
|
Affiliation(s)
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
39
|
Rodnina MV. The ribosome as a versatile catalyst: reactions at the peptidyl transferase center. Curr Opin Struct Biol 2013; 23:595-602. [PMID: 23711800 DOI: 10.1016/j.sbi.2013.04.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
Abstract
In all contemporary organisms, the active site of the ribosome--the peptidyl transferase center--catalyzes two distinct reactions, peptide bond formation between peptidyl-tRNA and aminoacyl-tRNA as well as the hydrolysis of peptidyl-tRNA with the help of a release factor. However, when provided with appropriate substrates, ribosomes can also catalyze a broad range of other chemical reaction, which provides the basis for orthogonal translation and synthesis of alloproteins from unnatural building blocks. Advances in understanding the mechanisms of the two ubiquitous reactions, the peptide bond formation and peptide release, provide insights into the versatility of the active site of the ribosome. Release factors 1 and 2 and elongation factor P are auxiliary factors that augment the intrinsic catalytic activity of the ribosome in special cases.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| |
Collapse
|
40
|
Shepotinovskaya I, Uhlenbeck OC. tRNA residues evolved to promote translational accuracy. RNA (NEW YORK, N.Y.) 2013; 19:510-516. [PMID: 23440350 PMCID: PMC3677261 DOI: 10.1261/rna.036038.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/24/2013] [Indexed: 05/27/2023]
Abstract
The decoding properties of 22 structurally conservative base-pair and base-triple mutations in the anticodon hairpin and tertiary core of Escherichia coli tRNA(Ala)GGC were determined under single turnover conditions using E. coli ribosomes. While all of the mutations were able to efficiently decode the cognate GCC codon, many showed substantial misreading of near-cognate GUC or ACC codons. Although all the misreading mutations were present in the sequences of other E. coli tRNAs, they were never found among bacterial tRNA(Ala)GGC sequences. This suggests that the sequences of bacterial tRNA(Ala)GGC have evolved to avoid reading incorrect codons.
Collapse
|
41
|
Khade PK, Shi X, Joseph S. Steric complementarity in the decoding center is important for tRNA selection by the ribosome. J Mol Biol 2013; 425:3778-89. [PMID: 23542008 DOI: 10.1016/j.jmb.2013.02.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 11/27/2022]
Abstract
Accurate tRNA selection by the ribosome is essential for the synthesis of functional proteins. Previous structural studies indicated that the ribosome distinguishes between cognate and near-cognate tRNAs by monitoring the geometry of the codon-anticodon helix in the decoding center using the universally conserved 16S ribosomal RNA bases G530, A1492 and A1493. These bases form hydrogen bonds with the 2'-hydroxyl groups of the codon-anticodon helix, which are expected to be disrupted with a near-cognate codon-anticodon helix. However, a recent structural study showed that G530, A1492 and A1493 form hydrogen bonds in a manner identical with that of both cognate and near-cognate codon-anticodon helices. To understand how the ribosome discriminates between cognate and near-cognate tRNAs, we made 2'-deoxynucleotide and 2'-fluoro substituted mRNAs, which disrupt the hydrogen bonds between the A site codon and G530, A1492 and A1493. Our results show that multiple 2'-deoxynucleotide substitutions in the mRNA substantially inhibit tRNA selection, whereas multiple 2'-fluoro substitutions in the mRNA have only modest effects on tRNA selection. Furthermore, the miscoding antibiotics paromomycin and streptomycin rescue the defects in tRNA selection with the multiple 2'-deoxynucleotide substituted mRNA. These results suggest that steric complementarity in the decoding center is more important than the hydrogen bonds between the A site codon and G530, A1492 and A1493 for tRNA selection.
Collapse
Affiliation(s)
- Prashant K Khade
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| | | | | |
Collapse
|
42
|
Abstract
Different codons encoding the same amino acid are not used equally in protein-coding sequences. In bacteria, there is a bias towards codons with high translation rates. This bias is most pronounced in highly expressed proteins, but a recent study of synthetic GFP-coding sequences did not find a correlation between codon usage and GFP expression, suggesting that such correlation in natural sequences is not a simple property of translational mechanisms. Here, we investigate the effect of evolutionary forces on codon usage. The relation between codon bias and protein abundance is quantitatively analyzed based on the hypothesis that codon bias evolved to ensure the efficient usage of ribosomes, a precious commodity for fast growing cells. An explicit fitness landscape is formulated based on bacterial growth laws to relate protein abundance and ribosomal load. The model leads to a quantitative relation between codon bias and protein abundance, which accounts for a substantial part of the observed bias for E. coli. Moreover, by providing an evolutionary link, the ribosome load model resolves the apparent conflict between the observed relation of protein abundance and codon bias in natural sequences and the lack of such dependence in a synthetic gfp library. Finally, we show that the relation between codon usage and protein abundance can be used to predict protein abundance from genomic sequence data alone without adjustable parameters.
Collapse
|
43
|
Johnson DBF, Wang C, Xu J, Schultz MD, Schmitz RJ, Ecker JR, Wang L. Release factor one is nonessential in Escherichia coli. ACS Chem Biol 2012; 7:1337-44. [PMID: 22662873 PMCID: PMC3423824 DOI: 10.1021/cb300229q] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recoding a stop codon to an amino acid may afford orthogonal genetic systems for biosynthesizing new protein and organism properties. Although reassignment of stop codons has been found in extant organisms, a model organism is lacking to investigate the reassignment process and to direct code evolution. Complete reassignment of a stop codon is precluded by release factors (RFs), which recognize stop codons to terminate translation. Here we discovered that RF1 could be unconditionally knocked out from various Escherichia coli stains, demonstrating that the reportedly essential RF1 is generally dispensable for the E. coli species. The apparent essentiality of RF1 was found to be caused by the inefficiency of a mutant RF2 in terminating all UAA stop codons; a wild type RF2 was sufficient for RF1 knockout. The RF1-knockout strains were autonomous and unambiguously reassigned UAG to encode natural or unnatural amino acids (Uaas) at multiple sites, affording a previously unavailable model for studying code evolution and a unique host for exploiting Uaas to evolve new biological functions.
Collapse
Affiliation(s)
| | | | | | - Matthew D. Schultz
- Bioinformatics
Program, University of California at San Diego, La Jolla, California
92093, United States
| | | | - Joseph R. Ecker
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland
20815, United States
| | | |
Collapse
|
44
|
Forster AC. Synthetic biology challenges long-held hypotheses in translation, codon bias and transcription. Biotechnol J 2012; 7:835-45. [DOI: 10.1002/biot.201200002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/28/2012] [Accepted: 05/08/2012] [Indexed: 11/09/2022]
|
45
|
Shi X, Khade PK, Sanbonmatsu KY, Joseph S. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. J Mol Biol 2012; 419:125-38. [PMID: 22459262 DOI: 10.1016/j.jmb.2012.03.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/10/2012] [Accepted: 03/17/2012] [Indexed: 11/19/2022]
Abstract
The sarcin-ricin loop (SRL) is one of the longest conserved sequences in the 23S ribosomal RNA. The SRL has been accepted as crucial for the activity of the ribosome because it is targeted by cytotoxins such as α-sarcin and ricin that completely abolish translation. Nevertheless, the precise functional role of the SRL in translation is not known. Recent biochemical and structural studies indicate that the SRL is critical for triggering GTP hydrolysis on elongation factor Tu (EF-Tu) and elongation factor G (EF-G). To determine the functional role of the SRL in the elongation stage of protein synthesis, we analyzed mutations in the SRL that are known to abolish protein synthesis and are lethal to cells. Here, we show that the SRL is not critical for GTP hydrolysis on EF-Tu and EF-G. The SRL also is not essential for peptide bond formation. Our results, instead, suggest that the SRL is crucial for anchoring EF-G on the ribosome during mRNA-tRNA translocation.
Collapse
MESH Headings
- Binding Sites
- Conserved Sequence
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Fungal Proteins/metabolism
- Guanosine Triphosphate/metabolism
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/genetics
- Peptide Elongation Factor Tu/metabolism
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Secondary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Ricin/metabolism
Collapse
Affiliation(s)
- Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | | | | | | |
Collapse
|
46
|
Wohlgemuth I, Pohl C, Mittelstaet J, Konevega AL, Rodnina MV. Evolutionary optimization of speed and accuracy of decoding on the ribosome. Philos Trans R Soc Lond B Biol Sci 2012; 366:2979-86. [PMID: 21930591 DOI: 10.1098/rstb.2011.0138] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Speed and accuracy of protein synthesis are fundamental parameters for the fitness of living cells, the quality control of translation, and the evolution of ribosomes. The ribosome developed complex mechanisms that allow for a uniform recognition and selection of any cognate aminoacyl-tRNA (aa-tRNA) and discrimination against any near-cognate aa-tRNA, regardless of the nature or position of the mismatch. This review describes the principles of the selection-kinetic partitioning and induced fit-and discusses the relationship between speed and accuracy of decoding, with a focus on bacterial translation. The translational machinery apparently has evolved towards high speed of translation at the cost of fidelity.
Collapse
Affiliation(s)
- Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | | | | | | | | |
Collapse
|
47
|
Quality control of mRNA decoding on the bacterial ribosome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:95-128. [PMID: 22243582 DOI: 10.1016/b978-0-12-386497-0.00003-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ribosome is a major player in providing accurate gene expression in the cell. The fidelity of substrate selection is tightly controlled throughout the translation process, including the initiation, elongation, and termination phases. Although each phase of translation involves different players, that is, translation factors and tRNAs, the general principles of selection appear surprisingly similar for very different substrates. At essentially every step of translation, differences in complex stabilities as well as induced fit are sources of selectivity. A view starts to emerge of how the ribosome uses local and global conformational switches to govern induced-fit mechanisms that ensure fidelity. This review describes the mechanisms of tRNA and mRNA selection at all phases of protein synthesis in bacteria.
Collapse
|
48
|
Chapman SJ, Schrader JM, Uhlenbeck OC. Histidine 66 in Escherichia coli elongation factor tu selectively stabilizes aminoacyl-tRNAs. J Biol Chem 2011; 287:1229-34. [PMID: 22105070 DOI: 10.1074/jbc.m111.294850] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The universally conserved His-66 of elongation factor Tu (EF-Tu) stacks on the side chain of the esterified Phe of Phe-tRNA(Phe). The affinities of eight aminoacyl-tRNAs were differentially destabilized by the introduction of the H66A mutation into Escherichia coli EF-Tu, whereas Ala-tRNA(Ala) and Gly-tRNA(Gly) were unaffected. The H66F and H66W proteins each show a different pattern of binding of 10 different aminoacyl-tRNAs, clearly showing that this position is critical in establishing the specificity of EF-Tu for different esterified amino acids. However, the H66A mutation does not greatly affect the ability of the ternary complex to bind ribosomes, hydrolyze GTP, or form dipeptide, suggesting that this residue does not directly participate in ribosomal decoding. Selective mutation of His-66 may improve the ability of certain unnatural amino acids to be incorporated by the ribosome.
Collapse
Affiliation(s)
- Stephen J Chapman
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
49
|
Johnson DBF, Xu J, Shen Z, Takimoto JK, Schultz MD, Schmitz RJ, Xiang Z, Ecker JR, Briggs SP, Wang L. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 2011; 7:779-86. [PMID: 21926996 PMCID: PMC3201715 DOI: 10.1038/nchembio.657] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 07/18/2011] [Indexed: 11/09/2022]
Abstract
Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but the efficiency is low possibly due to competition from release factors, limiting the power and scope of this technology. Here we show that the reportedly essential release factor 1 can be knocked out from Escherichia coli by fixing release factor 2. The resultant strain JX33 is stable and independent, and reassigns UAG from a stop signal to an amino acid when a UAG-decoding tRNA/synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving novel protein functions by enabling Uaa incorporation at multiple sites.
Collapse
Affiliation(s)
- David B F Johnson
- The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Whipple JM, Lane EA, Chernyakov I, D'Silva S, Phizicky EM. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. Genes Dev 2011; 25:1173-84. [PMID: 21632824 DOI: 10.1101/gad.2050711] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
tRNAs, like other RNAs, are subject to quality control steps during and after biosynthesis. We previously described a rapid tRNA degradation (RTD) pathway in which the 5'-3' exonucleases Rat1 and Xrn1 degrade mature tRNA(Val(AAC)) in yeast mutants lacking m(7)G and m(5)C, and mature tRNA(Ser(CGA)) in mutants lacking Um and ac(4)C. To understand how the RTD pathway selects substrate tRNAs among different tRNAs lacking the same modifications, we used a genetic screen to examine tRNA(Ser(CGA)) variants. Our results suggest that RTD substrate recognition in vivo depends primarily on the stability of the acceptor and T-stems, and not the anti-codon stem, and does not necessarily depend on modifications, since fully modified tRNAs are subject to RTD if appropriately destabilized. We found that weaker predicted stability of the acceptor and T-stems of tRNAs is strongly correlated with RTD sensitivity, increased RNase T2 sensitivity of this region of the tRNA in vitro, and increased exposure of the 5' end to phosphatase. We also found that purified Xrn1 selectively degrades RTD substrate tRNAs in vitro under conditions in which nonsubstrates are immune. These results suggest that tRNAs have evolved not only for accurate translation, but for resistance to attack by RTD.
Collapse
Affiliation(s)
- Joseph M Whipple
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, New York 14642, USA
| | | | | | | | | |
Collapse
|