1
|
Crawford MR, Harper JA, Cooper TJ, Marsolier-Kergoat MC, Llorente B, Neale MJ. Separable roles of the DNA damage response kinase Mec1ATR and its activator Rad24RAD17 during meiotic recombination. PLoS Genet 2024; 20:e1011485. [PMID: 39652586 DOI: 10.1371/journal.pgen.1011485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/19/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
During meiosis, programmed DNA double-strand breaks (DSBs) are formed by the topoisomerase-like enzyme, Spo11, activating the DNA damage response (DDR) kinase Mec1ATR via the checkpoint clamp loader, Rad24RAD17. At single loci, loss of Mec1 and Rad24 activity alters DSB formation and recombination outcome, but their genome-wide roles have not been examined in detail. Here, we utilise two strategies-deletion of the mismatch repair protein, Msh2, and control of meiotic prophase length via regulation of the Ndt80 transcription factor-to help characterise the roles Mec1 and Rad24 play in meiotic recombination by enabling genome-wide mapping of meiotic progeny. In line with previous studies, we observe severely impacted spore viability and a reduction in the frequency of recombination upon deletion of RAD24-driven by a shortened prophase. By contrast, loss of Mec1 function increases recombination frequency, consistent with its role in DSB trans-interference, and has less effect on spore viability. Despite these differences, complex multi-chromatid events initiated by closely spaced DSBs-rare in wild-type cells-occur more frequently in the absence of either Rad24 or Mec1, suggesting a loss of spatial regulation at the level of DSB formation in both. Mec1 and Rad24 also have important roles in the spatial regulation of crossovers (COs). Upon loss of either Mec1 or Rad24, CO distributions become more random-suggesting reductions in the global manifestation of interference. Such effects are similar to, but less extreme than, the phenotype of 'ZMM' mutants such as zip3Δ, and may be driven by reductions in the proportion of interfering COs. Collectively, in addition to shared roles in CO regulation, our results highlight separable roles for Rad24 as a pro-CO factor, and for Mec1 as a regulator of recombination frequency, the loss of which helps to suppress any broader defects in CO regulation caused by abrogation of the DDR.
Collapse
Affiliation(s)
- Margaret R Crawford
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| | - Tim J Cooper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| | - Marie-Claude Marsolier-Kergoat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- UMR7206 Eco-Anthropology and Ethno-Biology, CNRS-MNHN-University Paris Diderot, Musée de l'Homme, Paris, France
| | - Bertrand Llorente
- Cancer Research Centre of Marseille, CNRS, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| |
Collapse
|
2
|
Zhang W, Wang D, Yin Z, Tang L, Pan X, Guo C. RNA sequencing and functional analysis uncover key long non-coding RNAs involved in regulating pollen fertility during the process of gametocidal action in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1826-1841. [PMID: 39401089 DOI: 10.1111/tpj.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 12/11/2024]
Abstract
Gametocidal (Gc) chromosomes have been widely utilized in genetic breeding due to their ability to induce chromosomal breakage and eliminate gametes that lack them. Long noncoding RNAs (lncRNAs) have various functional mechanisms in regulating pollen and anther development; however, their regulatory contributions to Gc action are still unknown. Here, we identified 2824 differentially expressed lncRNAs (DE-lncRNAs) from the anther tissues of Triticum aestivum cv. Chinese Spring (CS) and Chinese Spring-Gc 3C chromosome monosomic addition line (CS-3C) through sequencing. In this study, we predicted 161 target mRNAs for 145 DE-lncRNAs, including 104 cis-regulatory, 60 trans-regulatory, and three both cis-regulatory and trans-regulatory manner. Combined with our previous miRNA sequencing data, 241 DE-lncRNAs functioned as potential endogenous target mimics (eTMs) for 84 differentially expressed microRNAs (DE-miRNAs, including 12 novel miRNAs). The results of transient transformation in tobacco leaves indicated that L006278 could bind to MTCONS_00006277, which encoded a calcineurin CBL-interacting protein kinase 19-like, and suppress its expression. Furthermore, L117735 could function as an eTM for tae-miR9657b-3p, and L056972 could function as an eTM for gc-m2240-5p. To explore the function of lncRNAs in the process of Gc action, we transformed L006278, an up-regulated lncRNA in CS-3C, into rice to analyze its effect on pollen fertility. Overexpression of L006278 led to a reduction in rice pollen fertility. Overall, our findings indicate that lncRNAs can contribute to the regulation of pollen fertility during the process of Gc action by regulating the expression levels of target mRNAs and acting as eTMs for certain key miRNAs.
Collapse
Affiliation(s)
- Wenrui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Dan Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Zhonghuan Yin
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Lu Tang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Xiaoyang Pan
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| |
Collapse
|
3
|
Alonso-Ramos P, Carballo JA. Decoding the Nucleolar Role in Meiotic Recombination and Cell Cycle Control: Insights into Cdc14 Function. Int J Mol Sci 2024; 25:12861. [PMID: 39684572 DOI: 10.3390/ijms252312861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators. This phase separation characteristic of the nucleolus is vital for the specific and timely release of Cdc14, required for most essential functions of phosphatase in the cell cycle. While mitosis distributes chromosomes to daughter cells, meiosis is a specialized division process that produces gametes and introduces genetic diversity. Central to meiosis is meiotic recombination, which enhances genetic diversity by generating crossover and non-crossover products. This process begins with the introduction of double-strand breaks, which are then processed by numerous repair enzymes. Meiotic recombination and progression are regulated by proteins and feedback mechanisms. CDKs and polo-like kinase Cdc5 drive recombination through positive feedback, while phosphatases like Cdc14 are crucial for activating Yen1, a Holliday junction resolvase involved in repairing unresolved recombination intermediates in both mitosis and meiosis. Cdc14 is released from the nucleolus in a regulated manner, especially during the transition between meiosis I and II, where it helps inactivate CDK activity and promote proper chromosome segregation. This review integrates current knowledge, providing a synthesis of these interconnected processes and an overview of the mechanisms governing cell cycle regulation and meiotic recombination.
Collapse
Affiliation(s)
- Paula Alonso-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Jesús A Carballo
- Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Krystosek JT, Bishop DK. Chk2 homolog Mek1 limits exonuclease 1-dependent DNA end resection during meiotic recombination in Saccharomyces cerevisiae. Genetics 2024; 228:iyae112. [PMID: 39005070 PMCID: PMC11373520 DOI: 10.1093/genetics/iyae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The conserved Rad2/XPG family 5'-3' exonuclease, exonuclease 1 (Exo1), plays many roles in DNA metabolism including during resolution of DNA double-strand breaks via homologous recombination. Prior studies provided evidence that the end resection activity of Exo1 is downregulated in yeast and mammals by Cdk1/2 family cyclin-dependent and checkpoint kinases, including budding yeast kinase Rad53 which functions in mitotic cells. Here, we provide evidence that the master meiotic kinase Mek1, a paralog of Rad53, limits 5'-3' single-strand resection at the sites of programmed meiotic DNA breaks. Mutational analysis suggests that the mechanism of Exo1 suppression by Mek1 differs from that of Rad53.
Collapse
Affiliation(s)
- Jennifer T Krystosek
- Department of Radiation and Cellular Oncology/Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E 58th Street, CLSC 817, Chicago, IL 60637, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology/Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E 58th Street, CLSC 817, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Weng Q, Wan L, Straker GC, Deegan TD, Duncker BP, Neiman AM, Luk E, Hollingsworth NM. An acidic loop in the forkhead-associated domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates. Genetics 2024; 228:iyae106. [PMID: 38979911 PMCID: PMC11373509 DOI: 10.1093/genetics/iyae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at double-strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover-specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a 5-amino acid sequence, RPSKR, located between the DNA-binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full-length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a noncanonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt 2-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint and, in certain circumstances, exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.
Collapse
Affiliation(s)
- Qixuan Weng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Lihong Wan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Geburah C Straker
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tom D Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Bernard P Duncker
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
6
|
Dutta A, Dutreux F, Garin M, Caradec C, Friedrich A, Brach G, Thiele P, Gaudin M, Llorente B, Schacherer J. Multiple independent losses of crossover interference during yeast evolutionary history. PLoS Genet 2024; 20:e1011426. [PMID: 39325820 PMCID: PMC11460703 DOI: 10.1371/journal.pgen.1011426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Meiotic recombination is essential for the accurate chromosome segregation and the generation of genetic diversity through crossover and gene conversion events. Although this process has been studied extensively in a few selected model species, understanding how its properties vary across species remains limited. For instance, the ancestral ZMM pathway that generates interference-dependent crossovers has undergone multiple losses throughout evolution, suggesting variations in the regulation of crossover formation. In this context, we first characterized the meiotic recombination landscape and properties of the Kluyveromyces lactis budding yeast. We then conducted a comprehensive analysis of 29,151 recombination events (19, 212 COs and 9, 939 NCOs) spanning 577 meioses in the five budding yeast species Saccharomyces cerevisiae, Saccharomyces paradoxus, Lachancea kluyveri, Lachancea waltii and K. lactis. Eventually, we found that the Saccharomyces yeasts displayed higher recombination rates compared to the non-Saccharomyces yeasts. In addition, bona fide crossover interference and associated crossover homeostasis were detected in the Saccharomyces species only, adding L. kluyveri and K. lactis to the list of budding yeast species that lost crossover interference. Finally, recombination hotspots, although highly conserved within the Saccharomyces yeasts are not conserved beyond the Saccharomyces genus. Overall, these results highlight great variability in the recombination landscape and properties through budding yeasts evolution.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Marion Garin
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Claudia Caradec
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Gauthier Brach
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Pia Thiele
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Maxime Gaudin
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bertrand Llorente
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
7
|
Weng Q, Wan L, Straker GC, Deegan TD, Duncker BP, Neiman AM, Luk E, Hollingsworth NM. An acidic loop in the FHA domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595751. [PMID: 38826409 PMCID: PMC11142242 DOI: 10.1101/2024.05.24.595751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at the double strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a five amino acid sequence, RPSKR, located between the DNA binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a non-canonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt two-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint, and in certain circumstances exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.
Collapse
Affiliation(s)
- Qixuan Weng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Lihong Wan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Geburah C. Straker
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Tom. D. Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Bernard P. Duncker
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
8
|
Morciano L, Elgrabli RM, Zenvirth D, Arbel-Eden A. Homologous Recombination and Repair Functions Required for Mutagenicity during Yeast Meiosis. Genes (Basel) 2023; 14:2017. [PMID: 38002960 PMCID: PMC10671739 DOI: 10.3390/genes14112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Several meiotic events reshape the genome prior to its transfer (via gametes) to the next generation. The occurrence of new meiotic mutations is tightly linked to homologous recombination (HR) and firmly depends on Spo11-induced DNA breaks. To gain insight into the molecular mechanisms governing mutagenicity during meiosis, we examined the timing of mutation and recombination events in cells deficient in various DNA HR-repair genes, which represent distinct functions along the meiotic recombination process. Despite sequence similarities and overlapping activities of the two DNA translocases, Rad54 and Tid1, we observed essential differences in their roles in meiotic mutation occurrence: in the absence of Rad54, meiotic mutagenicity was elevated 8-fold compared to the wild type (WT), while in the tid1Δ mutant, there were few meiotic mutations, nine percent compared to the WT. We propose that the presence of Rad54 channels recombinational repair to a less mutagenic pathway, whereas repair assisted by Tid1 is more mutagenic. A 3.5-fold increase in mutation level was observed in dmc1∆ cells, suggesting that single-stranded DNA (ssDNA) may be a potential source for mutagenicity during meiosis. Taken together, we suggest that the introduction of de novo mutations also contributes to the diversification role of meiotic recombination. These rare meiotic mutations revise genomic sequences and may contribute to long-term evolutionary changes.
Collapse
Affiliation(s)
- Liat Morciano
- Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (L.M.); (R.M.E.)
| | - Renana M. Elgrabli
- Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (L.M.); (R.M.E.)
| | - Drora Zenvirth
- Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (L.M.); (R.M.E.)
| | - Ayelet Arbel-Eden
- Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (L.M.); (R.M.E.)
- The Medical Laboratory Sciences Department, Hadassah Academic College, Jerusalem 91010, Israel
| |
Collapse
|
9
|
Allison RM, Johnson DJ, Neale MJ, Gray S. Recombinase-independent chromosomal rearrangements between dispersed inverted repeats in Saccharomyces cerevisiae meiosis. Nucleic Acids Res 2023; 51:9703-9715. [PMID: 37548404 PMCID: PMC10570019 DOI: 10.1093/nar/gkad650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) uses a DNA template with similar sequence to restore genetic identity. Allelic DNA repair templates can be found on the sister chromatid or homologous chromosome. During meiotic recombination, DSBs preferentially repair from the homologous chromosome, with a proportion of HR events generating crossovers. Nevertheless, regions of similar DNA sequence exist throughout the genome, providing potential DNA repair templates. When DSB repair occurs at these non-allelic loci (termed ectopic recombination), chromosomal duplications, deletions and rearrangements can arise. Here, we characterize in detail ectopic recombination arising between a dispersed pair of inverted repeats in wild-type Saccharomyces cerevisiae at both a local and a chromosomal scale-the latter identified via gross chromosomal acentric and dicentric chromosome rearrangements. Mutation of the DNA damage checkpoint clamp loader Rad24 and the RecQ helicase Sgs1 causes an increase in ectopic recombination. Unexpectedly, additional mutation of the RecA orthologues Rad51 and Dmc1 alters-but does not abolish-the type of ectopic recombinants generated, revealing a novel class of inverted chromosomal rearrangement driven by the single-strand annealing pathway. These data provide important insights into the role of key DNA repair proteins in regulating DNA repair pathway and template choice during meiosis.
Collapse
Affiliation(s)
- Rachal M Allison
- Genome Damage and Stability Centre, University of Sussex, Falmer BN1 9RQ, UK
| | - Dominic J Johnson
- Genome Damage and Stability Centre, University of Sussex, Falmer BN1 9RQ, UK
| | - Matthew J Neale
- Genome Damage and Stability Centre, University of Sussex, Falmer BN1 9RQ, UK
| | - Stephen Gray
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Börner GV, Hochwagen A, MacQueen AJ. Meiosis in budding yeast. Genetics 2023; 225:iyad125. [PMID: 37616582 PMCID: PMC10550323 DOI: 10.1093/genetics/iyad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
11
|
Almanzar DE, Gordon SG, Bristow C, Hamrick A, von Diezmann L, Liu H, Rog O. Meiotic DNA exchanges in C. elegans are promoted by proximity to the synaptonemal complex. Life Sci Alliance 2023; 6:e202301906. [PMID: 36697255 PMCID: PMC9877436 DOI: 10.26508/lsa.202301906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
During meiosis, programmed double-strand DNA breaks are repaired to form exchanges between the parental chromosomes called crossovers. Chromosomes lacking a crossover fail to segregate accurately into the gametes, leading to aneuploidy. In addition to engaging the homolog, crossover formation requires the promotion of exchanges, rather than non-exchanges, as repair products. However, the mechanism underlying this meiosis-specific preference is not fully understood. Here, we study the regulation of meiotic sister chromatid exchanges in Caenorhabditis elegans by direct visualization. We find that a conserved chromosomal interface that promotes exchanges between the parental chromosomes, the synaptonemal complex, can also promote exchanges between the sister chromatids. In both cases, exchanges depend on the recruitment of the same set of pro-exchange factors to repair sites. Surprisingly, although the synaptonemal complex usually assembles between the two DNA molecules undergoing an exchange, its activity does not rely on a specific chromosome conformation. This suggests that the synaptonemal complex regulates exchanges-both crossovers and sister exchanges-by establishing a nuclear domain conducive to nearby recruitment of exchange-promoting factors.
Collapse
Affiliation(s)
- David E Almanzar
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Spencer G Gordon
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chloe Bristow
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Antonia Hamrick
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Lexy von Diezmann
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Hanwenheng Liu
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Shodhan A, Xaver M, Wheeler D, Lichten M. Turning coldspots into hotspots: targeted recruitment of axis protein Hop1 stimulates meiotic recombination in Saccharomyces cerevisiae. Genetics 2022; 222:iyac106. [PMID: 35876814 PMCID: PMC9434160 DOI: 10.1093/genetics/iyac106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in Saccharomyces cerevisiae contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red1 are important for double-strand break formation; double-strand break levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with double-strand break levels. How axis protein levels influence double-strand break formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased double-strand breaks and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in double-strand breaks did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote double-strand break formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, crossovers that formed at an insert locus were only modestly reduced in the absence of MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local double-strand break levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.
Collapse
Affiliation(s)
- Anura Shodhan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Martin Xaver
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Yang S, Zhang C, Cao Y, Du G, Tang D, Li Y, Shen Y, Yu H, Cheng Z. FIGNL1 Inhibits Non-homologous Chromosome Association and Crossover Formation. FRONTIERS IN PLANT SCIENCE 2022; 13:945893. [PMID: 35898226 PMCID: PMC9310568 DOI: 10.3389/fpls.2022.945893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 06/06/2023]
Abstract
Meiotic crossovers (COs) not only generate genetic diversity but also ensure the accuracy of homologous chromosome segregation. Here, we identified FIGNL1 as a new inhibitor for extra crossover formation in rice. The fignl1 mutant displays abnormal interactions between non-homologous chromosomes at diakinesis, and chromosome bridges and fragmentation at subsequent stages of meiosis, but shows normal homologous chromosome pairing and synapsis during early prophase I. FIGNL1 participates in homologous chromosome recombination and functions downstream of DMC1. Mutation of FIGNL1 increases the number of bivalents in zip4 mutants, but does not change the number of HEI10 foci, indicating that FIGNL1 functions in limiting class II CO formation. FIGNL1 interacts with MEICA1, and colocalizes with MEICA1 in a dynamic pattern as punctate foci located between two linear homologous chromosomes. The localization of FIGNL1 depends on ZEP1-mediated assembly of the synaptonemal complex. Based on these results, we propose that FIGNL1 inhibits non-homologous chromosome interaction and CO formation during rice meiosis.
Collapse
Affiliation(s)
- Shuying Yang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Zhang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yiwei Cao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hengxiu Yu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhukuan Cheng
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Hua Z, Fang Q, Zhang D, Luo Z, Yuan C, Lin Z. Crystal structure of the human MUS81-EME2 complex. Structure 2022; 30:743-752.e3. [DOI: 10.1016/j.str.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/27/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
|
15
|
Joo JH, Kang HA, Kim KP, Hong S. Meiotic prophase roles of Pds5 in recombination and chromosome condensation in budding yeast. J Microbiol 2022; 60:177-186. [PMID: 35102525 DOI: 10.1007/s12275-022-1635-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Genetic variation in eukaryotes is mediated during meiosis by the exchange of genetic material between homologous chromosomes to produce recombinant chromosomes. Cohesin is essential to promote proper chromosome segregation, chromosome morphogenesis, and recombination in meiotic cells. Cohesin consists of three main subunits-Smc1, Smc3, and the kleisin subunit Mcd1/Scc1 (Rec8 in meiosis)-and cohesin accessory factors. In Saccharomyces cerevisiae, the cohesin regulatory subunit Pds5 plays a role in homolog pairing, meiotic axis formation, and interhomolog recombination. In this study, we examine the prophase functions of Pds5 by performing physical analysis of recombination and three-dimensional high-resolution microscopy analysis to identify its roles in meiosis-specific recombination and chromosome morphogenesis. To investigate whether Pds5 plays a role in mitotic-like recombination, we inhibited Mek1 kinase activity, which resulted in switching to sister template bias by Rad51-dependent recombination. Reductions in double-strand breaks and crossover products and defective interhomolog recombination occurred in the absence of Pds5. Furthermore, recombination intermediates, including single-end invasion and double-Holliday junction, were reduced in the absence of Pds5 with Mek1 kinase inactivation compared to Mek1 kinase inactivation cells. Interestingly, the absence of Pds5 resulted in increasing numbers of chromosomes with hypercompaction of the chromosome axis. Thus, we suggest that Pds5 plays an essential role in recombination by suppressing the pairing of sister chromatids and abnormal compaction of the chromosome axis.
Collapse
Affiliation(s)
- Jeong Hwan Joo
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Soogil Hong
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
16
|
Alonso-Ramos P, Álvarez-Melo D, Strouhalova K, Pascual-Silva C, Garside GB, Arter M, Bermejo T, Grigaitis R, Wettstein R, Fernández-Díaz M, Matos J, Geymonat M, San-Segundo PA, Carballo JA. The Cdc14 Phosphatase Controls Resolution of Recombination Intermediates and Crossover Formation during Meiosis. Int J Mol Sci 2021; 22:ijms22189811. [PMID: 34575966 PMCID: PMC8470964 DOI: 10.3390/ijms22189811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Meiotic defects derived from incorrect DNA repair during gametogenesis can lead to mutations, aneuploidies and infertility. The coordinated resolution of meiotic recombination intermediates is required for crossover formation, ultimately necessary for the accurate completion of both rounds of chromosome segregation. Numerous master kinases orchestrate the correct assembly and activity of the repair machinery. Although much less is known, the reversal of phosphorylation events in meiosis must also be key to coordinate the timing and functionality of repair enzymes. Cdc14 is a crucial phosphatase required for the dephosphorylation of multiple CDK1 targets in many eukaryotes. Mutations that inactivate this phosphatase lead to meiotic failure, but until now it was unknown if Cdc14 plays a direct role in meiotic recombination. Here, we show that the elimination of Cdc14 leads to severe defects in the processing and resolution of recombination intermediates, causing a drastic depletion in crossovers when other repair pathways are compromised. We also show that Cdc14 is required for the correct activity and localization of the Holliday Junction resolvase Yen1/GEN1. We reveal that Cdc14 regulates Yen1 activity from meiosis I onwards, and this function is essential for crossover resolution in the absence of other repair pathways. We also demonstrate that Cdc14 and Yen1 are required to safeguard sister chromatid segregation during the second meiotic division, a late action that is independent of the earlier role in crossover formation. Thus, this work uncovers previously undescribed functions of the evolutionary conserved Cdc14 phosphatase in the regulation of meiotic recombination.
Collapse
Affiliation(s)
- Paula Alonso-Ramos
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
| | - David Álvarez-Melo
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
| | - Katerina Strouhalova
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic
| | - Carolina Pascual-Silva
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
| | - George B. Garside
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 4DY, UK;
- Leibniz Institute for Age Research/Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | - Meret Arter
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; (M.A.); (R.G.); (R.W.); (J.M.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Teresa Bermejo
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
| | - Rokas Grigaitis
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; (M.A.); (R.G.); (R.W.); (J.M.)
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Rahel Wettstein
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; (M.A.); (R.G.); (R.W.); (J.M.)
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marta Fernández-Díaz
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
| | - Joao Matos
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; (M.A.); (R.G.); (R.W.); (J.M.)
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marco Geymonat
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK;
| | - Pedro A. San-Segundo
- Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC) and University of Salamanca, 37007 Salamanca, Spain;
| | - Jesús A. Carballo
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
- Correspondence:
| |
Collapse
|
17
|
Shukla V, Høffding MK, Hoffmann ER. Genome diversity and instability in human germ cells and preimplantation embryos. Semin Cell Dev Biol 2021; 113:132-147. [PMID: 33500205 PMCID: PMC8097364 DOI: 10.1016/j.semcdb.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022]
Abstract
Genome diversity is essential for evolution and is of fundamental importance to human health. Generating genome diversity requires phases of DNA damage and repair that can cause genome instability. Humans have a high incidence of de novo congenital disorders compared to other organisms. Recent access to eggs, sperm and preimplantation embryos is revealing unprecedented rates of genome instability that may result in infertility and de novo mutations that cause genomic imbalance in at least 70% of conceptions. The error type and incidence of de novo mutations differ during developmental stages and are influenced by differences in male and female meiosis. In females, DNA repair is a critical factor that determines fertility and reproductive lifespan. In males, aberrant meiotic recombination causes infertility, embryonic failure and pregnancy loss. Evidence suggest germ cells are remarkably diverse in the type of genome instability that they display and the DNA damage responses they deploy. Additionally, the initial embryonic cell cycles are characterized by a high degree of genome instability that cause congenital disorders and may limit the use of CRISPR-Cas9 for heritable genome editing.
Collapse
Affiliation(s)
- Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Miya Kudo Høffding
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Kar FM, Hochwagen A. Phospho-Regulation of Meiotic Prophase. Front Cell Dev Biol 2021; 9:667073. [PMID: 33928091 PMCID: PMC8076904 DOI: 10.3389/fcell.2021.667073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms that govern the production of euploid gametes for successful sexual reproduction. These surveillance mechanisms are particularly crucial during meiotic prophase, when cells execute a highly orchestrated program of chromosome morphogenesis and recombination, which must be integrated with the meiotic cell division machinery to ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled by kinases and phosphatases, has emerged as one of the main signaling routes for providing readout and regulation of chromosomal and cellular behavior throughout meiotic prophase. In this review, we discuss common principles and provide detailed examples of how these phosphorylation events are employed to ensure faithful passage of chromosomes from one generation to the next.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York, NY, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| |
Collapse
|
19
|
Misova I, Pitelova A, Budis J, Gazdarica J, Sedlackova T, Jordakova A, Benko Z, Smondrkova M, Mayerova N, Pichlerova K, Strieskova L, Prevorovsky M, Gregan J, Cipak L, Szemes T, Polakova SB. Repression of a large number of genes requires interplay between homologous recombination and HIRA. Nucleic Acids Res 2021; 49:1914-1934. [PMID: 33511417 PMCID: PMC7913671 DOI: 10.1093/nar/gkab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
During homologous recombination, Dbl2 protein is required for localisation of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments. RNA-seq analysis of dbl2Δ transcriptome showed that the dbl2 deletion results in upregulation of more than 500 loci in Schizosaccharomyces pombe. Compared with the loci with no change in expression, the misregulated loci in dbl2Δ are closer to long terminal and long tandem repeats. Furthermore, the misregulated loci overlap with antisense transcripts, retrotransposons, meiotic genes and genes located in subtelomeric regions. A comparison of the expression profiles revealed that Dbl2 represses the same type of genes as the HIRA histone chaperone complex. Although dbl2 deletion does not alleviate centromeric or telomeric silencing, it suppresses the silencing defect at the outer centromere caused by deletion of hip1 and slm9 genes encoding subunits of the HIRA complex. Moreover, our analyses revealed that cells lacking dbl2 show a slight increase of nucleosomes at transcription start sites and increased levels of methylated histone H3 (H3K9me2) at centromeres, subtelomeres, rDNA regions and long terminal repeats. Finally, we show that other proteins involved in homologous recombination, such as Fbh1, Rad51, Mus81 and Rad54, participate in the same gene repression pathway.
Collapse
Affiliation(s)
- Ivana Misova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Alexandra Pitelova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Juraj Gazdarica
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Tatiana Sedlackova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Anna Jordakova
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Praha 2, Czechia
| | - Zsigmond Benko
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, H-4010 Debrecen, Hungary
| | - Maria Smondrkova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Nina Mayerova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Karoline Pichlerova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Lucia Strieskova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Martin Prevorovsky
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Praha 2, Czechia
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF and Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Silvia Bagelova Polakova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| |
Collapse
|
20
|
C-Terminal HA Tags Compromise Function and Exacerbate Phenotypes of Saccharomyces cerevisiae Bloom's Helicase Homolog Sgs1 SUMOylation-Associated Mutants. G3-GENES GENOMES GENETICS 2020; 10:2811-2818. [PMID: 32540865 PMCID: PMC7407464 DOI: 10.1534/g3.120.401324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Sgs1 helicase and Top3-Rmi1 decatenase form a complex that affects homologous recombination outcomes during the mitotic cell cycle and during meiosis. Previous studies have reported that Sgs1-Top3-Rmi1 function is regulated by SUMOylation that is catalyzed by the Smc5-Smc6-Mms21 complex. These studies used strains in which SGS1 was C-terminally tagged with three or six copies of a human influenza hemagglutinin-derived epitope tag (3HA and 6HA). They identified SGS1 mutants that affect its SUMOylation, which we will refer to as SGS1 SUMO-site mutants. In previous work, these mutants showed phenotypes consistent with substantial loss of Sgs1-Top3-Rmi1 function during the mitotic cell cycle. We find that the reported phenotypes are largely due to the presence of the HA epitope tags. Untagged SGS1 SUMO-site mutants show either wild-type or weak hypomorphic phenotypes, depending on the assay. These phenotypes are exacerbated by both 6HA and 3HA epitope tags in two different S. cerevisiae strain backgrounds. Importantly, a C-terminal 6HA tag confers strong hypomorphic or null phenotypes on an otherwise wild-type Sgs1 protein. Taken together, these results suggest that the HA epitope tags used in previous studies seriously compromise Sgs1 function. Furthermore, they raise the possibilities either that sufficient SUMOylation of the Sgs1-Top3-Rmi1 complex might still occur in the SUMO-site mutants isolated, or that Smc5-Smc6-Mms21-mediated SUMOylation plays a minor role in the regulation of Sgs1-Top3-Rmi1 during recombination.
Collapse
|
21
|
Furman CM, Elbashir R, Alani E. Expanded roles for the MutL family of DNA mismatch repair proteins. Yeast 2020; 38:39-53. [PMID: 32652606 DOI: 10.1002/yea.3512] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
The MutL family of DNA mismatch repair proteins plays a critical role in excising and repairing misincorporation errors during DNA replication. In many eukaryotes, members of this family have evolved to modulate and resolve recombination intermediates into crossovers during meiosis. In these organisms, such functions promote the accurate segregation of chromosomes during the meiosis I division. What alterations occurred in MutL homolog (MLH) family members that enabled them to acquire these new roles? In this review, we present evidence that the yeast Mlh1-Mlh3 and Mlh1-Mlh2 complexes have evolved novel enzymatic and nonenzymatic activities and protein-protein interactions that are critical for their meiotic functions. Curiously, even with these changes, these complexes retain backup and accessory roles in DNA mismatch repair during vegetative growth.
Collapse
Affiliation(s)
- Christopher M Furman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ryan Elbashir
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Grigaitis R, Ranjha L, Wild P, Kasaciunaite K, Ceppi I, Kissling V, Henggeler A, Susperregui A, Peter M, Seidel R, Cejka P, Matos J. Phosphorylation of the RecQ Helicase Sgs1/BLM Controls Its DNA Unwinding Activity during Meiosis and Mitosis. Dev Cell 2020; 53:706-723.e5. [DOI: 10.1016/j.devcel.2020.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/18/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
|
23
|
Saccharomyces cerevisiae Mus81-Mms4 prevents accelerated senescence in telomerase-deficient cells. PLoS Genet 2020; 16:e1008816. [PMID: 32469862 PMCID: PMC7286520 DOI: 10.1371/journal.pgen.1008816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/10/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) in human cells is a conserved process that is often activated in telomerase-deficient human cancers. This process exploits components of the recombination machinery to extend telomere ends, thus allowing for increased proliferative potential. Human MUS81 (Mus81 in Saccharomyces cerevisiae) is the catalytic subunit of structure-selective endonucleases involved in recombination and has been implicated in the ALT mechanism. However, it is unclear whether MUS81 activity at the telomere is specific to ALT cells or if it is required for more general aspects of telomere stability. In this study, we use S. cerevisiae to evaluate the contribution of the conserved Mus81-Mms4 endonuclease in telomerase-deficient yeast cells that maintain their telomeres by mechanisms akin to human ALT. Similar to human cells, we find that yeast Mus81 readily localizes to telomeres and its activity is important for viability after initial loss of telomerase. Interestingly, our analysis reveals that yeast Mus81 is not required for the survival of cells undergoing recombination-mediated telomere lengthening, i.e. for ALT itself. Rather we infer from genetic analysis that Mus81-Mms4 facilitates telomere replication during times of telomere instability. Furthermore, combining mus81 mutants with mutants of a yeast telomere replication factor, Rrm3, reveals that the two proteins function in parallel to promote normal growth during times of telomere stress. Combined with previous reports, our data can be interpreted in a consistent model in which both yeast and human MUS81-dependent nucleases participate in the recovery of stalled replication forks within telomeric DNA. Furthermore, this process becomes crucial under conditions of additional replication stress, such as telomere replication in telomerase-deficient cells. Cancer cell divisions require active chromosome lengthening through extension of their highly repetitive ends, called telomeres. This process is accomplished through two main mechanisms: the activity of an RNA-protein complex, telomerase, or through a telomerase-independent process termed alternative lengthening of telomeres (ALT). Human MUS81, the catalytic subunit of a set of structure-selective endonucleases, was found to be essential in human cells undergoing ALT and proposed to be directly involved in telomere lengthening. Using telomerase-deficient Saccharomyces cerevisiae cells as a model for ALT, we tested the hypothesis that Mus81-Mms4, the budding yeast homolog of human MUS81-dependent nucleases, is essential for telomere lengthening as proposed for human cells. Using genetic and molecular assays we confirm that Mus81-Mms4 is involved in telomere metabolism in yeast. However, to our surprise, we find that Mus81-Mms4 is not directly involved in recombination-based mechanisms of telomere lengthening. Rather it appears that Mus81-Mms4 is involved in resolving replication stress at telomeres, which is augmented in cells undergoing telomere instability. This model is consistent with observations in mammalian cells and suggest that cells undergoing telomere shortening experience replication stress at telomeres.
Collapse
|
24
|
Bittmann J, Grigaitis R, Galanti L, Amarell S, Wilfling F, Matos J, Pfander B. An advanced cell cycle tag toolbox reveals principles underlying temporal control of structure-selective nucleases. eLife 2020; 9:e52459. [PMID: 32352375 PMCID: PMC7220381 DOI: 10.7554/elife.52459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
Cell cycle tags allow to restrict target protein expression to specific cell cycle phases. Here, we present an advanced toolbox of cell cycle tag constructs in budding yeast with defined and compatible peak expression that allow comparison of protein functionality at different cell cycle phases. We apply this technology to the question of how and when Mus81-Mms4 and Yen1 nucleases act on DNA replication or recombination structures. Restriction of Mus81-Mms4 to M phase but not S phase allows a wildtype response to various forms of replication perturbation and DNA damage in S phase, suggesting it acts as a post-replicative resolvase. Moreover, we use cell cycle tags to reinstall cell cycle control to a deregulated version of Yen1, showing that its premature activation interferes with the response to perturbed replication. Curbing resolvase activity and establishing a hierarchy of resolution mechanisms are therefore the principal reasons underlying resolvase cell cycle regulation.
Collapse
Affiliation(s)
- Julia Bittmann
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| | - Rokas Grigaitis
- Institute of Biochemistry, Eidgenössische Technische Hochschule, ZürichZürichSwitzerland
| | - Lorenzo Galanti
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| | - Silas Amarell
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| | - Florian Wilfling
- Max Planck Institute of Biochemistry, Molecular Cell BiologyMartinsriedGermany
| | - Joao Matos
- Institute of Biochemistry, Eidgenössische Technische Hochschule, ZürichZürichSwitzerland
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| |
Collapse
|
25
|
Gupta SV, Schmidt KH. Maintenance of Yeast Genome Integrity by RecQ Family DNA Helicases. Genes (Basel) 2020; 11:E205. [PMID: 32085395 PMCID: PMC7074392 DOI: 10.3390/genes11020205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
With roles in DNA repair, recombination, replication and transcription, members of the RecQ DNA helicase family maintain genome integrity from bacteria to mammals. Mutations in human RecQ helicases BLM, WRN and RecQL4 cause incurable disorders characterized by genome instability, increased cancer predisposition and premature adult-onset aging. Yeast cells lacking the RecQ helicase Sgs1 share many of the cellular defects of human cells lacking BLM, including hypersensitivity to DNA damaging agents and replication stress, shortened lifespan, genome instability and mitotic hyper-recombination, making them invaluable model systems for elucidating eukaryotic RecQ helicase function. Yeast and human RecQ helicases have common DNA substrates and domain structures and share similar physical interaction partners. Here, we review the major cellular functions of the yeast RecQ helicases Sgs1 of Saccharomyces cerevisiae and Rqh1 of Schizosaccharomyces pombe and provide an outlook on some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
| | - Kristina Hildegard Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research, Institute, Tampa, FL 33612, USA
| |
Collapse
|
26
|
Resolvases, Dissolvases, and Helicases in Homologous Recombination: Clearing the Road for Chromosome Segregation. Genes (Basel) 2020; 11:genes11010071. [PMID: 31936378 PMCID: PMC7017083 DOI: 10.3390/genes11010071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The execution of recombinational pathways during the repair of certain DNA lesions or in the meiotic program is associated to the formation of joint molecules that physically hold chromosomes together. These structures must be disengaged prior to the onset of chromosome segregation. Failure in the resolution of these linkages can lead to chromosome breakage and nondisjunction events that can alter the normal distribution of the genomic material to the progeny. To avoid this situation, cells have developed an arsenal of molecular complexes involving helicases, resolvases, and dissolvases that recognize and eliminate chromosome links. The correct orchestration of these enzymes promotes the timely removal of chromosomal connections ensuring the efficient segregation of the genome during cell division. In this review, we focus on the role of different DNA processing enzymes that collaborate in removing the linkages generated during the activation of the homologous recombination machinery as a consequence of the appearance of DNA breaks during the mitotic and meiotic programs. We will also discuss about the temporal regulation of these factors along the cell cycle, the consequences of their loss of function, and their specific role in the removal of chromosomal links to ensure the accurate segregation of the genomic material during cell division.
Collapse
|
27
|
Reitz D, Grubb J, Bishop DK. A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability. PLoS Genet 2019; 15:e1008217. [PMID: 31790385 PMCID: PMC6907854 DOI: 10.1371/journal.pgen.1008217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/12/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022] Open
Abstract
During meiosis, homologous recombination repairs programmed DNA double-stranded breaks. Meiotic recombination physically links the homologous chromosomes (“homologs”), creating the tension between them that is required for their segregation. The central recombinase in this process is Dmc1. Dmc1’s activity is regulated by its accessory factors including the heterodimeric protein Mei5-Sae3 and Rad51. We use a gain-of-function dmc1 mutant, dmc1-E157D, that bypasses Mei5-Sae3 to gain insight into the role of this accessory factor and its relationship to mitotic recombinase Rad51, which also functions as a Dmc1 accessory protein during meiosis. We find that Mei5-Sae3 has a role in filament formation and stability, but not in the bias of recombination partner choice that favors homolog over sister chromatids. Analysis of meiotic recombination intermediates suggests that Mei5-Sae3 and Rad51 function independently in promoting filament stability. In spite of its ability to load onto single-stranded DNA and carry out recombination in the absence of Mei5-Sae3, recombination promoted by the Dmc1 mutant is abnormal in that it forms foci in the absence of DNA breaks, displays unusually high levels of multi-chromatid and intersister joint molecule intermediates, as well as high levels of ectopic recombination products. We use super-resolution microscopy to show that the mutant protein forms longer foci than those formed by wild-type Dmc1. Our data support a model in which longer filaments are more prone to engage in aberrant recombination events, suggesting that filament lengths are normally limited by a regulatory mechanism that functions to prevent recombination-mediated genome rearrangements. During meiosis, two rounds of division follow a single round of DNA replication to create the gametes for biparental reproduction. The first round of division requires that the homologous chromosomes become physically linked to one another to create the tension that is necessary for their segregation. This linkage is achieved through DNA recombination between the two homologous chromosomes, followed by resolution of the recombination intermediate into a crossover. Central to this process is the meiosis-specific recombinase Dmc1, and its accessory factors, which provide important regulatory functions to ensure that recombination is accurate, efficient, and occurs predominantly between homologous chromosomes, and not sister chromatids. To gain insight into the regulation of Dmc1 by its accessory factors, we mutated Dmc1 such that it was no longer dependent on its accessory factor Mei5-Sae3. Our analysis reveals that Dmc1 accessory factors Mei5-Sae3 and Rad51 have independent roles in stabilizing Dmc1 filaments. Furthermore, we find that although Rad51 is required for promoting recombination between homologous chromosomes, Mei5-Sae3 is not. Lastly, we show that our Dmc1 mutant forms abnormally long filaments, and high levels of aberrant recombination intermediates and products. These findings suggest that filaments are actively maintained at short lengths to prevent deleterious genome rearrangements.
Collapse
Affiliation(s)
- Diedre Reitz
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Douglas K. Bishop
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kaur H, Gn K, Lichten M. Unresolved Recombination Intermediates Cause a RAD9-Dependent Cell Cycle Arrest in Saccharomyces cerevisiae. Genetics 2019; 213:805-818. [PMID: 31562181 PMCID: PMC6827386 DOI: 10.1534/genetics.119.302632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, the conserved Sgs1-Top3-Rmi1 helicase-decatenase regulates homologous recombination by limiting accumulation of recombination intermediates that are crossover precursors. In vitro studies have suggested that this may be due to dissolution of double-Holliday junction joint molecules by Sgs1-driven convergent junction migration and Top3-Rmi1 mediated strand decatenation. To ask whether dissolution occurs in vivo, we conditionally depleted Sgs1 and/or Rmi1 during return to growth (RTG), a procedure where recombination intermediates formed during meiosis are resolved when cells resume the mitotic cell cycle. Sgs1 depletion during RTG delayed joint molecule resolution, but, ultimately, most were resolved and cells divided normally. In contrast, Rmi1 depletion resulted in delayed and incomplete joint molecule resolution, and most cells did not divide. rad9 ∆ mutation restored cell division in Rmi1-depleted cells, indicating that the DNA damage checkpoint caused this cell cycle arrest. Restored cell division in Rmi1-depleted rad9 ∆ cells frequently produced anucleate cells, consistent with the suggestion that persistent recombination intermediates prevented chromosome segregation. Our findings indicate that Sgs1-Top3-Rmi1 acts in vivo, as it does in vitro, to promote recombination intermediate resolution by dissolution. They also indicate that, in the absence of Top3-Rmi1 activity, unresolved recombination intermediates persist and activate the DNA damage response, which is usually thought to be activated by much earlier DNA damage-associated lesions.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Krishnaprasad Gn
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
29
|
Abstract
During meiosis, homologous chromosomes of a diploid cell are replicated and, without a second replication, are segregated during two nuclear divisions to produce four haploid cells (including discarded polar bodies in females of many species). Proper segregation of chromosomes at the first division requires in most species that homologous chromosomes be physically connected. Tension generated by connected chromosomes moving to opposite sides of the cell signals proper segregation. In the absence of the required connections, called crossovers, chromosomes often segregate randomly and produce aneuploid gametes and, thus, dead or disabled progeny. To be effective, crossovers must be properly distributed along chromosomes. Crossovers within or too near the centromere interfere with proper segregation; crossovers too near each other can ablate the required tension; and crossovers too concentrated in only one or a few regions would not re-assort most genetic characters important for evolution. Here, we discuss current knowledge of how the optimal distribution of crossovers is achieved in the fission yeast Schizosaccharomyces pombe, with reference to other well-studied species for comparison and illustration of the diversity of biology.
Collapse
Affiliation(s)
- Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98112, United States
| | - Yu-Chien Chuang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98112, United States
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98112, United States.
| |
Collapse
|
30
|
Srs2 helicase prevents the formation of toxic DNA damage during late prophase I of yeast meiosis. Chromosoma 2019; 128:453-471. [DOI: 10.1007/s00412-019-00709-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
31
|
Mutation of the ATPase Domain of MutS Homolog-5 (MSH5) Reveals a Requirement for a Functional MutSγ Complex for All Crossovers in Mammalian Meiosis. G3-GENES GENOMES GENETICS 2019; 9:1839-1850. [PMID: 30944090 PMCID: PMC6553527 DOI: 10.1534/g3.119.400074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During meiosis, induction of DNA double strand breaks (DSB) leads to recombination between homologous chromosomes, resulting in crossovers (CO) and non-crossovers (NCO). In the mouse, only 10% of DSBs resolve as COs, mostly through a class I pathway dependent on MutSγ (MSH4/ MSH5) and MutLγ (MLH1/MLH3), the latter representing the ultimate marker of these CO events. A second Class II CO pathway accounts for only a few COs, but is not thought to involve MutSγ/ MutLγ, and is instead dependent on MUS81-EME1. For class I events, loading of MutLγ is thought to be dependent on MutSγ, however MutSγ loads very early in prophase I at a frequency that far exceeds the final number of class I COs. Moreover, loss of MutSγ in mouse results in apoptosis before CO formation, preventing the analysis of its CO function. We generated a mutation in the ATP binding domain of Msh5 (Msh5GA). While this mutation was not expected to affect MutSγ complex formation, MutSγ foci do not accumulate during prophase I. However, most spermatocytes from Msh5GA/GA mice progress to late pachynema and beyond, considerably further than meiosis in Msh5−/− animals. At pachynema, Msh5GA/GA spermatocytes show persistent DSBs, incomplete homolog pairing, and fail to accumulate MutLγ. Unexpectedly, Msh5GA/GA diakinesis-staged spermatocytes have no chiasmata at all from any CO pathway, indicating that a functional MutSγ complex is critical for all CO events regardless of their mechanism of generation.
Collapse
|
32
|
Toledo M, Sun X, Brieño-Enríquez MA, Raghavan V, Gray S, Pea J, Milano CR, Venkatesh A, Patel L, Borst PL, Alani E, Cohen PE. A mutation in the endonuclease domain of mouse MLH3 reveals novel roles for MutLγ during crossover formation in meiotic prophase I. PLoS Genet 2019; 15:e1008177. [PMID: 31170160 PMCID: PMC6588253 DOI: 10.1371/journal.pgen.1008177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/21/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
During meiotic prophase I, double-strand breaks (DSBs) initiate homologous recombination leading to non-crossovers (NCOs) and crossovers (COs). In mouse, 10% of DSBs are designated to become COs, primarily through a pathway dependent on the MLH1-MLH3 heterodimer (MutLγ). Mlh3 contains an endonuclease domain that is critical for resolving COs in yeast. We generated a mouse (Mlh3DN/DN) harboring a mutation within this conserved domain that is predicted to generate a protein that is catalytically inert. Mlh3DN/DN males, like fully null Mlh3-/- males, have no spermatozoa and are infertile, yet spermatocytes have grossly normal DSBs and synapsis events in early prophase I. Unlike Mlh3-/- males, mutation of the endonuclease domain within MLH3 permits normal loading and frequency of MutLγ in pachynema. However, key DSB repair factors (RAD51) and mediators of CO pathway choice (BLM helicase) persist into pachynema in Mlh3DN/DN males, indicating a temporal delay in repair events and revealing a mechanism by which alternative DSB repair pathways may be selected. While Mlh3DN/DN spermatocytes retain only 22% of wildtype chiasmata counts, this frequency is greater than observed in Mlh3-/- males (10%), suggesting that the allele may permit partial endonuclease activity, or that other pathways can generate COs from these MutLγ-defined repair intermediates in Mlh3DN/DN males. Double mutant mice homozygous for the Mlh3DN/DN and Mus81-/- mutations show losses in chiasmata close to those observed in Mlh3-/- males, indicating that the MUS81-EME1-regulated crossover pathway can only partially account for the increased residual chiasmata in Mlh3DN/DN spermatocytes. Our data demonstrate that mouse spermatocytes bearing the MLH1-MLH3DN/DN complex display the proper loading of factors essential for CO resolution (MutSγ, CDK2, HEI10, MutLγ). Despite these functions, mice bearing the Mlh3DN/DN allele show defects in the repair of meiotic recombination intermediates and a loss of most chiasmata.
Collapse
Affiliation(s)
- Melissa Toledo
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Xianfei Sun
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Miguel A. Brieño-Enríquez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Stephen Gray
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Jeffrey Pea
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Carolyn R. Milano
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Anita Venkatesh
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Lekha Patel
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Peter L. Borst
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
33
|
Hunt LJ, Ahmed EA, Kaur H, Ahuja JS, Hulme L, Chou TC, Lichten M, Goldman ASH. S. cerevisiae Srs2 helicase ensures normal recombination intermediate metabolism during meiosis and prevents accumulation of Rad51 aggregates. Chromosoma 2019; 128:249-265. [PMID: 31069484 PMCID: PMC6823294 DOI: 10.1007/s00412-019-00705-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/04/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
We investigated the meiotic role of Srs2, a multi-functional DNA helicase/translocase that destabilises Rad51-DNA filaments and is thought to regulate strand invasion and prevent hyper-recombination during the mitotic cell cycle. We find that Srs2 activity is required for normal meiotic progression and spore viability. A significant fraction of srs2 mutant cells progress through both meiotic divisions without separating the bulk of their chromatin, although in such cells sister centromeres often separate. Undivided nuclei contain aggregates of Rad51 colocalised with the ssDNA-binding protein RPA, suggesting the presence of persistent single-strand DNA. Rad51 aggregate formation requires Spo11-induced DSBs, Rad51 strand-invasion activity and progression past the pachytene stage of meiosis, but not the DSB end-resection or the bias towards interhomologue strand invasion characteristic of normal meiosis. srs2 mutants also display altered meiotic recombination intermediate metabolism, revealed by defects in the formation of stable joint molecules. We suggest that Srs2, by limiting Rad51 accumulation on DNA, prevents the formation of aberrant recombination intermediates that otherwise would persist and interfere with normal chromosome segregation and nuclear division.
Collapse
Affiliation(s)
- Laura J Hunt
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK.,Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Emad A Ahmed
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK.,Immunology and Molecular Physiology Lab., Zoology Department, Faculty of Science, Assiut University, Markaz El-Fath, 71515, Egypt
| | - Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Jasvinder S Ahuja
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lydia Hulme
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Ta-Chung Chou
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK.,All First Tech Co., Ltd, 32467, No 146-2. Hung Chun Road, Ping Zhen Dist, Taoyuan City, Taiwan
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Alastair S H Goldman
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK. .,Faculty of Life Sciences, The University of Bradford, Bradford, BD7 1AZ, UK.
| |
Collapse
|
34
|
Noncanonical Contributions of MutLγ to VDE-Initiated Crossovers During Saccharomyces cerevisiae Meiosis. G3-GENES GENOMES GENETICS 2019; 9:1647-1654. [PMID: 30902890 PMCID: PMC6505156 DOI: 10.1534/g3.119.400150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Saccharomyces cerevisiae, the meiosis-specific axis proteins Hop1 and Red1 are present nonuniformly across the genome. In a previous study, the meiosis-specific VMA1-derived endonuclease (VDE) was used to examine Spo11-independent recombination in a recombination reporter inserted in a Hop1/Red1-enriched region (HIS4) and in a Hop1/Red1-poor region (URA3). VDE-initiated crossovers at HIS4 were mostly dependent on Mlh3, a component of the MutLγ meiotic recombination intermediate resolvase, while VDE-initiated crossovers at URA3 were mostly Mlh3-independent. These differences were abolished in the absence of the chromosome axis remodeler Pch2, and crossovers at both loci became partly Mlh3-dependent. To test the generality of these observations, we examined inserts at six additional loci that differed in terms of Hop1/Red1 enrichment, chromosome size, and distance from centromeres and telomeres. All six loci behaved similarly to URA3: the vast majority of VDE-initiated crossovers were Mlh3-independent. This indicates that, counter to previous suggestions, levels of meiotic chromosome axis protein enrichment alone do not determine which recombination pathway gives rise to crossovers during VDE-initiated meiotic recombination. In pch2∆ mutants, the fraction of VDE-induced crossovers that were Mlh3-dependent increased to levels previously observed for Spo11-initiated crossovers in pch2∆, indicating that Pch2-dependent processes play an important role in controlling the balance between MutLγ-dependent and MutLγ-independent crossovers.
Collapse
|
35
|
Heissl A, Betancourt AJ, Hermann P, Povysil G, Arbeithuber B, Futschik A, Ebner T, Tiemann-Boege I. The impact of poly-A microsatellite heterologies in meiotic recombination. Life Sci Alliance 2019; 2:e201900364. [PMID: 31023833 PMCID: PMC6485458 DOI: 10.26508/lsa.201900364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Meiotic recombination has strong, but poorly understood effects on short tandem repeat (STR) instability. Here, we screened thousands of single recombinant products with sperm typing to characterize the role of polymorphic poly-A repeats at a human recombination hotspot in terms of hotspot activity and STR evolution. We show that the length asymmetry between heterozygous poly-A's strongly influences the recombination outcome: a heterology of 10 A's (9A/19A) reduces the number of crossovers and elevates the frequency of non-crossovers, complex recombination products, and long conversion tracts. Moreover, the length of the heterology also influences the STR transmission during meiotic repair with a strong and significant insertion bias for the short heterology (6A/7A) and a deletion bias for the long heterology (9A/19A). In spite of this opposing insertion-/deletion-biased gene conversion, we find that poly-A's are enriched at human recombination hotspots that could have important consequences in hotspot activation.
Collapse
Affiliation(s)
- Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Philipp Hermann
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | - Gundula Povysil
- Institute of Bioinformatics, Johannes Kepler University, Linz, Austria
| | | | - Andreas Futschik
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Clinic, Linz, Austria
| | | |
Collapse
|
36
|
HO Endonuclease-Initiated Recombination in Yeast Meiosis Fails To Promote Homologous Centromere Pairing and Is Not Constrained To Utilize the Dmc1 Recombinase. G3-GENES GENOMES GENETICS 2018; 8:3637-3659. [PMID: 30254180 PMCID: PMC6222578 DOI: 10.1534/g3.118.200641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crossover recombination during meiosis is accompanied by a dramatic chromosome reorganization. In Saccharomyces cerevisiae, the onset of meiotic recombination by the Spo11 transesterase leads to stable pairwise associations between previously unassociated homologous centromeres followed by the intimate alignment of homologous axes via synaptonemal complex (SC) assembly. However, the molecular relationship between recombination and global meiotic chromosome reorganization remains poorly understood. In budding yeast, one question is why SC assembly initiates earliest at centromere regions while the DNA double strand breaks (DSBs) that initiate recombination occur genome-wide. We targeted the site-specific HO endonuclease to various positions on S. cerevisiae’s longest chromosome in order to ask whether a meiotic DSB’s proximity to the centromere influences its capacity to promote homologous centromere pairing and SC assembly. We show that repair of an HO-mediated DSB does not promote homologous centromere pairing nor any extent of SC assembly in spo11 meiotic nuclei, regardless of its proximity to the centromere. DSBs induced en masse by phleomycin exposure likewise do not promote homologous centromere pairing nor robust SC assembly. Interestingly, in contrast to Spo11, HO-initiated interhomolog recombination is not affected by loss of the meiotic kinase, Mek1, and is not constrained to use the meiosis-specific Dmc1 recombinase. These results strengthen the previously proposed idea that (at least some) Spo11 DSBs may be specialized in activating mechanisms that both 1) reinforce homologous chromosome alignment via homologous centromere pairing and SC assembly, and 2) establish Dmc1 as the primary strand exchange enzyme.
Collapse
|
37
|
Arter M, Hurtado-Nieves V, Oke A, Zhuge T, Wettstein R, Fung JC, Blanco MG, Matos J. Regulated Crossing-Over Requires Inactivation of Yen1/GEN1 Resolvase during Meiotic Prophase I. Dev Cell 2018; 45:785-800.e6. [PMID: 29920281 DOI: 10.1016/j.devcel.2018.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/30/2018] [Accepted: 05/16/2018] [Indexed: 01/27/2023]
Abstract
During meiosis, crossover recombination promotes the establishment of physical connections between homologous chromosomes, enabling their bipolar segregation. To ensure that persistent recombination intermediates are disengaged prior to the completion of meiosis, the Yen1(GEN1) resolvase is strictly activated at the onset of anaphase II. Whether controlled activation of Yen1 is important for meiotic crossing-over is unknown. Here, we show that CDK-mediated phosphorylation of Yen1 averts its pervasive recruitment to recombination intermediates during prophase I. Yen1 mutants that are refractory to phosphorylation resolve DNA joint molecules prematurely and form crossovers independently of MutLγ, the central crossover resolvase during meiosis. Despite bypassing the requirement for MutLγ in joint molecule processing and promoting crossover-specific resolution, unrestrained Yen1 impairs the spatial distribution of crossover events, genome-wide. Thus, active suppression of Yen1 function, and by inference also of Mus81-Mms4(EME1) and Slx1-Slx4(BTBD12) resolvases, avoids precocious resolution of recombination intermediates to enable meiotic crossover patterning.
Collapse
Affiliation(s)
- Meret Arter
- Institute of Biochemistry, HPM D6.5 - ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Vanesa Hurtado-Nieves
- Departamento de Bioquímica e Bioloxía Molecular, CIMUS, Universidade de Santiago de Compostela - IDIS, 15706 Santiago de Compostela, Spain
| | - Ashwini Oke
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Tangna Zhuge
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Rahel Wettstein
- Institute of Biochemistry, HPM D6.5 - ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Jennifer C Fung
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Miguel G Blanco
- Departamento de Bioquímica e Bioloxía Molecular, CIMUS, Universidade de Santiago de Compostela - IDIS, 15706 Santiago de Compostela, Spain.
| | - Joao Matos
- Institute of Biochemistry, HPM D6.5 - ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
38
|
Chakraborty P, Pankajam AV, Dutta A, Nishant KT. Genome wide analysis of meiotic recombination in yeast: For a few SNPs more. IUBMB Life 2018; 70:743-752. [PMID: 29934971 PMCID: PMC6120447 DOI: 10.1002/iub.1877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Diploid organisms undergo meiosis to produce haploid germ cells. Crossover events during meiosis promote genetic diversity and facilitate accurate chromosome segregation. The baker's yeast Saccharomyces cerevisiae is extensively used as a model for analysis of meiotic recombination. Conventional methods for measuring recombination events in S. cerevisiae have been limited by the number and density of genetic markers. Next generation sequencing (NGS)-based analysis of hybrid yeast genomes bearing thousands of heterozygous single nucleotide polymorphism (SNP) markers has revolutionized analysis of meiotic recombination. By facilitating analysis of marker segregation in the whole genome with unprecedented resolution, this method has resulted in the generation of high-resolution recombination maps in wild-type and meiotic mutants. These studies have provided novel insights into the mechanism of meiotic recombination. In this review, we discuss the methodology, challenges, insights and future prospects of using NGS-based methods for whole genome analysis of meiotic recombination. The objective is to facilitate the use of these high through-put sequencing methods for the analysis of meiotic recombination given their power to provide significant new insights into the process. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(8):743-752, 2018.
Collapse
Affiliation(s)
- Parijat Chakraborty
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramTrivandrumIndia
| | - Ajith V. Pankajam
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramTrivandrumIndia
| | - Abhishek Dutta
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramTrivandrumIndia
| | - Koodali T. Nishant
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramTrivandrumIndia
- Centre for Computation Modelling and SimulationIndian Institute of Science Education and ResearchThiruvananthapuramTrivandrumIndia
| |
Collapse
|
39
|
Piazza A, Heyer WD. Multi-Invasion-Induced Rearrangements as a Pathway for Physiological and Pathological Recombination. Bioessays 2018; 40:e1700249. [PMID: 29578583 PMCID: PMC6072258 DOI: 10.1002/bies.201700249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Indexed: 01/24/2023]
Abstract
Cells mitigate the detrimental consequences of DNA damage on genome stability by attempting high fidelity repair. Homologous recombination templates DNA double-strand break (DSB) repair on an identical or near identical donor sequence in a process that can in principle access the entire genome. Other physiological processes, such as homolog recognition and pairing during meiosis, also harness the HR machinery using programmed DSBs to physically link homologs and generate crossovers. A consequence of the homology search process by a long nucleoprotein filament is the formation of multi-invasions (MI), a joint molecule in which the damaged ssDNA has invaded more than one donor molecule. Processing of MI joint molecules can compromise the integrity of both donor sites and lead to their rearrangement. Here, two mechanisms for the generation of rearrangements as a pathological consequence of MI processing are detailed and the potential relevance for non-allelic homologous recombination discussed. Finally, it is proposed that MI-induced crossover formation may be a feature of physiological recombination.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, CA, 95616, USA
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, CA, 95616, USA
- Department of Molecular and Cellular Biology, One Shields Avenue, University of California, Davis, CA, 95616, USA
| |
Collapse
|
40
|
Fernandes JB, Duhamel M, Seguéla-Arnaud M, Froger N, Girard C, Choinard S, Solier V, De Winne N, De Jaeger G, Gevaert K, Andrey P, Grelon M, Guerois R, Kumar R, Mercier R. FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination. PLoS Genet 2018; 14:e1007317. [PMID: 29608566 PMCID: PMC5897033 DOI: 10.1371/journal.pgen.1007317] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 04/12/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
Homologous recombination is central to repair DNA double-strand breaks, either accidently arising in mitotic cells or in a programed manner at meiosis. Crossovers resulting from the repair of meiotic breaks are essential for proper chromosome segregation and increase genetic diversity of the progeny. However, mechanisms regulating crossover formation remain elusive. Here, we identified through genetic and protein-protein interaction screens FIDGETIN-LIKE-1 INTERACTING PROTEIN (FLIP) as a new partner of the previously characterized anti-crossover factor FIDGETIN-LIKE-1 (FIGL1) in Arabidopsis thaliana. We showed that FLIP limits meiotic crossover together with FIGL1. Further, FLIP and FIGL1 form a protein complex conserved from Arabidopsis to human. FIGL1 interacts with the recombinases RAD51 and DMC1, the enzymes that catalyze the DNA strand exchange step of homologous recombination. Arabidopsis flip mutants recapitulate the figl1 phenotype, with enhanced meiotic recombination associated with change in counts of DMC1 and RAD51 foci. Our data thus suggests that FLIP and FIGL1 form a conserved complex that regulates the crucial step of strand invasion in homologous recombination. Homologous recombination is a DNA repair mechanism that is essential to preserve the integrity of genetic information and thus to prevent cancer formation. Homologous recombination is also used during sexual reproduction to generate genetic diversity in the offspring by shuffling parental chromosomes. Here, we identified a novel protein complex (FLIP-FIGL1) that regulates homologous recombination and is conserved from plants to mammals. This suggests the existence of a novel mode of regulation at a central step of homologous recombination.
Collapse
Affiliation(s)
- Joiselle Blanche Fernandes
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
- Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Marine Duhamel
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Mathilde Seguéla-Arnaud
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Nicole Froger
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Chloé Girard
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Sandrine Choinard
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Victor Solier
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Philippe Andrey
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, CEA-Saclay, Gif-sur-Yvette, France
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
- * E-mail: (RK); (RM)
| | - Raphaël Mercier
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
- * E-mail: (RK); (RM)
| |
Collapse
|
41
|
Kaur H, Ahuja JS, Lichten M. Methods for Controlled Protein Depletion to Study Protein Function during Meiosis. Methods Enzymol 2018; 601:331-357. [PMID: 29523238 PMCID: PMC10798147 DOI: 10.1016/bs.mie.2017.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins with potential roles in meiotic recombination often have essential or important functions during the mitotic cell cycle. In addition, proteins may have different functions at different times during meiosis. In such cases, it can be challenging to precisely determine protein function during meiosis using null or hypomorphic mutants. One example is the Sgs1-Top3-Rmi1 helicase-decatenase complex, which is required for normal vegetative growth and genome stability. In such cases, conditional loss-of-function mutants can be useful. In this chapter, we describe the construction of two types of conditional mutants, meiotic depletion alleles and auxin-induced degradation alleles, that allow protein depletion specifically during budding yeast meiosis, and illustrate their use with Sgs1. We also describe a modified method for the isolation of meiotic recombination intermediates that combines previous psoralen cross-linking and cetyltrimethylammonium bromide isolation methods.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Jasvinder S Ahuja
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
42
|
Hatkevich T, Sekelsky J. Bloom syndrome helicase in meiosis: Pro-crossover functions of an anti-crossover protein. Bioessays 2017; 39. [PMID: 28792069 DOI: 10.1002/bies.201700073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functions of the Bloom syndrome helicase (BLM) and its orthologs are well characterized in mitotic DNA damage repair, but their roles within the context of meiotic recombination are less clear. In meiotic recombination, multiple repair pathways are used to repair meiotic DSBs, and current studies suggest that BLM may regulate the use of these pathways. Based on literature from Saccharomyces cerevisiae, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans, we present a unified model for a critical meiotic role of BLM and its orthologs. In this model, BLM and its orthologs utilize helicase activity to regulate the use of various pathways in meiotic recombination by continuously disassembling recombination intermediates. This unwinding activity provides the meiotic program with a steady pool of early recombination substrates, increasing the probability for a DSB to be processed by the appropriate pathway. As a result of BLM activity, crossovers are properly placed throughout the genome, promoting proper chromosomal disjunction at the end of meiosis. This unified model can be used to further refine the complex role of BLM and its orthologs in meiotic recombination.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Mimitou EP, Yamada S, Keeney S. A global view of meiotic double-strand break end resection. Science 2017; 355:40-45. [PMID: 28059759 DOI: 10.1126/science.aak9704] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks that initiate meiotic recombination are exonucleolytically processed. This 5'→3' resection is a central, conserved feature of recombination but remains poorly understood. To address this lack, we mapped resection endpoints genome-wide at high resolution in Saccharomyces cerevisiae Full-length resection requires Exo1 exonuclease and the DSB-responsive kinase Tel1, but not Sgs1 helicase. Tel1 also promotes efficient and timely resection initiation. Resection endpoints display pronounced heterogeneity between genomic loci that reflects a tendency for nucleosomes to block Exo1, yet Exo1 also appears to digest chromatin with high processivity and at rates similar to naked DNA in vitro. This paradox points to nucleosome destabilization or eviction as a defining feature of the meiotic resection landscape.
Collapse
Affiliation(s)
- Eleni P Mimitou
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
44
|
Hu Q, Li Y, Wang H, Shen Y, Zhang C, Du G, Tang D, Cheng Z. Meiotic Chromosome Association 1 Interacts with TOP3α and Regulates Meiotic Recombination in Rice. THE PLANT CELL 2017; 29:1697-1708. [PMID: 28696221 PMCID: PMC5559755 DOI: 10.1105/tpc.17.00241] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 05/18/2023]
Abstract
Homologous recombination plays a central role in guaranteeing chromosome segregation during meiosis. The precise regulation of the resolution of recombination intermediates is critical for the success of meiosis. Many proteins, including the RECQ DNA helicases (Sgs1/BLM) and Topoisomerase 3α (TOP3α), have essential functions in managing recombination intermediates. However, many other factors involved in this process remain to be defined. Here, we report the isolation of meiotic chromosome association 1 (MEICA1), a novel protein participating in meiotic recombination in rice (Oryza sativa). Loss of MEICA1 leads to nonhomologous chromosome association, the formation of massive chromosome bridges, and fragmentation. MEICA1 interacts with MSH7, suggesting its role in preventing nonallelic recombination. In addition, MEICA1 has an anticrossover activity revealed by suppressing the defects of crossover formation in msh5 meica1 compared with that in msh5, showing the similar function with its interacted protein TOP3α. Thus, our data establish two pivotal roles for MEICA1 in meiosis: preventing aberrant meiotic recombination and regulating crossover formation.
Collapse
Affiliation(s)
- Qing Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjun Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
The Nucleoporin Nup2 Contains a Meiotic-Autonomous Region that Promotes the Dynamic Chromosome Events of Meiosis. Genetics 2017; 206:1319-1337. [PMID: 28455351 DOI: 10.1534/genetics.116.194555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a specialized cellular program required to create haploid gametes from diploid parent cells. Homologous chromosomes pair, synapse, and recombine in a dynamic environment that accommodates gross chromosome reorganization and significant chromosome motion, which are critical for normal chromosome segregation. In Saccharomyces cerevisiae, Ndj1 is a meiotic telomere-associated protein required for physically attaching telomeres to proteins embedded in the nuclear envelope. In this study, we identified additional proteins that act at the nuclear periphery from meiotic cell extracts, including Nup2, a nonessential nucleoporin with a known role in tethering interstitial chromosomal loci to the nuclear pore complex. We found that deleting NUP2 affects meiotic progression and spore viability, and gives increased levels of recombination intermediates and products. We identified a previously uncharacterized 125 aa region of Nup2 that is necessary and sufficient for its meiotic function, thus behaving as a meiotic autonomous region (MAR). Nup2-MAR forms distinct foci on spread meiotic chromosomes, with a subset overlapping with Ndj1 foci. Localization of Nup2-MAR to meiotic chromosomes does not require Ndj1, nor does Ndj1 localization require Nup2, suggesting these proteins function in different pathways, and their interaction is weak or indirect. Instead, several severe synthetic phenotypes are associated with the nup2Δ ndj1Δ double mutant, including delayed turnover of recombination joint molecules, and a failure to undergo nuclear divisions without also arresting the meiotic program. These data suggest Nup2 and Ndj1 support partially overlapping functions that promote two different levels of meiotic chromosome organization necessary to withstand a dynamic stage of the eukaryotic life cycle.
Collapse
|
46
|
Li G, Zou W, Jian L, Qian J, Deng Y, Zhao J. Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1039-1054. [PMID: 28207059 PMCID: PMC5441860 DOI: 10.1093/jxb/erx016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Early embryo development from the zygote is an essential stage in the formation of the seed, while seedling development is the beginning of the formation of an individual plant. AtNSE1 and AtNSE3 are subunits of the structural maintenance of chromosomes (SMC) 5/6 complex and have been identified as non-SMC elements, but their functions in Arabidopsis growth and development remain as yet unknown. In this study, we found that loss of function of AtNSE1 and AtNSE3 led to severe defects in early embryo development. Partially complemented mutants showed that the development of mutant seedlings was inhibited, that chromosome fragments occurred during anaphase, and that the cell cycle was delayed at G2/M, which led to the occurrence of endoreduplication. Further, a large number of DNA double-strand breaks (DSBs) occurred in the nse1 and nse3 mutants, and the expression of AtNSE1 and AtNSE3 was up-regulated following treatment of the plants with DSB inducer compounds, suggesting that AtNSE1 and AtNSE3 have a role in DNA damage repair. Therefore, we conclude that AtNSE1 and AtNSE3 facilitate DSB repair and contribute to maintaining genome stability and cell division in mitotic cells. Thus, we think that AtNSE1 and AtNSE3 may be crucial factors for maintaining proper early embryonic and post-embryonic development.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
47
|
Abstract
Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
48
|
Finsterbusch F, Ravindranathan R, Dereli I, Stanzione M, Tränkner D, Tóth A. Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein. PLoS Genet 2016; 12:e1006393. [PMID: 27760146 PMCID: PMC5070785 DOI: 10.1371/journal.pgen.1006393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
Orderly chromosome segregation during the first meiotic division requires meiotic recombination to form crossovers between homologous chromosomes (homologues). Members of the minichromosome maintenance (MCM) helicase family have been implicated in meiotic recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch repair and mitotic DNA double-strand break repair. Here, we addressed the function of MCMDC2, an atypical yet conserved MCM protein, whose function in vertebrates has not been reported. While we did not find an important role for MCMDC2 in mitotically dividing cells, our work revealed that MCMDC2 is essential for fertility in both sexes due to a crucial function in meiotic recombination. Meiotic recombination begins with the introduction of DNA double-strand breaks into the genome. DNA ends at break sites are resected. The resultant 3-prime single-stranded DNA overhangs recruit RAD51 and DMC1 recombinases that promote the invasion of homologous duplex DNAs by the resected DNA ends. Multiple strand invasions on each chromosome promote the alignment of homologous chromosomes, which is a prerequisite for inter-homologue crossover formation during meiosis. We found that although DNA ends at break sites were evidently resected, and they recruited RAD51 and DMC1 recombinases, these recombinases were ineffective in promoting alignment of homologous chromosomes in the absence of MCMDC2. Consequently, RAD51 and DMC1 foci, which are thought to mark early recombination intermediates, were abnormally persistent in Mcmdc2-/- meiocytes. Importantly, the strand invasion stabilizing MSH4 protein, which marks more advanced recombination intermediates, did not efficiently form foci in Mcmdc2-/- meiocytes. Thus, our work suggests that MCMDC2 plays an important role in either the formation, or the stabilization, of DNA strand invasion events that promote homologue alignment and provide the basis for inter-homologue crossover formation during meiotic recombination.
Collapse
Affiliation(s)
| | - Ramya Ravindranathan
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Daniel Tränkner
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
49
|
Sebesta M, Urulangodi M, Stefanovie B, Szakal B, Pacesa M, Lisby M, Branzei D, Krejci L. Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains. Nucleic Acids Res 2016; 45:215-230. [PMID: 27694623 PMCID: PMC5224511 DOI: 10.1093/nar/gkw882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/30/2016] [Accepted: 09/22/2016] [Indexed: 01/17/2023] Open
Abstract
Replication across damaged DNA templates is accompanied by transient formation of sister chromatid junctions (SCJs). Cells lacking Esc2, an adaptor protein containing no known enzymatic domains, are defective in the metabolism of these SCJs. However, how Esc2 is involved in the metabolism of SCJs remains elusive. Here we show interaction between Esc2 and a structure-specific endonuclease Mus81-Mms4 (the Mus81 complex), their involvement in the metabolism of SCJs, and the effects Esc2 has on the enzymatic activity of the Mus81 complex. We found that Esc2 specifically interacts with the Mus81 complex via its SUMO-like domains, stimulates enzymatic activity of the Mus81 complex in vitro, and is involved in the Mus81 complex-dependent resolution of SCJs in vivo. Collectively, our data point to the possibility that the involvement of Esc2 in the metabolism of SCJs is, in part, via modulation of the activity of the Mus81 complex.
Collapse
Affiliation(s)
- Marek Sebesta
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic.,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | | | - Barbora Stefanovie
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic.,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, CZ-656 91 Brno, Czech Republic
| | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | - Martin Pacesa
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic .,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, CZ-656 91 Brno, Czech Republic
| |
Collapse
|
50
|
Styles EB, Founk KJ, Zamparo LA, Sing TL, Altintas D, Ribeyre C, Ribaud V, Rougemont J, Mayhew D, Costanzo M, Usaj M, Verster AJ, Koch EN, Novarina D, Graf M, Luke B, Muzi-Falconi M, Myers CL, Mitra RD, Shore D, Brown GW, Zhang Z, Boone C, Andrews BJ. Exploring Quantitative Yeast Phenomics with Single-Cell Analysis of DNA Damage Foci. Cell Syst 2016; 3:264-277.e10. [PMID: 27617677 PMCID: PMC5689480 DOI: 10.1016/j.cels.2016.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/27/2016] [Accepted: 08/11/2016] [Indexed: 01/12/2023]
Abstract
A significant challenge of functional genomics is to develop methods for genome-scale acquisition and analysis of cell biological data. Here, we present an integrated method that combines genome-wide genetic perturbation of Saccharomyces cerevisiae with high-content screening to facilitate the genetic description of sub-cellular structures and compartment morphology. As proof of principle, we used a Rad52-GFP marker to examine DNA damage foci in ∼20 million single cells from ∼5,000 different mutant backgrounds in the context of selected genetic or chemical perturbations. Phenotypes were classified using a machine learning-based automated image analysis pipeline. 345 mutants were identified that had elevated numbers of DNA damage foci, almost half of which were identified only in sensitized backgrounds. Subsequent analysis of Vid22, a protein implicated in the DNA damage response, revealed that it acts together with the Sgs1 helicase at sites of DNA damage and preferentially binds G-quadruplex regions of the genome. This approach is extensible to numerous other cell biological markers and experimental systems.
Collapse
Affiliation(s)
- Erin B Styles
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Karen J Founk
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Lee A Zamparo
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Sciences, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Tina L Sing
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Dogus Altintas
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Cyril Ribeyre
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Virginie Ribaud
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Jacques Rougemont
- Laboratory of Computational Systems Biology, Ecole Polytéchnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - David Mayhew
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Michael Costanzo
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Matej Usaj
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Adrian J Verster
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniele Novarina
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, 20122 Milano, Italy
| | - Marco Graf
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz 55128, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz 55128, Germany
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, 20122 Milano, Italy
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robi David Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - David Shore
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Grant W Brown
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Zhaolei Zhang
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Brenda J Andrews
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|