1
|
Hu C, Zhu XT, He MH, Shao Y, Qin Z, Wu ZJ, Zhou JQ. Elimination of subtelomeric repeat sequences exerts little effect on telomere essential functions in Saccharomyces cerevisiae. eLife 2024; 12:RP91223. [PMID: 38656297 DOI: 10.7554/elife.91223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker's yeast Saccharomyces cerevisiae, the X- and Y'-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y'-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y'-elements) in telomere maintenance. Deletion of Y'-elements (SY12YΔ), X-elements (SY12XYΔ+Y), or both X- and Y'-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12YΔ, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y'-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.
Collapse
Affiliation(s)
- Can Hu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xue-Ting Zhu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
2
|
Kanoh J. Subtelomeres: hotspots of genome variation. Genes Genet Syst 2023; 98:155-160. [PMID: 37648502 DOI: 10.1266/ggs.23-00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Eukaryotic cells contain multiple types of duplicated sequences. Typical examples are tandem repeat sequences including telomeres, centromeres, rDNA genes and transposable elements. Most of these sequences are unstable; thus, their copy numbers or sequences change rapidly in the course of evolution. In this review, I will describe roles of subtelomere regions, which are located adjacent to telomeres at chromosome ends, and recent discoveries about their sequence variation.
Collapse
Affiliation(s)
- Junko Kanoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| |
Collapse
|
3
|
Vaurs M, Naiman K, Bouabboune C, Rai S, Ptasińska K, Rives M, Matmati S, Carr AM, Géli V, Coulon S. Stn1-Ten1 and Taz1 independently promote replication of subtelomeric fragile sequences in fission yeast. Cell Rep 2023; 42:112537. [PMID: 37243596 DOI: 10.1016/j.celrep.2023.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
Efficient replication of terminal DNA is crucial to maintain telomere stability. In fission yeast, Taz1 and the Stn1-Ten1 (ST) complex play prominent roles in DNA-ends replication. However, their function remains elusive. Here, we have analyzed genome-wide replication and show that ST does not affect genome-wide replication but is crucial for the efficient replication of a subtelomeric region called STE3-2. We further show that, when ST function is compromised, a homologous recombination (HR)-based fork restart mechanism becomes necessary for STE3-2 stability. While both Taz1 and Stn1 bind to STE3-2, we find that the STE3-2 replication function of ST is independent of Taz1 but relies on its association with the shelterin proteins Pot1-Tpz1-Poz1. Finally, we demonstrate that the firing of an origin normally inhibited by Rif1 can circumvent the replication defect of subtelomeres when ST function is compromised. Our results help illuminate why fission yeast telomeres are terminal fragile sites.
Collapse
Affiliation(s)
- Mélina Vaurs
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Karel Naiman
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France; Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Chaïnez Bouabboune
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Sudhir Rai
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Katarzyna Ptasińska
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Marion Rives
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Samah Matmati
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Vincent Géli
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France.
| | - Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France.
| |
Collapse
|
4
|
Kuse R, Ishii K. Flexible Attachment and Detachment of Centromeres and Telomeres to and from Chromosomes. Biomolecules 2023; 13:1016. [PMID: 37371596 DOI: 10.3390/biom13061016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Accurate transmission of genomic information across multiple cell divisions and generations, without any losses or errors, is fundamental to all living organisms. To achieve this goal, eukaryotes devised chromosomes. Eukaryotic genomes are represented by multiple linear chromosomes in the nucleus, each carrying a centromere in the middle, a telomere at both ends, and multiple origins of replication along the chromosome arms. Although all three of these DNA elements are indispensable for chromosome function, centromeres and telomeres possess the potential to detach from the original chromosome and attach to new chromosomal positions, as evident from the events of telomere fusion, centromere inactivation, telomere healing, and neocentromere formation. These events seem to occur spontaneously in nature but have not yet been elucidated clearly, because they are relatively infrequent and sometimes detrimental. To address this issue, experimental setups have been developed using model organisms such as yeast. In this article, we review some of the key experiments that provide clues as to the extent to which these paradoxical and elusive features of chromosomally indispensable elements may become valuable in the natural context.
Collapse
Affiliation(s)
- Riku Kuse
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| | - Kojiro Ishii
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| |
Collapse
|
5
|
Kanoh J. Roles of Specialized Chromatin and DNA Structures at Subtelomeres in Schizosaccharomyces pombe. Biomolecules 2023; 13:biom13050810. [PMID: 37238680 DOI: 10.3390/biom13050810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Eukaryotes have linear chromosomes with domains called telomeres at both ends. The telomere DNA consists of a simple tandem repeat sequence, and multiple telomere-binding proteins including the shelterin complex maintain chromosome-end structures and regulate various biological reactions, such as protection of chromosome ends and control of telomere DNA length. On the other hand, subtelomeres, which are located adjacent to telomeres, contain a complex mosaic of multiple common segmental sequences and a variety of gene sequences. This review focused on roles of the subtelomeric chromatin and DNA structures in the fission yeast Schizosaccharomyces pombe. The fission yeast subtelomeres form three distinct chromatin structures; one is the shelterin complex, which is localized not only at the telomeres but also at the telomere-proximal regions of subtelomeres to form transcriptionally repressive chromatin structures. The others are heterochromatin and knob, which have repressive effects in gene expression, but the subtelomeres are equipped with a mechanism that prevents these condensed chromatin structures from invading adjacent euchromatin regions. On the other hand, recombination reactions within or near subtelomeric sequences allow chromosomes to be circularized, enabling cells to survive in telomere shortening. Furthermore, DNA structures of the subtelomeres are more variable than other chromosomal regions, which may have contributed to biological diversity and evolution while changing gene expression and chromatin structures.
Collapse
Affiliation(s)
- Junko Kanoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Xiong Y, Zhang H, Zhou S, Ma L, Xiao W, Wu Y, Yuan YJ. Structural Variations and Adaptations of Synthetic Chromosome Ends Driven by SCRaMbLE in Haploid and Diploid Yeasts. ACS Synth Biol 2023; 12:689-699. [PMID: 36821394 DOI: 10.1021/acssynbio.2c00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Variations and adaptations of chromosome ends play an important role in eukaryotic karyotype evolution. Traditional experimental studies of the adaptations of chromosome ends mainly rely on the strategy of introducing defects; thus, the adaptation methods of survivors may vary depending on the initial defects. Here, using the SCRaMbLE strategy, we obtained a library of haploid and diploid synthetic strains with variations in chromosome ends. Analysis of the SCRaMbLEd survivors revealed four routes of adaptation: homologous recombination between nonhomologous chromosome arms (haploids) or homologous chromosome arms (diploids), site-specific recombination between intra- or interchromosomal ends, circularization of chromosomes, and loss of whole chromosomes (diploids). We also found that circularization of synthetic chromosomes can be generated by SCRaMbLE. Our study of various adaptation routes of chromosome ends provides insight into eukaryotic karyotype evolution from the viewpoint of synthetic genomics.
Collapse
Affiliation(s)
- Yao Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sijie Zhou
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lu Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Ueno M. Exploring Genetic Interactions with Telomere Protection Gene pot1 in Fission Yeast. Biomolecules 2023; 13:biom13020370. [PMID: 36830739 PMCID: PMC9953254 DOI: 10.3390/biom13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The regulation of telomere length has a significant impact on cancer risk and aging in humans. Circular chromosomes are found in humans and are often unstable during mitosis, resulting in genome instability. Some types of cancer have a high frequency of a circular chromosome. Fission yeast is a good model for studying the formation and stability of circular chromosomes as deletion of pot1 (encoding a telomere protection protein) results in rapid telomere degradation and chromosome fusion. Pot1 binds to single-stranded telomere DNA and is conserved from fission yeast to humans. Loss of pot1 leads to viable strains in which all three fission yeast chromosomes become circular. In this review, I will introduce pot1 genetic interactions as these inform on processes such as the degradation of uncapped telomeres, chromosome fusion, and maintenance of circular chromosomes. Therefore, exploring genes that genetically interact with pot1 contributes to finding new genes and/or new functions of genes related to the maintenance of telomeres and/or circular chromosomes.
Collapse
Affiliation(s)
- Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; ; Tel.: +81-82-424-7768
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
8
|
Casari E, Gnugnoli M, Rinaldi C, Pizzul P, Colombo CV, Bonetti D, Longhese MP. To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks. Cells 2022; 11:cells11203224. [PMID: 36291091 PMCID: PMC9601279 DOI: 10.3390/cells11203224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 02/08/2023] Open
Abstract
Early work by Muller and McClintock discovered that the physical ends of linear chromosomes, named telomeres, possess an inherent ability to escape unwarranted fusions. Since then, extensive research has shown that this special feature relies on specialized proteins and structural properties that confer identity to the chromosome ends, thus allowing cells to distinguish them from intrachromosomal DNA double-strand breaks. Due to the inability of conventional DNA replication to fully replicate the chromosome ends and the downregulation of telomerase in most somatic human tissues, telomeres shorten as cells divide and lose this protective capacity. Telomere attrition causes the activation of the DNA damage checkpoint that leads to a cell-cycle arrest and the entering of cells into a nondividing state, called replicative senescence, that acts as a barrier against tumorigenesis. However, downregulation of the checkpoint overcomes this barrier and leads to further genomic instability that, if coupled with re-stabilization of telomeres, can drive tumorigenesis. This review focuses on the key experiments that have been performed in the model organism Saccharomyces cerevisiae to uncover the mechanisms that protect the chromosome ends from eliciting a DNA damage response, the conservation of these pathways in mammals, as well as the consequences of their loss in human cancer.
Collapse
|
9
|
Yasuda M, Habib AGK, Sugiura K, Shamim HM, Ueno M. The fission yeast bromodomain protein Bdf2 is required for the growth of cells with circular chromosomes. Biosci Biotechnol Biochem 2022; 86:224-230. [PMID: 34918022 DOI: 10.1093/bbb/zbab215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 11/14/2022]
Abstract
Circular chromosomes have frequently been observed in tumors of mesenchymal origin. In the fission yeast Schizosaccharomyces pombe, deletion of pot1+ results in rapid telomere loss, and the resulting survivors have circular chromosomes. Fission yeast has 2 bromodomain and extra-terminal (BET) proteins, Bdf1 and Bdf2; both are required for maintaining acetylated histones. Here, we found that bdf2, but not bdf1, was synthetically lethal with pot1. We also obtained a temperature-sensitive bdf2-ts mutant, which can grow at high temperatures but becomes camptothecin sensitive. This suggests that Bdf2 is defective at high temperatures. The cell cycle of the pot1 bdf2-ts mutant was delayed in the G2 and/or M phase at a semipermissive temperature. Furthermore, a temperature-sensitive mutant of mst1, which encodes histone acetyltransferase, showed a synthetic growth defect with a pot1 disruptant at a semipermissive temperature. Our results suggest that Bdf2 and Mst1 are required for the growth of cells with circular chromosomes.
Collapse
Affiliation(s)
- Misaki Yasuda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ahmed G K Habib
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Kanako Sugiura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hossain Mohammad Shamim
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Department of Food Engineering and Technology, State University of Bangladesh, Dhaka, Bangladesh
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
10
|
Holland CL, Sanderson BA, Titus JK, Weis MF, Riojas AM, Malczewskyj E, Wasko BM, Lewis LK. Suppression of telomere capping defects of Saccharomyces cerevisiae yku70 and yku80 mutants by telomerase. G3-GENES GENOMES GENETICS 2021; 11:6395363. [PMID: 34718547 PMCID: PMC8664480 DOI: 10.1093/g3journal/jkab359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
The Ku complex performs multiple functions inside eukaryotic cells, including protection of chromosomal DNA ends from degradation and fusion events, recruitment of telomerase, and repair of double-strand breaks (DSBs). Inactivation of Ku complex genes YKU70 or YKU80 in cells of the yeast Saccharomyces cerevisiae gives rise to mutants that exhibit shortened telomeres and temperature-sensitive growth. In this study, we have investigated the mechanism by which overexpression of telomerase suppresses the temperature sensitivity of yku mutants. Viability of yku cells was restored by overexpression of the Est2 reverse transcriptase and TLC1 RNA template subunits of telomerase, but not the Est1 or Est3 proteins. Overexpression of other telomerase- and telomere-associated proteins (Cdc13, Stn1, Ten1, Rif1, Rif2, Sir3, and Sir4) did not suppress the growth defects of yku70 cells. Mechanistic features of suppression were assessed using several TLC1 RNA deletion derivatives and Est2 enzyme mutants. Supraphysiological levels of three catalytically inactive reverse transcriptase mutants (Est2-D530A, Est2-D670A, and Est2-D671A) suppressed the loss of viability as efficiently as the wild-type Est2 protein, without inducing cell senescence. Roles of proteins regulating telomere length were also determined. The results support a model in which chromosomes in yku mutants are stabilized via a replication-independent mechanism involving structural reinforcement of protective telomere cap structures.
Collapse
Affiliation(s)
- Cory L Holland
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Brian A Sanderson
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - James K Titus
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Monica F Weis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Angelica M Riojas
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Eric Malczewskyj
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Brian M Wasko
- Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, 77058, USA
| | - L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
11
|
Subtelomeric Chromatin in the Fission Yeast S. pombe. Microorganisms 2021; 9:microorganisms9091977. [PMID: 34576871 PMCID: PMC8466458 DOI: 10.3390/microorganisms9091977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Telomeres play important roles in safeguarding the genome. The specialized repressive chromatin that assembles at telomeres and subtelomeric domains is key to this protective role. However, in many organisms, the repetitive nature of telomeric and subtelomeric sequences has hindered research efforts. The fission yeast S. pombe has provided an important model system for dissection of chromatin biology due to the relative ease of genetic manipulation and strong conservation of important regulatory proteins with higher eukaryotes. Telomeres and the telomere-binding shelterin complex are highly conserved with mammals, as is the assembly of constitutive heterochromatin at subtelomeres. In this review, we seek to summarize recent work detailing the assembly of distinct chromatin structures within subtelomeric domains in fission yeast. These include the heterochromatic SH subtelomeric domains, the telomere-associated sequences (TAS), and ST chromatin domains that assemble highly condensed chromatin clusters called knobs. Specifically, we review new insights into the sequence of subtelomeric domains, the distinct types of chromatin that assemble on these sequences and how histone H3 K36 modifications influence these chromatin structures. We address the interplay between the subdomains of chromatin structure and how subtelomeric chromatin is influenced by both the telomere-bound shelterin complexes and by euchromatic chromatin regulators internal to the subtelomeric domain. Finally, we demonstrate that telomere clustering, which is mediated via the condensed ST chromatin knob domains, does not depend on knob assembly within these domains but on Set2, which mediates H3K36 methylation.
Collapse
|
12
|
Apte MS, Masuda H, Wheeler DL, Cooper JP. RNAi and Ino80 complex control rate limiting translocation step that moves rDNA to eroding telomeres. Nucleic Acids Res 2021; 49:8161-8176. [PMID: 34244792 PMCID: PMC8373062 DOI: 10.1093/nar/gkab586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
The discovery of HAATIrDNA, a telomerase-negative survival mode in which canonical telomeres are replaced with ribosomal DNA (rDNA) repeats that acquire chromosome end-protection capability, raised crucial questions as to how rDNA tracts 'jump' to eroding chromosome ends. Here, we show that HAATIrDNA formation is initiated and limited by a single translocation that juxtaposes rDNA from Chromosome (Chr) III onto subtelomeric elements (STE) on Chr I or II; this rare reaction requires RNAi and the Ino80 nucleosome remodeling complex (Ino80C), thus defining an unforeseen relationship between these two machineries. The unique STE-rDNA junction created by this initial translocation is efficiently copied to the remaining STE chromosome ends, independently of RNAi or Ino80C. Intriguingly, both RNAi and Ino80C machineries contain a component that plays dual roles in HAATI subtype choice. Dcr1 of the RNAi pathway and Iec1 of Ino80C both promote HAATIrDNA formation as part of their respective canonical machineries, but both also inhibit formation of the exceedingly rare HAATISTE (where STE sequences mobilize throughout the genome and assume chromosome end protection capacity) in non-canonical, pathway-independent manners. This work provides a glimpse into a previously unrecognized crosstalk between RNAi and Ino80C in controlling unusual translocation reactions that establish telomere-free linear chromosome ends.
Collapse
Affiliation(s)
- Manasi S Apte
- Laboratory of Biochemistry and Molecular Biology, NCI, NIH, Bethesda, MD 20892, USA
| | - Hirohisa Masuda
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Lee Wheeler
- Laboratory of Biochemistry and Molecular Biology, NCI, NIH, Bethesda, MD 20892, USA
| | - Julia Promisel Cooper
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Oizumi Y, Kaji T, Tashiro S, Takeshita Y, Date Y, Kanoh J. Complete sequences of Schizosaccharomyces pombe subtelomeres reveal multiple patterns of genome variation. Nat Commun 2021; 12:611. [PMID: 33504776 PMCID: PMC7840980 DOI: 10.1038/s41467-020-20595-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
Genome sequences have been determined for many model organisms; however, repetitive regions such as centromeres, telomeres, and subtelomeres have not yet been sequenced completely. Here, we report the complete sequences of subtelomeric homologous (SH) regions of the fission yeast Schizosaccharomyces pombe. We overcame technical difficulties to obtain subtelomeric repetitive sequences by constructing strains that possess single SH regions of a standard laboratory strain. In addition, some natural isolates of S. pombe were analyzed using previous sequencing data. Whole sequences of SH regions revealed that each SH region consists of two distinct parts with mosaics of multiple common segments or blocks showing high variation among subtelomeres and strains. Subtelomere regions show relatively high frequency of nucleotide variations among strains compared with the other chromosomal regions. Furthermore, we identified subtelomeric RecQ-type helicase genes, tlh3 and tlh4, which add to the already known tlh1 and tlh2, and found that the tlh1-4 genes show high sequence variation with missense mutations, insertions, and deletions but no severe effects on their RNA expression. Our results indicate that SH sequences are highly polymorphic and hot spots for genome variation. These features of subtelomeres may have contributed to genome diversity and, conversely, various diseases.
Collapse
Affiliation(s)
- Yusuke Oizumi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuto Kaji
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sanki Tashiro
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR, USA
| | - Yumiko Takeshita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuko Date
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Junko Kanoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
14
|
Wu ZJ, Liu JC, Man X, Gu X, Li TY, Cai C, He MH, Shao Y, Lu N, Xue X, Qin Z, Zhou JQ. Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions. eLife 2020; 9:53144. [PMID: 32755541 PMCID: PMC7406354 DOI: 10.7554/elife.53144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Telomeres define the natural ends of eukaryotic chromosomes and are crucial for chromosomal stability. The budding yeast Cdc13, Stn1 and Ten1 proteins form a heterotrimeric complex, and the inactivation of any of its subunits leads to a uniformly lethal phenotype due to telomere deprotection. Although Cdc13, Stn1 and Ten1 seem to belong to an epistasis group, it remains unclear whether they function differently in telomere protection. Here, we employed the single-linear-chromosome yeast SY14, and surprisingly found that the deletion of CDC13 leads to telomere erosion and intrachromosome end-to-end fusion, which depends on Rad52 but not Yku. Interestingly, the emergence frequency of survivors in the SY14 cdc13Δ mutant was ~29 fold higher than that in either the stn1Δ or ten1Δ mutant, demonstrating a predominant role of Cdc13 in inhibiting telomere fusion. Chromosomal fusion readily occurred in the telomerase-null SY14 strain, further verifying the default role of intact telomeres in inhibiting chromosome fusion.
Collapse
Affiliation(s)
- Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Man
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Gu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ting-Yi Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Chen Cai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Lu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Xue
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
15
|
Hu Y, Bennett HW, Liu N, Moravec M, Williams JF, Azzalin CM, King MC. RNA-DNA Hybrids Support Recombination-Based Telomere Maintenance in Fission Yeast. Genetics 2019; 213:431-447. [PMID: 31405990 PMCID: PMC6781888 DOI: 10.1534/genetics.119.302606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022] Open
Abstract
A subset of cancers rely on telomerase-independent mechanisms to maintain their chromosome ends. The predominant "alternative lengthening of telomeres" pathway appears dependent on homology-directed repair (HDR) to maintain telomeric DNA. However, the molecular changes needed for cells to productively engage in telomeric HDR are poorly understood. To gain new insights into this transition, we monitored the state of telomeres during serial culture of fission yeast (Schizosaccharomyces pombe) lacking the telomerase recruitment factor Ccq1. Rad52 is loaded onto critically short telomeres shortly after germination despite continued telomere erosion, suggesting that recruitment of recombination factors is not sufficient to maintain telomeres in the absence of telomerase function. Instead, survivor formation coincides with the derepression of telomeric repeat-containing RNA (TERRA). In this context, degradation of TERRA associated with the telomere in the form of R-loops drives a severe growth crisis, ultimately leading to a novel type of survivor with linear chromosomes and altered cytological telomere characteristics, including the loss of the shelterin component Rap1 (but not the TRF1/TRF2 ortholog, Taz1) from the telomere. We demonstrate that deletion of Rap1 is protective in this context, preventing the growth crisis that is otherwise triggered by degradation of telomeric R-loops in survivors with linear chromosomes. These findings suggest that upregulation of telomere-engaged TERRA, or altered recruitment of shelterin components, can support telomerase-independent telomere maintenance.
Collapse
Affiliation(s)
- Yan Hu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Henrietta W Bennett
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Na Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Martin Moravec
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), 8093, Switzerland
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, 1649-028, Portugal
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| |
Collapse
|
16
|
Mennie AK, Moser BA, Hoyle A, Low RS, Tanaka K, Nakamura TM. Tpz1 TPP1 prevents telomerase activation and protects telomeres by modulating the Stn1-Ten1 complex in fission yeast. Commun Biol 2019; 2:297. [PMID: 31396577 PMCID: PMC6686008 DOI: 10.1038/s42003-019-0546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 07/15/2019] [Indexed: 12/24/2022] Open
Abstract
In both mammalian and fission yeast cells, conserved shelterin and CST (CTC1-STN1-TEN1) complexes play critical roles in protection of telomeres and regulation of telomerase, an enzyme required to overcome the end replication problem. However, molecular details that govern proper coordination among shelterin, CST, and telomerase have not yet been fully understood. Here, we establish a conserved SWSSS motif, located adjacent to the Lys242 SUMOylation site in the fission yeast shelterin subunit Tpz1, as a new functional regulatory element for telomere protection and telomere length homeostasis. The SWSSS motif works redundantly with Lys242 SUMOylation to promote binding of Stn1-Ten1 at telomere and sub-telomere regions to protect against single-strand annealing (SSA)-dependent telomere fusions, and to prevent telomerase accumulation at telomeres. In addition, we provide evidence that the SWSSS motif defines an unanticipated role of Tpz1 in limiting telomerase activation at telomeres to prevent uncontrolled telomere elongation.
Collapse
Affiliation(s)
- Amanda K. Mennie
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Bettina A. Moser
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Alice Hoyle
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Ross S. Low
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
- Present Address: Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ United Kingdom
| | - Katsunori Tanaka
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, 669-1337 Japan
| | - Toru M. Nakamura
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
17
|
A Heterochromatin Domain Forms Gradually at a New Telomere and Is Dynamic at Stable Telomeres. Mol Cell Biol 2018; 38:MCB.00393-17. [PMID: 29784772 PMCID: PMC6048312 DOI: 10.1128/mcb.00393-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 05/09/2018] [Indexed: 02/03/2023] Open
Abstract
Heterochromatin domains play important roles in chromosome biology, organismal development, and aging, including centromere function, mammalian female X chromosome inactivation, and senescence-associated heterochromatin foci. In the fission yeast Schizosaccharomyces pombe and metazoans, heterochromatin contains histone H3 that is dimethylated at lysine 9. Heterochromatin domains play important roles in chromosome biology, organismal development, and aging, including centromere function, mammalian female X chromosome inactivation, and senescence-associated heterochromatin foci. In the fission yeast Schizosaccharomyces pombe and metazoans, heterochromatin contains histone H3 that is dimethylated at lysine 9. While factors required for heterochromatin have been identified, the dynamics of heterochromatin formation are poorly understood. Telomeres convert adjacent chromatin into heterochromatin. To form a new heterochromatic region in S. pombe, an inducible DNA double-strand break (DSB) was engineered next to 48 bp of telomere repeats in euchromatin, which caused formation of a new telomere and the establishment and gradual spreading of a new heterochromatin domain. However, spreading was dynamic even after the telomere had reached its stable length, with reporter genes within the heterochromatin domain showing variegated expression. The system also revealed the presence of repeats located near the boundaries of euchromatin and heterochromatin that are oriented to allow the efficient healing of a euchromatic DSB to cap the chromosome end with a new telomere. Telomere formation in S. pombe therefore reveals novel aspects of heterochromatin dynamics and fail-safe mechanisms to repair subtelomeric breaks, with implications for similar processes in metazoan genomes.
Collapse
|
18
|
Sugihara A, Nguyen LC, Shamim HM, Iida T, Nakase M, Takegawa K, Senda M, Jida S, Ueno M. Mutation in fission yeast phosphatidylinositol 4-kinase Pik1 is synthetically lethal with defect in telomere protection protein Pot1. Biochem Biophys Res Commun 2018; 496:1284-1290. [DOI: 10.1016/j.bbrc.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 02/01/2018] [Indexed: 01/22/2023]
|
19
|
Hou H, Cooper JP. Stretching, scrambling, piercing and entangling: Challenges for telomeres in mitotic and meiotic chromosome segregation. Differentiation 2018; 100:12-20. [PMID: 29413748 DOI: 10.1016/j.diff.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/24/2022]
Abstract
The consequences of telomere loss or dysfunction become most prominent when cells enter the nuclear division stage of the cell cycle. At this climactic stage when chromosome segregation occurs, telomere fusions or entanglements can lead to chromosome breakage, wreaking havoc on genome stability. Here we review recent progress in understanding the mechanisms of detangling and breaking telomere associations at mitosis, as well as the unique ways in which telomeres are processed to allow regulated sister telomere separation. Moreover, we discuss unexpected roles for telomeres in orchestrating nuclear envelope breakdown and spindle formation, crucial processes for nuclear division. Finally, we discuss the discovery that telomeres create microdomains in the nucleus that are conducive to centromere assembly, cementing the unexpectedly influential role of telomeres in mitosis.
Collapse
Affiliation(s)
- Haitong Hou
- Telomere Biology Section, LBMB, NCI, NIH, Building 37, Room 6050, Bethesda MD 20892, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, LBMB, NCI, NIH, Building 37, Room 6050, Bethesda MD 20892, USA.
| |
Collapse
|
20
|
Maestroni L, Audry J, Matmati S, Arcangioli B, Géli V, Coulon S. Eroded telomeres are rearranged in quiescent fission yeast cells through duplications of subtelomeric sequences. Nat Commun 2017; 8:1684. [PMID: 29167439 PMCID: PMC5700057 DOI: 10.1038/s41467-017-01894-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
While the mechanisms of telomere maintenance has been investigated in dividing cells, little is known about the stability of telomeres in quiescent cells and how dysfunctional telomeres are processed in non-proliferating cells. Here we examine the stability of telomeres in quiescent cells using fission yeast. While wild type telomeres are stable in quiescence, we observe that eroded telomeres were highly rearranged during quiescence in telomerase minus cells. These rearrangements depend on homologous recombination (HR) and correspond to duplications of subtelomeric regions. HR is initiated at newly identified subtelomeric homologous repeated sequences (HRS). We further show that TERRA (Telomeric Repeat-containing RNA) is increased in post-mitotic cells with short telomeres and correlates with telomere rearrangements. Finally, we demonstrate that rearranged telomeres prevent cells to exit properly from quiescence. Taken together, we describe in fission yeast a mode of telomere repair mechanism specific to post-mitotic cells that is likely promoted by transcription. How both telomere stability is regulated and dysfunctional telomeres processed in quiescent cells is poorly understood. Here, the authors provide evidence that eroded telomeres in quiescent fission yeast are rearranged by homologous recombination through duplications of subtelomeric sequences.
Collapse
Affiliation(s)
- Laetitia Maestroni
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, Equipe labélisée Ligue contre le cancer, 13273, Marseille, France
| | - Julien Audry
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, Equipe labélisée Ligue contre le cancer, 13273, Marseille, France
| | - Samah Matmati
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, Equipe labélisée Ligue contre le cancer, 13273, Marseille, France
| | - Benoit Arcangioli
- Dynamics of the Genome, UMR 3225 Genomes & Genetics; Institut Pasteur, 75015, Paris, France
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, Equipe labélisée Ligue contre le cancer, 13273, Marseille, France.
| | - Stéphane Coulon
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, Equipe labélisée Ligue contre le cancer, 13273, Marseille, France.
| |
Collapse
|
21
|
Shamim HM, Minami Y, Tanaka D, Ukimori S, Murray JM, Ueno M. Fission yeast strains with circular chromosomes require the 9-1-1 checkpoint complex for the viability in response to the anti-cancer drug 5-fluorodeoxyuridine. PLoS One 2017; 12:e0187775. [PMID: 29121084 PMCID: PMC5679574 DOI: 10.1371/journal.pone.0187775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Thymidine kinase converts 5-fluorodeoxyuridine to 5-fluorodeoxyuridine monophosphate, which causes disruption of deoxynucleotide triphosphate ratios. The fission yeast Schizosaccharomyces pombe does not express endogenous thymidine kinase but 5-fluorodeoxyuridine inhibits growth when exogenous thymidine kinase is expressed. Unexpectedly, we found that 5-fluorodeoxyuridine causes S phase arrest even without thymidine kinase expression. DNA damage checkpoint proteins such as the 9-1-1 complex were required for viability in the presence of 5-fluorodeoxyuridine. We also found that strains with circular chromosomes, due to loss of pot1+, which have higher levels of replication stress, were more sensitive to loss of the 9-1-1 complex in the presence of 5-fluorodeoxyuridine. Thus, our results suggest that strains carrying circular chromosomes exhibit a greater dependence on DNA damage checkpoints to ensure viability in the presence of 5-fluorodeoxyuridine compared to stains that have linear chromosomes.
Collapse
Affiliation(s)
- Hossain Mohammad Shamim
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yukako Minami
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Daiki Tanaka
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinobu Ukimori
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Johanne M. Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
22
|
Tashiro S, Nishihara Y, Kugou K, Ohta K, Kanoh J. Subtelomeres constitute a safeguard for gene expression and chromosome homeostasis. Nucleic Acids Res 2017; 45:10333-10349. [PMID: 28981863 PMCID: PMC5737222 DOI: 10.1093/nar/gkx780] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
The subtelomere, a telomere-adjacent chromosomal domain, contains species-specific homologous DNA sequences, in addition to various genes. However, the functions of subtelomeres, particularly subtelomeric homologous (SH) sequences, remain elusive. Here, we report the first comprehensive analyses of the cellular functions of SH sequences in the fission yeast, Schizosaccharomyces pombe. Complete removal of SH sequences from the genome revealed that they are dispensable for mitosis, meiosis and telomere length control. However, when telomeres are lost, SH sequences prevent deleterious inter-chromosomal end fusion by facilitating intra-chromosomal circularization. Surprisingly, SH-deleted cells sometimes survive telomere loss through inter-chromosomal end fusions via homologous loci such as LTRs, accompanied by centromere inactivation of either chromosome. Moreover, SH sequences function as a buffer region against the spreading of subtelomeric heterochromatin into the neighboring gene-rich regions. Furthermore, we found a nucleosome-free region at the subtelomeric border, which may be a second barrier that blocks heterochromatin spreading into the subtelomere-adjacent euchromatin. Thus, our results demonstrate multiple defense functions of subtelomeres in chromosome homeostasis and gene expression.
Collapse
Affiliation(s)
- Sanki Tashiro
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Nishihara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuto Kugou
- Department of Life Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Junko Kanoh
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Takikawa M, Tarumoto Y, Ishikawa F. Fission yeast Stn1 is crucial for semi-conservative replication at telomeres and subtelomeres. Nucleic Acids Res 2017; 45:1255-1269. [PMID: 28180297 PMCID: PMC5388396 DOI: 10.1093/nar/gkw1176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022] Open
Abstract
The CST complex is a phylogenetically conserved protein complex consisting of CTC1/Cdc13, Stn1 and Ten1 that protects telomeres on linear chromosomes. Deletion of the fission yeast homologs stn1 and ten1 results in complete telomere loss; however, the precise function of Stn1 is still largely unknown. Here, we have isolated a high-temperature sensitive stn1 allele (termed stn1-1). stn1-1 cells abruptly lost telomeric sequence almost completely at the restrictive temperature. The loss of chromosomal DNA happened without gradual telomere shortening, and extended to 30 kb from the ends of chromosomes. We found transient and modest single-stranded G-strand exposure, but did not find any evidence of checkpoint activation in stn1-1 at the restrictive temperature. When we probed neutral-neutral 2D gels for subtelomere regions, we found no Y-arc-shaped replication intermediates in cycling cells. We conclude that the loss of telomere and subtelomere DNAs in stn1-1 cells at the restrictive temperature is caused by very frequent replication fork collapses specifically in subtelomere regions. Furthermore, we identified two independent suppressor mutants of the high-temperature sensitivity of stn1-1: a multi-copy form of pmt3 and a deletion of rif1. Collectively, we propose that fission yeast Stn1 primarily safeguards the semi-conservative DNA replication at telomeres and subtelomeres.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yusuke Tarumoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
24
|
Large-scale production of recombinant Saw1 in Escherichia coli. Protein Expr Purif 2017; 133:75-80. [DOI: 10.1016/j.pep.2017.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/15/2017] [Accepted: 02/28/2017] [Indexed: 11/15/2022]
|
25
|
Apte MS, Cooper JP. Life and cancer without telomerase: ALT and other strategies for making sure ends (don't) meet. Crit Rev Biochem Mol Biol 2016; 52:57-73. [PMID: 27892716 DOI: 10.1080/10409238.2016.1260090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
While most cancer cells rely on telomerase expression/re-activation for linear chromosome maintenance and sustained proliferation, a significant population of cancers (10-15%) employs telomerase-independent strategies, collectively dubbed Alternative Lengthening of Telomeres (ALT). Most ALT cells relax the usual role of telomeres as inhibitors of local homologous recombination while maintaining the ability of telomeres to prohibit local non-homologous end joining reactions. Here we review current concepts surrounding how ALT telomeres achieve this new balance via alterations in chromatin landscape, DNA damage repair processes and handling of telomeric transcription. We also discuss telomerase independent end maintenance strategies utilized by other organisms, including fruitflies and yeasts, to draw parallels and contrasts and highlight additional modes, beyond ALT, that may be available to telomerase-minus cancers. We conclude by commenting on promises and challenges in the development of effective anti-ALT cancer therapies.
Collapse
Affiliation(s)
- Manasi S Apte
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Julia Promisel Cooper
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
26
|
Lue NF, Yu EY. Telomere recombination pathways: tales of several unhappy marriages. Curr Genet 2016; 63:401-409. [PMID: 27666406 DOI: 10.1007/s00294-016-0653-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/29/2023]
Abstract
All happy families are alike; each unhappy family is unhappy in its own way.-Leo Tolstoy, Anna Karenina.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA. .,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - Eun Young Yu
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
27
|
Telomere Dysfunction Triggers Palindrome Formation Independently of Double-Strand Break Repair Mechanisms. Genetics 2016; 203:1659-68. [PMID: 27334270 PMCID: PMC4981268 DOI: 10.1534/genetics.115.183020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 06/06/2016] [Indexed: 11/18/2022] Open
Abstract
Inverted chromosome duplications or palindromes are linked with genetic disorders and malignant transformation. They are considered by-products of DNA double-strand break (DSB) repair: the homologous recombination (HR) and the nonhomologous end joining (NHEJ). Palindromes near chromosome ends are often triggered by telomere losses. An important question is to what extent their formation depends upon DSB repair mechanisms. Here we addressed this question using yeast genetics and comparative genomic hybridization. We induced palindrome formation by passaging cells lacking any form of telomere maintenance (telomerase and telomere recombination). Surprisingly, we found that DNA ligase 4, essential for NHEJ, did not make a significant contribution to palindrome formation induced by telomere losses. Moreover RAD51, important for certain HR-derived mechanisms, had little effect. Furthermore RAD52, which is essential for HR in yeast, appeared to decrease the number of palindromes in cells proliferating without telomeres. This study also uncovered an important role for Rev3 and Rev7 (but not for Pol32) subunits of polymerase ζ in the survival of cells undergoing telomere losses and forming palindromes. We propose a model called short-inverted repeat-induced synthesis in which DNA synthesis, rather than DSB repair, drives the inverted duplication triggered by telomere dysfunction.
Collapse
|
28
|
Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing. Nat Commun 2016; 7:10393. [PMID: 26804021 PMCID: PMC4737732 DOI: 10.1038/ncomms10393] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/07/2015] [Indexed: 01/11/2023] Open
Abstract
A chromosome is composed of structurally and functionally distinct domains. However, the molecular mechanisms underlying the formation of chromatin structure and the function of subtelomeres, the telomere-adjacent regions, remain obscure. Here we report the roles of the conserved centromeric protein Shugoshin 2 (Sgo2) in defining chromatin structure and functions of the subtelomeres in the fission yeast Schizosaccharomyces pombe. We show that Sgo2 localizes at the subtelomeres preferentially during G2 phase and is essential for the formation of a highly condensed subtelomeric chromatin body 'knob'. Furthermore, the absence of Sgo2 leads to the derepression of the subtelomeric genes and premature DNA replication at the subtelomeric late origins. Thus, the subtelomeric specialized chromatin domain organized by Sgo2 represses both transcription and replication to ensure proper gene expression and replication timing.
Collapse
|
29
|
Fission Yeast Exo1 and Rqh1-Dna2 Redundantly Contribute to Resection of Uncapped Telomeres. PLoS One 2015; 10:e0140456. [PMID: 26465752 PMCID: PMC4605587 DOI: 10.1371/journal.pone.0140456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/25/2015] [Indexed: 01/01/2023] Open
Abstract
The uncapping of telomeres induces a DNA damage response. In Schizosaccharomyces pombe, deletion of pot1+ causes telomere uncapping and rapid telomere resection, resulting in chromosome fusion. Using the nmt-pot1-aid strain, we previously reported that Pot1 shut-off causes telomere loss and chromosome fusion in S. pombe. However, the factors responsible for the resection of uncapped telomeres remain unknown. In this study, we investigated these factors and found that concomitant deletion of rqh1+ and exo1+ alleviated the loss of telomeres following Pot1 shut-off, suggesting that Rqh1 and Exo1 are redundantly involved in the resection of uncapped telomeres. We also investigated the role of Rqh1 helicase activity and found it to be essential for the resection of uncapped telomeres. Moreover, we found that Dna2 and Exo1 function redundantly in the resection of uncapped telomeres. Taken together, these results suggest that Exo1 and Rqh1-Dna2 redundantly contribute to the resection of uncapped telomeres. Therefore, our results demonstrate that nmt-pot1-aid is an important model strain to study the role of helicases and nucleases in the resection of uncapped telomeres and to improve our understanding of DNA double-strand break repair.
Collapse
|
30
|
Ohno Y, Ogiyama Y, Kubota Y, Kubo T, Ishii K. Acentric chromosome ends are prone to fusion with functional chromosome ends through a homology-directed rearrangement. Nucleic Acids Res 2015; 44:232-44. [PMID: 26433224 PMCID: PMC4705696 DOI: 10.1093/nar/gkv997] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/23/2015] [Indexed: 01/19/2023] Open
Abstract
The centromeres of many eukaryotic chromosomes are established epigenetically on potentially variable tandem repeats; hence, these chromosomes are at risk of being acentric. We reported previously that artificially created acentric chromosomes in the fission yeast Schizosaccharomyces pombe can be rescued by end-to-end fusion with functional chromosomes. Here, we show that most acentric/functional chromosome fusion events in S. pombe cells harbouring an acentric chromosome I differed from the non-homologous end-joining-mediated rearrangements that result in deleterious dicentric fusions in normal cells, and were elicited by a previously unidentified homologous recombination (HR) event between chromosome end-associated sequences. The subtelomere repeats associated with the non-fusogenic ends were also destabilized in the surviving cells, suggesting a causal link between general subtelomere destabilization and acentric/functional chromosome fusion. A mutational analysis indicated that a non-canonical HR pathway was involved in the rearrangement. These findings are indicative of a latent mechanism that conditionally induces general subtelomere instability, presumably in the face of accidental centromere loss events, resulting in rescue of the fatal acentric chromosomes by interchromosomal HR.
Collapse
Affiliation(s)
- Yuko Ohno
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Ogiyama
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshino Kubota
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Kubo
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Kojiro Ishii
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Managing Single-Stranded DNA during Replication Stress in Fission Yeast. Biomolecules 2015; 5:2123-39. [PMID: 26393661 PMCID: PMC4598791 DOI: 10.3390/biom5032123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/27/2023] Open
Abstract
Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts) mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron) causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.
Collapse
|
32
|
Wang H, Zhang Z, Zhang L, Zhang Q, Zhang L, Zhao Y, Wang W, Fan Y, Wang L. A novel protein, Rsf1/Pxd1, is critical for the single-strand annealing pathway of double-strand break repair in Schizosaccharomyces pombe. Mol Microbiol 2015; 96:1211-25. [PMID: 25777942 DOI: 10.1111/mmi.13001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2015] [Indexed: 11/27/2022]
Abstract
The process of single-strand annealing (SSA) repairs DNA double-strand breaks that are flanked by direct repeat sequences through the coordinated actions of a series of proteins implicated in recombination, mismatch repair and nucleotide excision repair (NER). Many of the molecular and mechanistic insights gained in SSA repair have principally come from studies in the budding yeast Saccharomyces cerevisiae. However, there is little molecular understanding of the SSA pathway in the fission yeast Schizosaccharomyces pombe. To further our understanding of this important process, we established a new chromosome-based SSA assay in fission yeast. Our genetic analyses showed that, although many homologous components participate in SSA repair in these species indicating that some evolutionary conservation, Saw1 and Slx4 are not principal agents in the SSA repair pathway in fission yeast. This is in marked contrast to the function of Saw1 and Slx4 in budding yeast. Additionally, a novel genus-specific protein, Rsf1/Pxd1, physically interacts with Rad16, Swi10 and Saw1 in vitro and in vivo. We find that Rsf1/Pxd1 is not required for NER and demonstrate that, in fission yeast, Rsf1/Pxd1, but not Saw1, plays a critical role in SSA recombination.
Collapse
Affiliation(s)
- Hanqian Wang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Lan Zhang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuxue Zhang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zhang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Weibu Wang
- Shenzhen Nongke Group CO., LTD, Shenzhen, China
| | - Yunliu Fan
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Muchová V, Amiard S, Mozgová I, Dvořáčková M, Gallego ME, White C, Fajkus J. Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:198-209. [PMID: 25359579 PMCID: PMC4309414 DOI: 10.1111/tpj.12718] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 05/19/2023]
Abstract
Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability.
Collapse
Affiliation(s)
- Veronika Muchová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
34
|
Marcand S. How do telomeres and NHEJ coexist? Mol Cell Oncol 2014; 1:e963438. [PMID: 27308342 PMCID: PMC4904885 DOI: 10.4161/23723548.2014.963438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022]
Abstract
The telomeres of eukaryotes are stable open double-strand ends that coexist with nonhomologous end joining (NHEJ), the repair pathway that directly ligates DNA ends generated by double-strand breaks. Since a single end-joining event between 2 telomeres generates a circular chromosome or an unstable dicentric chromosome, NHEJ must be prevented from acting on telomeres. Multiple mechanisms mediated by telomere factors act in synergy to achieve this inhibition.
Collapse
Affiliation(s)
- Stéphane Marcand
- CEA; DSV/IRCM/SIGRR/LTR; Fontenay-aux-roses; France; INSERM UMR 967; Fontenay-aux-roses; France
| |
Collapse
|
35
|
Ohye T, Inagaki H, Ihira M, Higashimoto Y, Kato K, Oikawa J, Yagasaki H, Niizuma T, Takahashi Y, Kojima S, Yoshikawa T, Kurahashi H. Dual roles for the telomeric repeats in chromosomally integrated human herpesvirus-6. Sci Rep 2014; 4:4559. [PMID: 24691081 PMCID: PMC3972506 DOI: 10.1038/srep04559] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/17/2014] [Indexed: 12/11/2022] Open
Abstract
Approximately 1 percent of healthy individuals carry human herpesvirus-6 within a host chromosome. This is referred to as chromosomally integrated herpesvirus-6 (CIHHV-6). In this study, we investigated the chromosomal integration site in six individuals harboring CIHHV-6B. Using FISH, we found that HHV-6B signals are consistently located at the telomeric region. The proximal endpoints of the integrated virus were mapped at one of two telomere-repeat-like sequences (TRSs) within the DR-R in all cases. In two cases, we isolated junction fragments between the viral TRS and human telomere repeats. The distal endpoints were mapped at the distal TRS in all cases. The size of the distal TRS was found to be ~5 kb which is sufficient to fulfill cellular telomeric functions. We conclude that the viral TRS in the DR regions fulfill dual functions for CIHHV-6: homology-mediated integration into the telomeric region of the chromosome and neo-telomere formation that is then stably transmitted.
Collapse
Affiliation(s)
- Tamae Ohye
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Masaru Ihira
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Faculty of Clinical Engineering, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Yuki Higashimoto
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Department of Laboratory Medicine, Fujita Health University Hospital, Toyoake, Aichi 470-1192, Japan
| | - Koji Kato
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi 453-8511, Japan
| | - Junko Oikawa
- Department of Pediatrics, Chiba University School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics, School of Medicine, Nihon University, Itabashi-ku, Tokyo 173-8610, Japan
| | - Takahiro Niizuma
- Department of Pediatrics, Koshigaya Municipal Hospital, Koshigaya, Saitama 343-8577, Japan
- Department of Pediatrics, Tokyo Rinkai Hospital, Edogawa-ku, Tokyo 134-0086, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
36
|
Frit P, Barboule N, Yuan Y, Gomez D, Calsou P. Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair (Amst) 2014; 17:81-97. [PMID: 24613763 DOI: 10.1016/j.dnarep.2014.02.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/01/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years.
Collapse
Affiliation(s)
- Philippe Frit
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Nadia Barboule
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Ying Yuan
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Dennis Gomez
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Patrick Calsou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France.
| |
Collapse
|
37
|
Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:5/6/a012666. [PMID: 23732473 DOI: 10.1101/cshperspect.a012666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
38
|
Almeida H, Godinho Ferreira M. Spontaneous telomere to telomere fusions occur in unperturbed fission yeast cells. Nucleic Acids Res 2013; 41:3056-67. [PMID: 23335786 PMCID: PMC3597658 DOI: 10.1093/nar/gks1459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Telomeres protect eukaryotic chromosomes from illegitimate end-to-end fusions. When this function fails, dicentric chromosomes are formed, triggering breakage-fusion-bridge cycles and genome instability. How efficient is this protection mechanism in normal cells is not fully understood. We created a positive selection assay aimed at capturing chromosome-end fusions in Schizosaccharomyces pombe. We placed telomere sequences with a head to head arrangement in an intron of a selectable marker contained on a plasmid. By linearizing the plasmid between the telomere sequences, we generated a stable mini-chromosome that fails to express the reporter gene. Whenever the ends of the mini-chromosome join, the marker gene is reconstituted and fusions are captured by direct selection. Using telomerase mutants, we recovered several fusion events that lacked telomere sequences. The end-joining reaction involved specific homologous subtelomeric sequences capable of forming hairpins, suggestive of ssDNA stabilization prior to fusing. These events occurred via microhomology-mediated end-joining (MMEJ)/single-strand annealing (SSA) repair and also required MRN/Ctp1. Strikingly, we were able to capture spontaneous telomere-to-telomere fusions in unperturbed cells. Similar to disruption of the telomere regulator Taz1/TRF2, end-joining reactions occurred via non-homologous end-joining (NHEJ) repair. Thus, telomeres undergo fusions prior to becoming critically short, possibly through transient deprotection. These dysfunction events induce chromosome instability and may underlie early tumourigenesis.
Collapse
Affiliation(s)
- Hugo Almeida
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
39
|
Fission yeast RecQ helicase Rqh1 is required for the maintenance of circular chromosomes. Mol Cell Biol 2013; 33:1175-87. [PMID: 23297345 DOI: 10.1128/mcb.01713-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protection of telomeres protein 1 (Pot1) binds to single-stranded telomere overhangs and protects chromosome ends. RecQ helicases regulate homologous recombination at multiple stages, including resection, strand displacement, and resolution. Fission yeast pot1 and RecQ helicase rqh1 double mutants are synthetically lethal, but the mechanism is not fully understood. Here, we show that the synthetic lethality of pot1Δ rqh1Δ double mutants is due to inappropriate homologous recombination, as it is suppressed by the deletion of rad51(+). The expression of Rad51 in the pot1Δ rqh1Δ rad51Δ triple mutant, which has circular chromosomes, is lethal. Reduction of the expression of Rqh1 in a pot1 disruptant with circular chromosomes caused chromosome missegregation, and this defect was partially suppressed by the deletion of rad51(+). Taken together, our results suggest that Rqh1 is required for the maintenance of circular chromosomes when homologous recombination is active. Crossovers between circular monomeric chromosomes generate dimers that cannot segregate properly in Escherichia coli. We propose that Rqh1 inhibits crossovers between circular monomeric chromosomes to suppress the generation of circular dimers.
Collapse
|
40
|
Murnane JP. Telomere dysfunction and chromosome instability. Mutat Res 2012; 730:28-36. [PMID: 21575645 PMCID: PMC3178001 DOI: 10.1016/j.mrfmmm.2011.04.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 01/07/2023]
Abstract
The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is therefore important for understanding chromosome instability in human cancer.
Collapse
Affiliation(s)
- John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, CA 94143-1331, USA.
| |
Collapse
|
41
|
Kasparek TR, Humphrey TC. DNA double-strand break repair pathways, chromosomal rearrangements and cancer. Semin Cell Dev Biol 2011; 22:886-97. [PMID: 22027614 DOI: 10.1016/j.semcdb.2011.10.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 01/12/2023]
Abstract
Chromosomal rearrangements, which can lead to oncogene activation and tumour suppressor loss, are a hallmark of cancer cells. Such outcomes can result from both the repair and misrepair of DNA ends, which arise from a variety of lesions including DNA double strand breaks (DSBs), collapsed replication forks and dysfunctional telomeres. Here we review the mechanisms by which non-homologous end joining (NHEJ) and homologous recombination (HR) repair pathways can both promote chromosomal rearrangements and also suppress them in response to such lesions, in accordance with their increasingly recognised tumour suppressor function. Further, we consider how chromosomal rearrangements, together with a modular approach towards understanding their etiology, may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Torben R Kasparek
- CRUK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
42
|
Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 2011; 711:61-72. [PMID: 21329706 DOI: 10.1016/j.mrfmmm.2011.02.005] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/31/2011] [Accepted: 02/06/2011] [Indexed: 04/13/2023]
Abstract
A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| | | |
Collapse
|
43
|
Fission yeast Pot1 and RecQ helicase are required for efficient chromosome segregation. Mol Cell Biol 2010; 31:495-506. [PMID: 21098121 DOI: 10.1128/mcb.00613-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pot1 is a single-stranded telomere-binding protein that is conserved from fission yeast to mammals. Deletion of Schizosaccharomyces pombe pot1(+) causes immediate telomere loss. S. pombe Rqh1 is a homolog of the human RecQ helicase WRN, which plays essential roles in the maintenance of genomic stability. Here, we demonstrate that a pot1Δ rqh1-hd (helicase-dead) double mutant maintains telomeres that are dependent on Rad51-mediated homologous recombination. Interestingly, the pot1Δ rqh1-hd double mutant displays a "cut" (cell untimely torn) phenotype and is sensitive to the antimicrotubule drug thiabendazole (TBZ). Moreover, the chromosome ends of the double mutant do not enter the pulsed-field electrophoresis gel. These results suggest that the entangled chromosome ends in the pot1Δ rqh1-hd double mutant inhibit chromosome segregation, signifying that Pot1 and Rqh1 are required for efficient chromosome segregation. We also found that POT1 knockdown, WRN-deficient human cells are sensitive to the antimicrotubule drug vinblastine, implying that some of the functions of S. pombe Pot1 and Rqh1 may be conserved in their respective human counterparts POT1 and WRN.
Collapse
|
44
|
Barranco-Medina S, Galletto R. DNA binding induces dimerization of Saccharomyces cerevisiae Pif1. Biochemistry 2010; 49:8445-54. [PMID: 20795654 DOI: 10.1021/bi100984j] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Saccharomyces cerevisiae, Pif1 is involved in a wide range of DNA transactions. It operates both in mitochondria and in the nucleus, where it has telomeric and non-telomeric functions. All of the activities of Pif1 rely on its ability to bind to DNA. We have determined the mode of Pif1 binding to different DNA substrates. While Pif1 is a monomer in solution, we show that binding of ssDNA to Pif1 induces protein dimerization. DNA-induced dimerization of Pif1 is also observed on tailed- and forked-dsDNA substrates, suggesting that on the latter formation of a Pif1 dimer prevents binding of additional Pif1 molecules. A dimer of Pif1 also forms on ssDNA of random composition and in the presence of saturating concentrations of nonhydrolyzable ATP analogues. The observation that a Pif1 dimer is formed on unwinding substrates in the presence of ATP analogues suggests that a dimeric form of the enzyme might constitute the pre-initiation complex leading to its unwinding activity.
Collapse
Affiliation(s)
- Sergio Barranco-Medina
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | |
Collapse
|
45
|
HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature 2010; 467:223-7. [DOI: 10.1038/nature09374] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 07/21/2010] [Indexed: 01/25/2023]
|
46
|
Dehé PM, Cooper JP. Fission yeast telomeres forecast the end of the crisis. FEBS Lett 2010; 584:3725-33. [PMID: 20682311 DOI: 10.1016/j.febslet.2010.07.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
Recent years have placed fission yeast at the forefront of telomere research, as this organism combines a high level of conservation with human telomeres and precise genetic manipulability. Here we highlight some of the latest knowledge of fission yeast telomere maintenance and dysfunction, and illustrate how principles arising from fission yeast research are raising novel questions about telomere plasticity and function in all eukaryotes.
Collapse
Affiliation(s)
- Pierre-Marie Dehé
- Telomere Biology Laboratory, Cancer Research UK, London, United Kingdom
| | | |
Collapse
|
47
|
Stohr BA, Xu L, Blackburn EH. The terminal telomeric DNA sequence determines the mechanism of dysfunctional telomere fusion. Mol Cell 2010; 39:307-14. [PMID: 20670897 PMCID: PMC2920734 DOI: 10.1016/j.molcel.2010.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 02/19/2010] [Accepted: 05/07/2010] [Indexed: 12/27/2022]
Abstract
Mammalian telomeres consist of tandem DNA repeats that bind protective protein factors collectively termed shelterins. Telomere disruption typically results in genome instability induced by telomere fusions. The mechanism of telomere fusion varies depending on the means of telomere disruption. Here, we investigate telomere fusions caused by overexpression of mutant telomerases that add mutated telomeric repeats, thereby compromising shelterin binding to telomeric termini. While all mutant telomeric sequences tested induced heterodicentric chromosome fusions in ATM-competent cells, only those mutant repeat sequences with significant self complementarity induced ATM-independent sister chromatid and isodicentric chromosome fusions. Thus, once a telomere becomes dysfunctional, the terminal telomeric sequence itself determines the fate of that telomere. These results suggest that annealing of self-complementary DNA sequence engages an alternative telomere fusion pathway in human cells, and provide one explanation for the conspicuous lack of self complementarity in the majority of known naturally occurring eukaryotic telomeric sequences.
Collapse
Affiliation(s)
- Bradley A. Stohr
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Lifeng Xu
- Department of Microbiology, University of California, Davis, CA 95616, USA
| | - Elizabeth H. Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
48
|
Pitt CW, Cooper JP. Pot1 inactivation leads to rampant telomere resection and loss in one cell cycle. Nucleic Acids Res 2010; 38:6968-75. [PMID: 20601686 PMCID: PMC2978358 DOI: 10.1093/nar/gkq580] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Removal of the conserved telomere protein, Pot1, confers the immediate loss of fission yeast telomeres. This drastic phenotype has established the centrality of Pot1 for telomere maintenance but prohibited elucidation of the intermediate steps leading to telomere loss. To circumvent this problem, we have generated a conditional allele, pot1–1. We show that loss of Pot1 function during G1 leads to rapid telomere erosion during the ensuing S/G2 period. Precipitous telomere loss depends upon S-phase progression and is preceded by 5′ telomeric resection. Telomere loss is accompanied by ATR- and Chk1-mediated checkpoint activation, but is not caused by checkpoint arrest.
Collapse
|
49
|
Perumal SK, Raney KD, Benkovic SJ. Analysis of the DNA translocation and unwinding activities of T4 phage helicases. Methods 2010; 51:277-88. [PMID: 20170733 PMCID: PMC2919206 DOI: 10.1016/j.ymeth.2010.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022] Open
Abstract
Helicases are an important class of enzymes involved in DNA and RNA metabolism that couple the energy of ATP hydrolysis to unwind duplex DNA and RNA structures. Understanding the mechanism of helicase action is vital due to their involvement in various biological processes such as DNA replication, repair and recombination. Furthermore, the duplex DNA unwinding property of this class of enzymes is closely related to their single-stranded DNA translocation. Hence the study of its translocation properties is essential to understanding helicase activity. Here we review the methods that are employed to analyze the DNA translocation and unwinding activities of the bacteriophage T4 UvsW and Dda helicases. These methods have been successfully employed to study the functions of helicases from large superfamilies.
Collapse
Affiliation(s)
- Senthil K. Perumal
- 414 Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephen J. Benkovic
- 414 Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
50
|
Rai R, Zheng H, He H, Luo Y, Multani A, Carpenter PB, Chang S. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J 2010; 29:2598-610. [PMID: 20588252 DOI: 10.1038/emboj.2010.142] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/08/2010] [Indexed: 01/01/2023] Open
Abstract
Repair of DNA double-stranded breaks (DSBs) is crucial for the maintenance of genome stability. DSBs are repaired by either error prone non-homologous end-joining (NHEJ) or error-free homologous recombination. NHEJ precedes either by a classic, Lig4-dependent process (C-NHEJ) or an alternative, Lig4-independent one (A-NHEJ). Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by removal of telomere-binding proteins are recognized as DSBs. In this report, we studied which end-joining pathways are required to join dysfunctional telomeres. In agreement with earlier studies, depletion of Trf2 resulted in end-to-end chromosome fusions mediated by the C-NHEJ pathway. In contrast, removal of Tpp1-Pot1a/b initiated robust chromosome fusions that are mediated by A-NHEJ. C-NHEJ is also dispensable for the fusion of naturally shortened telomeres. Our results reveal that telomeres engage distinct DNA repair pathways depending on how they are rendered dysfunctional, and that A-NHEJ is a major pathway to process dysfunctional telomeres.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|