1
|
Pun R, Kumari N, Monieb RH, Wagh S, North BJ. BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer. Semin Cancer Biol 2024; 106-107:201-216. [PMID: 39490401 PMCID: PMC11625622 DOI: 10.1016/j.semcancer.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a significant risk factor for cancer which is due, in part, to heightened genomic instability. Mitotic surveillance proteins such as BubR1 play a pivotal role in ensuring accurate chromosomal segregation and preventing aneuploidy. BubR1 levels have been shown to naturally decline with age and its loss is associated with various age-related pathologies. Sirtuins, a class of NAD+-dependent deacylases, are implicated in cancer and genomic instability. Among them, SIRT2 acts as an upstream regulator of BubR1, offering a critical pathway that can potentially mitigate age-related diseases, including cancer. In this review, we explore BubR1 as a key regulator of cellular processes crucial for aging-related phenotypes. We delve into the intricate mechanisms through which BubR1 influences genomic stability and cellular senescence. Moreover, we highlight the role of NAD+ and SIRT2 in modulating BubR1 expression and function, emphasizing its potential as a therapeutic target. The interaction between BubR1 and SIRT2 not only serves as a fundamental regulatory pathway in cellular homeostasis but also represents a promising avenue for developing targeted therapies against age-related diseases, particularly cancer.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Niti Kumari
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Rodaina Hazem Monieb
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Sachin Wagh
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
2
|
Zhou R, Liu M, Li M, Peng Y, Zhang X. BUB1 as a novel marker for predicting the immunotherapy efficacy and prognosis of breast cancer. Transl Cancer Res 2024; 13:4534-4554. [PMID: 39430818 PMCID: PMC11483447 DOI: 10.21037/tcr-24-704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/11/2024] [Indexed: 10/22/2024]
Abstract
Background Budding uninhibited by benzimidazole 1 (BUB1) is a highly conserved serine/threonine kinase, showing prominent importance for proper function during mitosis. However, little is known about BUB1 mRNA expression in breast cancer (BRCA) and its correlation with prognosis and immune infiltration. Hence, we aimed to unveil its potential as groundbreaking biomarkers for immunotherapy efficacy and the prognosis of BRCA. Methods Database for Annotation, Visualization, and Integrated Discovery (DAVID) is a potent tool for identifying significant clusters of genes and pathways in the resulting dataset. In this study, gene set enrichment analysis of BUB1 was conducted using DAVID. The clinical characteristics of patients with or without altered BUB1 mRNA expression were compared using cBioPortal. Tumor Immune Estimation Resource (TIMER) is a known as database for comprehensive analysis of tumor-infiltrating immune cells in various cancers. In the present study, the relationship between BUB1 expression and the abundance of immune infiltrates was explored using TIMER in BRCA. Immunohistochemistry staining was performed to analyze the protein expression of BUB1 in tumor tissue specimens. We used PrognoScan and Kaplan-Meier Plotter to evaluate the prognosis of patients with different BUB1 expression levels. Results The expression of BUB1 in various tumor tissues was higher than that in adjacent normal tissues. BUB1 was mainly localized to the nucleoplasm and additionally localized to the cytosol. Functional enrichment analyses revealed that the cell cycle was the most significant pathway. Abnormal BUB1 mRNA expression was more frequently detected in invasive ductal carcinoma with higher histological grades and BRCAs with estrogen receptor (ER)-negative, human epidermal growth receptor 2 (HER2)-negative, and basal-like phenotypes. The BUB1 expression was correlated positively with tumor purity, B cells, CD8+ T cells, CD4+ T cells, neutrophils, and dendritic cells, while BUB1 had no significant correlation with macrophages. The results of immunohistochemical staining from clinical samples further confirmed that BUB1 was overexpressed in BRCA compared to benign tumor (fibroadenoma of breast) (P<0.01). BRCA patients with lower BUB1 expression had a better prognosis than those with higher BUB1 expression in overall survival (OS) curves, distant metastasis-free survival (DMFS) curves, and relapse-free survival (RFS) curves (P<0.05). Conclusions Our results suggest that BUB1 is a potential molecular biomarker for evaluating the prognosis and predicting the effectiveness of immunotherapy for BRCA.
Collapse
Affiliation(s)
- Renyu Zhou
- Department of Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, China
| | - Minting Liu
- Department of Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ming Li
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Yulong Peng
- Department of Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaotan Zhang
- Department of Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Wang K, Shen K, Wang J, Yang K, Zhu J, Chen Y, Liu X, He Y, Zhu X, Zhan Q, Shi T, Li R. BUB1 potentiates gastric cancer proliferation and metastasis by activating TRAF6/NF-κB/FGF18 through m6A modification. Life Sci 2024; 353:122916. [PMID: 39025206 DOI: 10.1016/j.lfs.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
AIMS Gastric cancer (GC) is one of the most common malignant tumors of the digestive system. High expression of the mitotic kinase BUB1 has been shown to be associated with the development of many cancers, but the role of BUB1 in GC is still unclear. The current study aimed to investigate the role of BUB1 in GC. MATERIALS AND METHODS BUB1 inhibitor, siRNA or BUB1 overexpression plasmid-mediated functional studies were performed in vitro and in vivo to explore the oncogenic role of BUB1 in GC. The expression of BUB1 and FGF18 in GC tumor samples was determined by IHC staining. RNA-seq, Western blot, MeRIP-qPCR and Co-IP assays were used to investigate the molecular mechanisms by which BUB1 regulates GC progression. KEY FINDINGS Knockdown of BUB1 significantly inhibited the proliferation and metastasis of GC cells in vitro and in vivo. Moreover, overexpression of BUB1 significantly promoted the proliferation, migration and invasion of GC cells. High expression of BUB1 and FGF18 in GC tissues predicted poor prognosis in GC patients. Mechanistically, BUB1 interacted with METTL3 and induced m6A modification of TRAF6 mRNA, further activating the NF-κB/FGF18 axis in GC cells. SIGNIFICANCE Our results confirmed that BUB1 acts as a positive regulator of GC cell proliferation and metastasis by activating the TRAF6/NF-κB/FGF18 pathway through METTL3-mediated m6A methylation. Targeting the BUB1/METTL3/TRAF6/NF-κB/FGF18 axis might be a novel diagnostic and therapeutic strategy in GC.
Collapse
Affiliation(s)
- Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, China
| | - Xin Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingchao Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Qin Zhan
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Rui Li
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Sun M, Yang B, Xin G, Wang Y, Luo J, Jiang Q, Zhang C. TIP60 acetylation of Bub1 regulates centromeric H2AT120 phosphorylation for faithful chromosome segregation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1957-1969. [PMID: 38763998 DOI: 10.1007/s11427-023-2604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Proper function of the centromeres ensures correct attachment of kinetochores to spindle microtubules and faithful chromosome segregation in mitosis. Defects in the integrity and function of centromeres can result in chromosome missegregation and genomic instability. Bub1 is essential for the mitotic centromere dynamics, yet the underlying molecular mechanisms remain largely unclear. Here, we demonstrate that TIP60 acetylates Bub1 at K424 and K431 on kinetochores in early mitosis. This acetylation increases the kinase activity of Bub1 to phosphorylate centromeric histone H2A at T120 (H2ApT120), which recruits Aurora B and Shugoshin 1 (Sgo1) to regulate centromere integrity, protect centromeric cohesion, and ensure the subsequent faithful chromosome segregation. Expression of the non-acetylated Bub1 mutant reduces its kinase activity, decreases the level of H2ApT120, and disrupts the recruitment of centromere proteins and chromosome congression, leading to genomic instability of daughter cells. When cells exit mitosis, HDAC1-regulated deacetylation of Bub1 decreases H2ApT120 levels and thereby promotes the departure of centromeric CPC and Sgo1, ensuring timely centromeres disassembly. Collectively, our results reveal a molecular mechanism by which the acetylation and deacetylation cycle of Bub1 modulates the phosphorylation of H2A at T120 for recruitment of Aurora B and Sgo1 to the centromeres, ensuring faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Mengjie Sun
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Biying Yang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Guangwei Xin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yao Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jia Luo
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chuanmao Zhang
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Ballmer D, Carter W, van Hooff JJE, Tromer EC, Ishii M, Ludzia P, Akiyoshi B. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins. Open Biol 2024; 14:240025. [PMID: 38862021 PMCID: PMC11286163 DOI: 10.1098/rsob.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - William Carter
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 HB Wageningen, The Netherlands
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
6
|
Kim S, Lau TT, Liao MK, Ma HT, Poon RY. Coregulation of NDC80 Complex Subunits Determines the Fidelity of the Spindle-Assembly Checkpoint and Mitosis. Mol Cancer Res 2024; 22:423-439. [PMID: 38324016 PMCID: PMC11063766 DOI: 10.1158/1541-7786.mcr-23-0828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
NDC80 complex (NDC80C) is composed of four subunits (SPC24, SPC25, NDC80, and NUF2) and is vital for kinetochore-microtubule (KT-MT) attachment during mitosis. Paradoxically, NDC80C also functions in the activation of the spindle-assembly checkpoint (SAC). This raises an interesting question regarding how mitosis is regulated when NDC80C levels are compromised. Using a degron-mediated depletion system, we found that acute silencing of SPC24 triggered a transient mitotic arrest followed by mitotic slippage. SPC24-deficient cells were unable to sustain SAC activation despite the loss of KT-MT interaction. Intriguingly, our results revealed that other subunits of the NDC80C were co-downregulated with SPC24 at a posttranslational level. Silencing any individual subunit of NDC80C likewise reduced the expression of the entire complex. We found that the SPC24-SPC25 and NDC80-NUF2 subcomplexes could be individually stabilized using ectopically expressed subunits. The synergism of SPC24 downregulation with drugs that promote either mitotic arrest or mitotic slippage further underscored the dual roles of NDC80C in KT-MT interaction and SAC maintenance. The tight coordinated regulation of NDC80C subunits suggests that targeting individual subunits could disrupt mitotic progression and provide new avenues for therapeutic intervention. IMPLICATIONS These results highlight the tight coordinated regulation of NDC80C subunits and their potential as targets for antimitotic therapies.
Collapse
Affiliation(s)
- Sehong Kim
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Thomas T.Y. Lau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Man Kit Liao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Randy Y.C. Poon
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
7
|
Jin T, Ding L, Chen J, Zou X, Xu T, Xuan Z, Wang S, Chen J, Wang W, Zhu C, Zhang Y, Huang P, Pan Z, Ge M. BUB1/KIF14 complex promotes anaplastic thyroid carcinoma progression by inducing chromosome instability. J Cell Mol Med 2024; 28:e18182. [PMID: 38498903 PMCID: PMC10948175 DOI: 10.1111/jcmm.18182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.
Collapse
Affiliation(s)
- Tiefeng Jin
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Lingling Ding
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Jianqiang Chen
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Wei Wang
- Department of Pathology, Laboratory Medicine CenterZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Chaozhuang Zhu
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
- Clinical Research Center for Cancer of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
8
|
Houston J, Ohta M, Gómez-Cavazos JS, Deep A, Corbett KD, Oegema K, Lara-Gonzalez P, Kim T, Desai A. BUB-1-bound PLK-1 directs CDC-20 kinetochore recruitment to ensure timely embryonic mitoses. Curr Biol 2023; 33:2291-2299.e10. [PMID: 37137308 PMCID: PMC10270731 DOI: 10.1016/j.cub.2023.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
During mitosis, chromosomes assemble kinetochores to dynamically couple with spindle microtubules.1,2 Kinetochores also function as signaling hubs directing mitotic progression by recruiting and controlling the fate of the anaphase promoting complex/cyclosome (APC/C) activator CDC-20.3,4,5 Kinetochores either incorporate CDC-20 into checkpoint complexes that inhibit the APC/C or dephosphorylate CDC-20, which allows it to interact with and activate the APC/C.4,6 The importance of these two CDC-20 fates likely depends on the biological context. In human somatic cells, the major mechanism controlling mitotic progression is the spindle checkpoint. By contrast, progression through mitosis during the cell cycles of early embryos is largely checkpoint independent.7,8,9,10 Here, we first show that CDC-20 phosphoregulation controls mitotic duration in the C. elegans embryo and defines a checkpoint-independent temporal mitotic optimum for robust embryogenesis. CDC-20 phosphoregulation occurs at kinetochores and in the cytosol. At kinetochores, the flux of CDC-20 for local dephosphorylation requires an ABBA motif on BUB-1 that directly interfaces with the structured WD40 domain of CDC-20.6,11,12,13 We next show that a conserved "STP" motif in BUB-1 that docks the mitotic kinase PLK-114 is necessary for CDC-20 kinetochore recruitment and timely mitotic progression. The kinase activity of PLK-1 is required for CDC-20 to localize to kinetochores and phosphorylates the CDC-20-binding ABBA motif of BUB-1 to promote BUB-1-CDC-20 interaction and mitotic progression. Thus, the BUB-1-bound pool of PLK-1 ensures timely mitosis during embryonic cell cycles by promoting CDC-20 recruitment to the vicinity of kinetochore-localized phosphatase activity.
Collapse
Affiliation(s)
- Jack Houston
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Midori Ohta
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - J Sebastián Gómez-Cavazos
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pablo Lara-Gonzalez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea.
| | - Arshad Desai
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Fischer ES. Kinetochore‐catalyzed MCC
formation: A structural perspective. IUBMB Life 2022; 75:289-310. [PMID: 36518060 DOI: 10.1002/iub.2697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that functions to ensure accurate chromosome segregation during mitosis. Macromolecular complexes known as kinetochores, act as the interface of sister chromatid attachment to spindle microtubules. In response to unattached kinetochores, the SAC activates its effector, the mitotic checkpoint complex (MCC), which delays mitotic exit until all sister chromatid pairs have achieved successful attachment to the bipolar mitotic spindle. Formation of the MCC (composed of Mad2, BubR1, Bub3 and Cdc20) is regulated by an Mps1 kinase-dependent phosphorylation signaling cascade which assembles and repositions components of the MCC onto a catalytic scaffold. This scaffold functions to catalyze the conversion of the HORMA-domain protein Mad2 from an "inactive" open-state (O-Mad2) into an "active" closed-Mad2 (C-Mad2), and simultaneous Cdc20 binding. Here, our current understanding of the molecular mechanisms underlying the kinetic barrier to C-Mad2:Cdc20 formation will be reviewed. Recent progress in elucidating the precise molecular choreography orchestrated by the catalytic scaffold to rapidly assemble the MCC will be examined, and unresolved questions will be highlighted. Ultimately, understanding how the SAC rapidly activates the checkpoint not only provides insights into how cells maintain genomic integrity during mitosis, but also provides a paradigm for how cells can utilize molecular switches, including other HORMA domain-containing proteins, to make rapid changes to a cell's physiological state.
Collapse
Affiliation(s)
- Elyse S. Fischer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Cambridge UK
| |
Collapse
|
10
|
Lou L, Chen L, Wu Y, Zhang G, Qiu R, Su J, Zhao Z, Lu Z, Liao M, Deng X. Identification of hub genes and construction of prognostic nomogram for patients with Wilms tumors. Front Oncol 2022; 12:982110. [PMID: 36338682 PMCID: PMC9634477 DOI: 10.3389/fonc.2022.982110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background In children, Wilms' tumors are the most common urological cancer with unsatisfactory prognosis, but few molecular prognostic markers have been discovered for it. With the rapid development of high-throughput quantitative proteomic and transcriptomic approaches, the molecular mechanisms of various cancers have been comprehensively explored. This study aimed to uncover the molecular mechanisms underlying Wilms tumor and build predictive models by use of microarray and RNA-seq data. Methods Gene expression datasets were downloaded from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. Bioinformatics methods wereutilized to identified hub genes, and these hub genes were validated by experiment. Nomogram predicting OS was developed using genetic risk score model and clinicopathological variables. Results CDC20, BUB1 and CCNB2 were highly expressed in tumor tissues and able to affect cell proliferation and the cell cycle of SK-NEP-1 cells. This may reveal molecular biology features and a new therapeutic target of Wilms tumour.7 genes were selected as prognostic genes after univariate, Lasso, and multivariate Cox regression analyses and had good accuracy, a prognostic nomogram combined gene model with clinical factors was completed with high accuracy. Conclusions The current study discovered CDC20,BUB1 and CCNB2 as hub-genes associated with Wilms tumor, providing references to understand the pathogenesis and be considered a novel candidate to target therapy and construct novel nomogram, incorporating both clinical risk factors and gene model, could be appropriately applied in preoperative individualized prediction of malignancy in patients with Wilms tumor.
Collapse
Affiliation(s)
- Lei Lou
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Pediatric Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Luping Chen
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaohao Wu
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gang Zhang
- Department of Pediatric Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ronglin Qiu
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianhang Su
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuangjie Zhao
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijie Lu
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minyi Liao
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaogeng Deng
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Qi W, Bai Y, Wang Y, Liu L, Zhang Y, Yu Y, Chen H. BUB1 predicts poor prognosis and immune status in liver hepatocellular carcinoma. APMIS 2022; 130:371-382. [PMID: 35255180 DOI: 10.1111/apm.13219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
Abstract
Accurate assessment of the tumour immune microenvironment promotes individualized immunotherapy regimens and screens dominant populations suitable for immunotherapy. Therefore, potential molecular markers were investigated to make an overall assessment of the immune microenvironment status of liver hepatocellular carcinoma (LIHC). In this study, a total of 121 differentially expressed genes (DEGs) were identified, and DEGs were enriched in the epithelial-mesenchymal transition, hypoxia, myogenesis, and p53 pathways. A total of 20 hub genes were selected and a strong correlation was identified between these hub genes and prognosis. The expression of budding uninhibited by benzimidazoles 1 (BUB1) was found to be upregulated in LIHC and was strongly related to immune cells and immune checkpoint molecule expression. Immunohistochemistry (IHC) indicated that BUB1 expression was higher in LIHC tissues than in normal liver tissues. BUB1 knockdown resulted in reduced proliferation and vertical migration ability of LIHC cells, and reduced the expression of phospho-SMAD family member 2 and phospho-SMAD family member 3 proteins. IHC showed that BUB1 expression was accompanied by immune cell infiltration into LIHC tissues. These results suggest that BUB1 may serve as a potential prognostic biomarker for LIHC and as an indicator of its immune status.
Collapse
Affiliation(s)
- Wenbo Qi
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yuping Bai
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yiran Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Le Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yaqing Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Yu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
12
|
Jehle S, Kunowska N, Benlasfer N, Woodsmith J, Weber G, Wahl MC, Stelzl U. A human kinase yeast array for the identification of kinases modulating phosphorylation-dependent protein-protein interactions. Mol Syst Biol 2022; 18:e10820. [PMID: 35225431 PMCID: PMC8883442 DOI: 10.15252/msb.202110820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Protein kinases play an important role in cellular signaling pathways and their dysregulation leads to multiple diseases, making kinases prime drug targets. While more than 500 human protein kinases are known to collectively mediate phosphorylation of over 290,000 S/T/Y sites, the activities have been characterized only for a minor, intensively studied subset. To systematically address this discrepancy, we developed a human kinase array in Saccharomyces cerevisiae as a simple readout tool to systematically assess kinase activities. For this array, we expressed 266 human kinases in four different S. cerevisiae strains and profiled ectopic growth as a proxy for kinase activity across 33 conditions. More than half of the kinases showed an activity-dependent phenotype across many conditions and in more than one strain. We then employed the kinase array to identify the kinase(s) that can modulate protein-protein interactions (PPIs). Two characterized, phosphorylation-dependent PPIs with unknown kinase-substrate relationships were analyzed in a phospho-yeast two-hybrid assay. CK2α1 and SGK2 kinases can abrogate the interaction between the spliceosomal proteins AAR2 and PRPF8, and NEK6 kinase was found to mediate the estrogen receptor (ERα) interaction with 14-3-3 proteins. The human kinase yeast array can thus be used for a variety of kinase activity-dependent readouts.
Collapse
Affiliation(s)
- Stefanie Jehle
- Otto-Warburg-Laboratory, Max-Planck-Institute for Molecular Genetics (MPIMG), Berlin, Germany
| | - Natalia Kunowska
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Nouhad Benlasfer
- Otto-Warburg-Laboratory, Max-Planck-Institute for Molecular Genetics (MPIMG), Berlin, Germany
| | - Jonathan Woodsmith
- Otto-Warburg-Laboratory, Max-Planck-Institute for Molecular Genetics (MPIMG), Berlin, Germany
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Gert Weber
- Institut für Chemie und Biochemie, Freie Universität, Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Markus C Wahl
- Institut für Chemie und Biochemie, Freie Universität, Berlin, Germany
| | - Ulrich Stelzl
- Otto-Warburg-Laboratory, Max-Planck-Institute for Molecular Genetics (MPIMG), Berlin, Germany
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz and BioTechMed-Graz, Graz, Austria
| |
Collapse
|
13
|
Amalina I, Bennett A, Whalley H, Perera D, McGrail JC, Tighe A, Procter DJ, Taylor SS. Inhibitors of the Bub1 spindle assembly checkpoint kinase: synthesis of BAY-320 and comparison with 2OH-BNPP1. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210854. [PMID: 34925867 PMCID: PMC8672067 DOI: 10.1098/rsos.210854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Bub1 is a serine/threonine kinase proposed to function centrally in mitotic chromosome alignment and the spindle assembly checkpoint (SAC); however, its role remains controversial. Although it is well documented that Bub1 phosphorylation of Histone 2A at T120 (H2ApT120) recruits Sgo1/2 to kinetochores, the requirement of its kinase activity for chromosome alignment and the SAC is debated. As small-molecule inhibitors are invaluable tools for investigating kinase function, we evaluated two potential Bub1 inhibitors: 2OH-BNPPI and BAY-320. After confirming that both inhibit Bub1 in vitro, we developed a cell-based assay for Bub1 inhibition. We overexpressed a fusion of Histone 2B and Bub1 kinase region, tethering it in proximity to H2A to generate a strong ectopic H2ApT120 signal along chromosome arms. Ectopic signal was effectively inhibited by BAY-320, but not 2OH-BNPP1 at concentrations tested. In addition, only BAY-320 was able to inhibit endogenous Bub1-mediated Sgo1 localization. Preliminary experiments using BAY-320 suggest a minor role for Bub1 kinase activity in chromosome alignment and the SAC; however, BAY-320 may exhibit off-target effects at the concentration required. Thus, 2OH-BNPP1 may not be an effective Bub1 inhibitor in cellulo, and while BAY-320 can inhibit Bub1 in cells, off-target effects highlight the need for improved Bub1 inhibitors.
Collapse
Affiliation(s)
- Ilma Amalina
- Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ailsa Bennett
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Helen Whalley
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - David Perera
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Joanne C. McGrail
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - David J. Procter
- Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Stephen S. Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
14
|
Huang Z, Wang S, Wei H, Chen H, Shen R, Lin R, Wang X, Lan W, Lin R, Lin J. Inhibition of BUB1 suppresses tumorigenesis of osteosarcoma via blocking of PI3K/Akt and ERK pathways. J Cell Mol Med 2021; 25:8442-8453. [PMID: 34337852 PMCID: PMC8419163 DOI: 10.1111/jcmm.16805] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumour that mainly affects teenagers, with patients displaying poor prognosis. Budding uninhibited by benzimidazoles 1 (BUB1), a type of serine/threonine kinase that is linked to pro-tumorigenic phenomena, has not been well studied in OS. Hence, this study aimed to explore the role of BUB1 in OS. The expression of BUB1 in OS specimens and cell lines was assessed using immunohistochemistry and Western blot analysis. Univariate and multivariate analyses were applied to evaluate the impact of BUB1 on patient survival. Cell counting kit-8, wound-healing and Transwell assays, as well as flow cytometry, were used to investigate the influence of BUB1 inhibition on OS in vitro. Moreover, a tumour xenograft model was established to investigate the in vivo effect of BUB1 inhibition on OS tumour growth. Results showed that BUB1 was overexpressed in OS specimens and cell lines. Furthermore, BUB1 overexpression was closely associated with the poor clinical outcomes of patients with OS. Inhibition of BUB1 markedly suppressed cell proliferation and tumour growth, cell migration, invasion and induced cell apoptosis of OS by blocking the PI3K/Akt and ERK signalling pathways. Thus, our study suggested that overexpression of BUB1 protein contributed to poor survival of OS patients and that inhibition of BUB1 resulted in considerable anti-tumour activity associated with proliferation, migration, invasion and apoptosis of OS.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Orthopedics Research Institution, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shenglin Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hongxiang Wei
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rongkai Shen
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Renqin Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinwen Wang
- Department of Orthopedics, The people's Hospital of Jiangmen City, Southern Medical University, Jiangmen, China
| | - Wenbin Lan
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Rongjin Lin
- Department of Nursing, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianhua Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Orthopedics Research Institution, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Abstract
Accurate chromosome segregation is required for cell survival and organismal development. During mitosis, the spindle assembly checkpoint acts as a safeguard to maintain the high fidelity of mitotic chromosome segregation by monitoring the attachment of kinetochores to the mitotic spindle. Bub1 is a conserved kinase critical for the spindle assembly checkpoint. Bub1 also facilitates chromosome alignment and contributes to the regulation of mitotic duration. Here, focusing on the spindle assembly checkpoint and on chromosome alignment, we summarize the primary literature on Bub1, discussing its structure and functional domains, as well its regulation and roles in mitosis. In addition, we discuss recent evidence for roles of Bub1 beyond mitosis regulation in TGFβ signaling and telomere replication. Finally, we discuss the involvement of Bub1 in human diseases, especially in cancer, and the potential of using Bub1 as a drug target for therapeutic applications.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, Busan, Korea
| | - Anton Gartner
- IBS Center for Genomic Integrity, Ulsan, Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology
| |
Collapse
|
16
|
Guo R, Chu A, Gong Y. Identification of cancer stem cell-related biomarkers in intestinal-type and diffuse-type gastric cancer by stemness index and weighted correlation network analysis. J Transl Med 2020; 18:418. [PMID: 33160391 PMCID: PMC7648412 DOI: 10.1186/s12967-020-02587-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Cancer stem cells (CSCs) play an important role in drug resistance, recurrence, and metastasis of tumors. Considering the heterogeneity of tumors, this study aimed to explore the key genes regulating stem cells in intestinal-type and diffuse-type gastric cancer. Methods RNA-seq data and related clinical information were downloaded from The Cancer Genome Atlas (TCGA). WGCNA was used to clustered differentially expressed genes with similar expression profiles to form modules. Furtherly, based on the mRNA expression-based stemness index (mRNAsi), significant modules and key genes were identified. Next, the expression of key genes was further verified by the Oncomine database. Results MRNAsi scores of GC were significantly higher than that of normal tissue. Additionally, mRNAsi scores of intestinal-type GC (IGC) were significantly higher than that of diffuse-type GC (DGC). WGCNA showed that the blue module of IGC and the brown module of DGC were both the most significantly associated with mRNAsi. We screened out 16 and 43 key genes for IGC and DGC and found that these genes were closely related, respectively. Functional analysis showed the relationship between the key genes confirmed in the Oncomine database and the fate of cells. Conclusions In this study, 16 and 43 genes related to the characteristics of CSCs were identified in IGC and DGC, respectively. These genes were both associated with cell cycle, which could serve as therapeutic targets for the inhibition of stem cells from both types of GC.
Collapse
Affiliation(s)
- Rui Guo
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Province, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, P.R. China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Aining Chu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Province, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, P.R. China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Province, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, P.R. China. .,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
17
|
Identification of Glioma Cancer Stem Cell Characteristics Based on Weighted Gene Prognosis Module Co-Expression Network Analysis of Transcriptome Data Stemness Indices. J Mol Neurosci 2020; 70:1512-1520. [PMID: 32451841 DOI: 10.1007/s12031-020-01590-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
Glioma is the most common primary brain tumor in humans and the most deadly. Stem cells, which are characterized by therapeutic resistance and self-renewal, play a critical role in glioma, and therefore the identification of stem cell-related genes in glioma is important. In this study, we collected and evaluated the epigenetically regulated-mRNA expression-based stemness index (EREG-mRNAsi) of The Cancer Genome Atlas (TCGA, http://www.ncbi.nlm.nih.gov/ ) for glioma patient samples, corrected through tumor purity. After EREG-mRNAsi correction, glioma pathological grade and survival were analyzed. The differentially expressed gene (DEG) co-expression network was constructed by weighted gene co-expression network analysis (WGCNA) in TCGA glioma samples to find modules of interest and key genes. Gene ontology (GO) and pathway-enrichment analysis were performed to identify the function of significant genetic modules. Protein-protein interaction (PPI) and co-expression network analysis of key genes was performed for further analysis. In this experiment, we found that corrected EREG-mRNAsi was significantly up-regulated in glioma samples and increased with glioma grade, with G4 having the highest stemness index. Patients with higher corrected EREG-mRNAsi scores had worse overall survival. Fifty-one DEGs in the brown gene module were found to be positively related to EREG-mRNAsi via WGCNA. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that chromosome segregation and cell cycle molecular function were the major functions in key DEGs. Among these key DEGs, BUB1 showed high connectivity and co-expression, and also high connectivity in PPI. Fifty-one key genes were verified to play a critical role in glioma stem cells. These genes may serve as primary therapeutic targets to inhibit the activity of glioma stem cells.
Collapse
|
18
|
Nyati S, Gregg BS, Xu J, Young G, Kimmel L, Nyati MK, Ray D, Speers C, Rehemtulla A. TGFBR2 mediated phosphorylation of BUB1 at Ser-318 is required for transforming growth factor-β signaling. Neoplasia 2020; 22:163-178. [PMID: 32143140 PMCID: PMC7057164 DOI: 10.1016/j.neo.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/10/2020] [Indexed: 01/17/2023] Open
Abstract
BUB1 (budding uninhibited by benzimidazoles-1) is required for efficient TGF-β signaling, through its role in stabilizing the TGFBR1 and TGFBR2 complex. Here we demonstrate that TGFBR2 phosphorylates BUB1 at Serine-318, which is conserved in primates. S318 phosphorylation abrogates the interaction of BUB1 with TGFBR1 and SMAD2. Using BUB1 truncation domains (1–241, 241–482 and 482–723), we demonstrate that multiple contact points exist between BUB1 and TGF-β signaling components and that these interactions are independent of the BUB1 tetratricopeptide repeat (TPR) domain. Moreover, substitutions in the middle domain (241–482) encompassing S318 reveals that efficient interaction with TGFBR2 occurs only in its dephosphorylated state (241–482 S318A). In contrast, the phospho-mimicking mutant (241–482 S318D) exhibits efficient binding with SMAD2 and its over-expression results in a decrease in TGFBR1-TGFBR2 and TGFBR1-SMAD2 interactions. These findings suggest that TGFBR2 mediated BUB1 phosphorylation at S318 may serve as a switch for the dissociation of the SMAD2-TGFBR complex, and therefore represents a regulatory event for TGF-β signaling. Finally, we provide evidence that the BUB1-TGF-β signaling axis may mediate aggressive phenotypes in a variety of cancers.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Brandon S Gregg
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqi Xu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Grant Young
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren Kimmel
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mukesh K Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
BubR1 phosphorylates CENP-E as a switch enabling the transition from lateral association to end-on capture of spindle microtubules. Cell Res 2019; 29:562-578. [PMID: 31201382 DOI: 10.1038/s41422-019-0178-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
Error-free mitosis depends on accurate chromosome attachment to spindle microtubules, powered congression of those chromosomes, their segregation in anaphase, and assembly of a spindle midzone at mitotic exit. The centromere-associated kinesin motor CENP-E, whose binding partner is BubR1, has been implicated in congression of misaligned chromosomes and the transition from lateral kinetochore-microtubule association to end-on capture. Although previously proposed to be a pseudokinase, here we report the structure of the kinase domain of Drosophila melanogaster BubR1, revealing its folding into a conformation predicted to be catalytically active. BubR1 is shown to be a bona fide kinase whose phosphorylation of CENP-E switches it from a laterally attached microtubule motor to a plus-end microtubule tip tracker. Computational modeling is used to identify bubristatin as a selective BubR1 kinase antagonist that targets the αN1 helix of N-terminal extension and αC helix of the BubR1 kinase domain. Inhibition of CENP-E phosphorylation is shown to prevent proper microtubule capture at kinetochores and, surprisingly, proper assembly of the central spindle at mitotic exit. Thus, BubR1-mediated CENP-E phosphorylation produces a temporal switch that enables transition from lateral to end-on microtubule capture and organization of microtubules into stable midzone arrays.
Collapse
|
20
|
BUB1 Is Essential for the Viability of Human Cells in which the Spindle Assembly Checkpoint Is Compromised. Cell Rep 2019; 22:1424-1438. [PMID: 29425499 DOI: 10.1016/j.celrep.2018.01.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 11/22/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures faithful segregation of chromosomes. Although most mammalian cell types depend on the SAC for viability, we found that human HAP1 cells can grow SAC independently. We generated MAD1- and MAD2-deficient cells and mutagenized them to identify synthetic lethal interactions, revealing that chromosome congression factors become essential upon SAC deficiency. Besides expected hits, we also found that BUB1 becomes essential in SAC-deficient cells. We found that the BUB1 C terminus regulates alignment as well as recruitment of CENPF. Second, we found that BUBR1 was not essential in SAC-deficient HAP1 cells. We confirmed that BUBR1 does not regulate chromosome alignment in HAP1 cells and that BUB1 does not regulate chromosome alignment through BUBR1. Taken together, our data resolve some long-standing questions about the interplay between BUB1 and BUBR1 and their respective roles in the SAC and chromosome alignment.
Collapse
|
21
|
Li F, Kim H, Ji Z, Zhang T, Chen B, Ge Y, Hu Y, Feng X, Han X, Xu H, Zhang Y, Yu H, Liu D, Ma W, Songyang Z. The BUB3-BUB1 Complex Promotes Telomere DNA Replication. Mol Cell 2019; 70:395-407.e4. [PMID: 29727616 DOI: 10.1016/j.molcel.2018.03.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 02/09/2018] [Accepted: 03/27/2018] [Indexed: 01/02/2023]
Abstract
Telomeres and telomere-binding proteins form complex secondary nucleoprotein structures that are critical for genome integrity but can present serious challenges during telomere DNA replication. It remains unclear how telomere replication stress is resolved during S phase. Here, we show that the BUB3-BUB1 complex, a component in spindle assembly checkpoint, binds to telomeres during S phase and promotes telomere DNA replication. Loss of the BUB3-BUB1 complex results in telomere replication defects, including fragile and shortened telomeres. We also demonstrate that the telomere-binding ability of BUB3 and kinase activity of BUB1 are indispensable to BUB3-BUB1 function at telomeres. TRF2 targets BUB1-BUB3 to telomeres, and BUB1 can directly phosphorylate TRF1 and promote TRF1 recruitment of BLM helicase to overcome replication stress. Our findings have uncovered previously unknown roles for the BUB3-BUB1 complex in S phase and shed light on how proteins from diverse pathways function coordinately to ensure proper telomere replication and maintenance.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hyeung Kim
- Verna and Marrs Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhejian Ji
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Tianpeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bohong Chen
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanlong Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Hu
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuyang Feng
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Han
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Huimin Xu
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Youwei Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Dan Liu
- Verna and Marrs Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Verna and Marrs Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Edwards F, Maton G, Gareil N, Canman JC, Dumont J. BUB-1 promotes amphitelic chromosome biorientation via multiple activities at the kinetochore. eLife 2018; 7:40690. [PMID: 30547880 PMCID: PMC6303103 DOI: 10.7554/elife.40690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/13/2018] [Indexed: 12/03/2022] Open
Abstract
Accurate chromosome segregation relies on bioriented amphitelic attachments of chromosomes to microtubules of the mitotic spindle, in which sister chromatids are connected to opposite spindle poles. BUB-1 is a protein of the Spindle Assembly Checkpoint (SAC) that coordinates chromosome attachment with anaphase onset. BUB-1 is also required for accurate sister chromatid segregation independently of its SAC function, but the underlying mechanism remains unclear. Here we show that, in Caenorhabditis elegans embryos, BUB-1 accelerates the establishment of non-merotelic end-on kinetochore-microtubule attachments by recruiting the RZZ complex and its downstream partner dynein-dynactin at the kinetochore. In parallel, BUB-1 limits attachment maturation by the SKA complex. This activity opposes kinetochore-microtubule attachment stabilisation promoted by CLS-2CLASP-dependent kinetochore-microtubule assembly. BUB-1 is therefore a SAC component that coordinates the function of multiple downstream kinetochore-associated proteins to ensure accurate chromosome segregation.
Collapse
Affiliation(s)
- Frances Edwards
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nelly Gareil
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, United States
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
23
|
Siemeister G, Mengel A, Fernández-Montalván AE, Bone W, Schröder J, Zitzmann-Kolbe S, Briem H, Prechtl S, Holton SJ, Mönning U, von Ahsen O, Johanssen S, Cleve A, Pütter V, Hitchcock M, von Nussbaum F, Brands M, Ziegelbauer K, Mumberg D. Inhibition of BUB1 Kinase by BAY 1816032 Sensitizes Tumor Cells toward Taxanes, ATR, and PARP Inhibitors In Vitro and In Vivo. Clin Cancer Res 2018; 25:1404-1414. [PMID: 30429199 DOI: 10.1158/1078-0432.ccr-18-0628] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/03/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The catalytic function of BUB1 is required for chromosome arm resolution and positioning of the chromosomal passenger complex for resolution of spindle attachment errors and plays only a minor role in spindle assembly checkpoint activation. Here, we present the identification and preclinical pharmacologic profile of the first BUB1 kinase inhibitor with good bioavailability. EXPERIMENTAL DESIGN The Bayer compound library was screened for BUB1 kinase inhibitors and medicinal chemistry efforts to improve target affinity and physicochemical and pharmacokinetic parameters resulting in the identification of BAY 1816032 were performed. BAY 1816032 was characterized for kinase selectivity, inhibition of BUB1 signaling, and inhibition of tumor cell proliferation alone and in combination with taxanes, ATR, and PARP inhibitors. Effects on tumor growth in vivo were evaluated using human triple-negative breast xenograft models. RESULTS The highly selective compound BAY 1816032 showed long target residence time and induced chromosome mis-segregation upon combination with low concentrations of paclitaxel. It was synergistic or additive in combination with paclitaxel or docetaxel, as well as with ATR or PARP inhibitors in cellular assays. Tumor xenograft studies demonstrated a strong and statistically significant reduction of tumor size and excellent tolerability upon combination of BAY 1816032 with paclitaxel or olaparib as compared with the respective monotherapies. CONCLUSIONS Our findings suggest clinical proof-of-concept studies evaluating BAY 1816032 in combination with taxanes or PARP inhibitors to enhance their efficacy and potentially overcome resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hans Briem
- Bayer AG, Muellerstrasse Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee HS, Lin Z, Chae S, Yoo YS, Kim BG, Lee Y, Johnson JL, Kim YS, Cantley LC, Lee CW, Yu H, Cho H. The chromatin remodeler RSF1 controls centromeric histone modifications to coordinate chromosome segregation. Nat Commun 2018; 9:3848. [PMID: 30242288 PMCID: PMC6155007 DOI: 10.1038/s41467-018-06377-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/20/2018] [Indexed: 01/20/2023] Open
Abstract
Chromatin remodelers regulate the nucleosome barrier during transcription, DNA replication, and DNA repair. The chromatin remodeler RSF1 is enriched at mitotic centromeres, but the functional consequences of this enrichment are not completely understood. Shugoshin (Sgo1) protects centromeric cohesion during mitosis and requires BuB1-dependent histone H2A phosphorylation (H2A-pT120) for localization. Loss of Sgo1 at centromeres causes chromosome missegregation. Here, we show that RSF1 regulates Sgo1 localization to centromeres through coordinating a crosstalk between histone acetylation and phosphorylation. RSF1 interacts with and recruits HDAC1 to centromeres, where it counteracts TIP60-mediated acetylation of H2A at K118. This deacetylation is required for the accumulation of H2A-pT120 and Sgo1 deposition, as H2A-K118 acetylation suppresses H2A-T120 phosphorylation by Bub1. Centromeric tethering of HDAC1 prevents premature chromatid separation in RSF1 knockout cells. Our results indicate that RSF1 regulates the dynamics of H2A histone modifications at mitotic centromeres and contributes to the maintenance of chromosome stability. The chromatin remodeler RSF1 is enriched at mitotic centromeres but its function there is poorly understood. Here, the authors show that RSF1 regulates H2A phosphorylation and acetylation at mitotic centromeres and contributes to chromosome stability.
Collapse
Affiliation(s)
- Ho-Soo Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Zhonghui Lin
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75930, USA.,College of Chemistry, Fuzhou University, 350116, Fujian, China
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Young-Suk Yoo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, UNIST, Ulsan, 44919, Korea
| | - Youngsoo Lee
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jared L Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Chang-Woo Lee
- Department of Molecular Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75930, USA.
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, Korea. .,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
25
|
Malonylation of histone H2A at lysine 119 inhibits Bub1-dependent H2A phosphorylation and chromosomal localization of shugoshin proteins. Sci Rep 2018; 8:7671. [PMID: 29769606 PMCID: PMC5956101 DOI: 10.1038/s41598-018-26114-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/04/2018] [Indexed: 11/17/2022] Open
Abstract
Post-translational modifications of histones, such as acetylation and phosphorylation, are highly conserved in eukaryotes and their combination enables precise regulation of many cellular functions. Recent studies using mass spectrometry have revealed various non-acetyl acylations in histones, including malonylation and succinylation, which change the positive charge of lysine into a negative one. However, the molecular function of histone malonylation or succinylation is poorly understood. Here, we discovered the functions of malonylation in histone H2A at lysine 119 (H2A-K119) in chromosome segregation during mitosis and meiosis. Analyses of H2A-K119 mutants in Saccharomyces cerevisiae and Schizosaccharomyces pombe showed that anionic mutations, specifically to aspartate (K119D) and glutamate (K119E), showed mis-segregation of the chromosomes and sensitivity to microtubule-destabilizing reagents in mitosis and meiosis. We found that the chromosomal localization of shugoshin proteins, which depends on Bub1-catalyzed phosphorylation of H2A at serine 121 (H2A-S121), was significantly reduced in the H2A-K119D and the H2A-K119E mutants. Biochemical analyses using K119-unmodified or -malonylated H2A-C-tail peptides showed that H2A-K119 malonylation inhibited the interaction between Bub1 and H2A, leading to a decrease in Bub1-dependent H2A-S121 phosphorylation. Our results indicate a novel crosstalk between lysine malonylation and serine/threonine phosphorylation, which may be important for fine-tuning chromatin functions such as chromosome segregation.
Collapse
|
26
|
Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Nat Commun 2017; 8:1956. [PMID: 29208896 PMCID: PMC5717197 DOI: 10.1038/s41467-017-02012-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/01/2017] [Indexed: 01/20/2023] Open
Abstract
The spindle checkpoint maintains genomic stability and prevents aneuploidy. Unattached kinetochores convert the latent open conformer of the checkpoint protein Mad2 (O-Mad2) to the active closed conformer (C-Mad2), bound to Cdc20. C-Mad2–Cdc20 is incorporated into the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex/cyclosome (APC/C). The C-Mad2-binding protein p31comet and the ATPase TRIP13 promote MCC disassembly and checkpoint silencing. Here, using nuclear magnetic resonance (NMR) spectroscopy, we show that TRIP13 and p31comet catalyze the conversion of C-Mad2 to O-Mad2, without disrupting its stably folded core. We determine the crystal structure of human TRIP13, and identify functional TRIP13 residues that mediate p31comet–Mad2 binding and couple ATP hydrolysis to local unfolding of Mad2. TRIP13 and p31comet prevent APC/C inhibition by MCC components, but cannot reactivate APC/C already bound to MCC. Therefore, TRIP13–p31comet intercepts and disassembles free MCC not bound to APC/C through mediating the local unfolding of the Mad2 C-terminal region. The spindle checkpoint ensures the fidelity of chromosome segregation during mitosis and meiosis. Here the authors use a combination of biochemical and structural biology approaches to show how the TRIP13 ATPase and its adaptor, p31comet, catalyze the conversion of the checkpoint protein Mad2 between latent and active forms
Collapse
|
27
|
Tromer E, Bade D, Snel B, Kops GJPL. Phylogenomics-guided discovery of a novel conserved cassette of short linear motifs in BubR1 essential for the spindle checkpoint. Open Biol 2017; 6:rsob.160315. [PMID: 28003474 PMCID: PMC5204127 DOI: 10.1098/rsob.160315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 11/12/2022] Open
Abstract
The spindle assembly checkpoint (SAC) maintains genomic integrity by preventing progression of mitotic cell division until all chromosomes are stably attached to spindle microtubules. The SAC critically relies on the paralogues Bub1 and BubR1/Mad3, which integrate kinetochore–spindle attachment status with generation of the anaphase inhibitory complex MCC. We previously reported on the widespread occurrences of independent gene duplications of an ancestral ‘MadBub’ gene in eukaryotic evolution and the striking parallel subfunctionalization that lead to loss of kinase function in BubR1/Mad3-like paralogues. Here, we present an elaborate subfunctionalization analysis of the Bub1/BubR1 gene family and perform de novo sequence discovery in a comparative phylogenomics framework to trace the distribution of ancestral sequence features to extant paralogues throughout the eukaryotic tree of life. We show that known ancestral sequence features are consistently retained in the same functional paralogue: GLEBS/CMI/CDII/kinase in the Bub1-like and KEN1/KEN2/D-Box in the BubR1/Mad3-like. The recently described ABBA motif can be found in either or both paralogues. We however discovered two additional ABBA motifs that flank KEN2. This cassette of ABBA1-KEN2-ABBA2 forms a strictly conserved module in all ancestral and BubR1/Mad3-like proteins, suggestive of a specific and crucial SAC function. Indeed, deletion of the ABBA motifs in human BUBR1 abrogates the SAC and affects APC/C–Cdc20 interactions. Our detailed comparative genomics analyses thus enabled discovery of a conserved cassette of motifs essential for the SAC and shows how this approach can be used to uncover hitherto unrecognized functional protein features.
Collapse
Affiliation(s)
- Eelco Tromer
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Debora Bade
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Geert J P L Kops
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands .,Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands.,Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
28
|
Overlack K, Bange T, Weissmann F, Faesen AC, Maffini S, Primorac I, Müller F, Peters JM, Musacchio A. BubR1 Promotes Bub3-Dependent APC/C Inhibition during Spindle Assembly Checkpoint Signaling. Curr Biol 2017; 27:2915-2927.e7. [PMID: 28943088 PMCID: PMC5640511 DOI: 10.1016/j.cub.2017.08.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/16/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
The spindle assembly checkpoint (SAC) prevents premature sister chromatid separation during mitosis. Phosphorylation of unattached kinetochores by the Mps1 kinase promotes recruitment of SAC machinery that catalyzes assembly of the SAC effector mitotic checkpoint complex (MCC). The SAC protein Bub3 is a phospho-amino acid adaptor that forms structurally related stable complexes with functionally distinct paralogs named Bub1 and BubR1. A short motif (“loop”) of Bub1, but not the equivalent loop of BubR1, enhances binding of Bub3 to kinetochore phospho-targets. Here, we asked whether the BubR1 loop directs Bub3 to different phospho-targets. The BubR1 loop is essential for SAC function and cannot be removed or replaced with the Bub1 loop. BubR1 loop mutants bind Bub3 and are normally incorporated in MCC in vitro but have reduced ability to inhibit the MCC target anaphase-promoting complex (APC/C), suggesting that BubR1:Bub3 recognition and inhibition of APC/C requires phosphorylation. Thus, small sequence differences in Bub1 and BubR1 direct Bub3 to different phosphorylated targets in the SAC signaling cascade. The molecular basis of kinetochore recruitment of Bub1 and BubR1 is dissected Bub1 and BubR1 modulate the ability of Bub3 to recognize phosphorylated targets A newly identified BubR1 motif targets Bub3 to the anaphase-promoting complex The newly identified motif of BubR1 is required for checkpoint signaling
Collapse
Affiliation(s)
- Katharina Overlack
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Florian Weissmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Alex C Faesen
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Ivana Primorac
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
29
|
Combes G, Alharbi I, Braga LG, Elowe S. Playing polo during mitosis: PLK1 takes the lead. Oncogene 2017; 36:4819-4827. [PMID: 28436952 DOI: 10.1038/onc.2017.113] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/18/2022]
Abstract
Polo-like kinase 1 (PLK1), the prototypical member of the polo-like family of serine/threonine kinases, is a pivotal regulator of mitosis and cytokinesis in eukaryotes. Many layers of regulation have evolved to target PLK1 to different subcellular structures and to its various mitotic substrates in line with its numerous functions during mitosis. Collective work is starting to illuminate an important set of substrates for PLK1: the mitotic kinases that together ensure the fidelity of the cell division process. Amongst these, recent developments argue that PLK1 regulates the activity of the histone kinases Aurora B and Haspin to define centromere identity, of MPS1 to initiate spindle checkpoint signaling, and of BUB1 and its pseudokinase paralog BUBR1 to coordinate spindle checkpoint activation and inactivation. Here, we review the recent work describing the regulation of these kinases by PLK1. We highlight common themes throughout and argue that a major mitotic function of PLK1 is as a master regulator of these key kinases.
Collapse
Affiliation(s)
- G Combes
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - I Alharbi
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - L G Braga
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - S Elowe
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
30
|
Xu B, Xu T, Liu H, Min Q, Wang S, Song Q. MiR-490-5p Suppresses Cell Proliferation and Invasion by Targeting BUB1 in Hepatocellular Carcinoma Cells. Pharmacology 2017; 100:269-282. [PMID: 28810242 DOI: 10.1159/000477667] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To verify that miR-490-5p could influence hepatocellular carcinoma (HCC) cells' proliferation, invasion, cycle, and apoptosis by targeting BUB1. METHODS Quantitative real time-PCR (QRT-PCR) was used to determine the miR-490-5p expression. Immunohistochemistry, qRT-PCR, and Western blot were employed to detect BUB1 and transforming growth factor-beta (TGFβ/Smad) signaling-related proteins expression in hepatic tissues and cells. The luciferase assay was used to confirm the targeting relationship between miR-490-5p and BUB1. The Cell Counting Kit-8, colony formation, Transwell invasion, scratch healing assays, and flow cytometry analysis were conducted to evaluate HCC cells proliferation, invasion, migration, and apoptosis alteration after transfection. RESULTS In HCC tissues and cells, lower expression of miR-490-5p was detected, while BUB1 was overexpressed than controls. The upregulation of miR-490-5p inhibited BUB1 expression and the overexpression of miR-490-5p or the under-expression of BUB1 inhibited HCC cells proliferation, migration, invasion, and increased the apoptosis rate. CONCLUSION MiR-490-5p could regulate TGFβ/Smad signaling pathways by inhibiting BUB1, which could then inhibit HCC cells proliferation, invasion, and migration as well as decrease cell viability and increase apoptosis.
Collapse
Affiliation(s)
- Bin Xu
- Department of Oncology I, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
31
|
Ji Z, Gao H, Jia L, Li B, Yu H. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling. eLife 2017; 6. [PMID: 28072388 PMCID: PMC5268738 DOI: 10.7554/elife.22513] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI:http://dx.doi.org/10.7554/eLife.22513.001
Collapse
Affiliation(s)
- Zhejian Ji
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Haishan Gao
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Luying Jia
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bing Li
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
32
|
Ge SM, Zhan DL, Zhang SH, Song LQ, Han WW. Reverse screening approach to identify potential anti-cancer targets of dipyridamole. Am J Transl Res 2016; 8:5187-5198. [PMID: 28077994 PMCID: PMC5209474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Dipyridamole (DIP) inhibits thrombus formation when given chronically, and causes vasodilation over a short time. To date, DIP can increase the anticancer drugs (5-fluorouracil, methotrexate, piperidine, vincristine) concentration in cancer cells and hence enhance the efficacy of treatment cancer. The inhibition of DIP may result in increased 5-fluorouracil efficacy and diminish the drug side effects. But the actual molecular targets remain unknown. In this study, reverse protein-ligands docking, and quantum mechanics were used to search for the potential molecular targets of DIP. The quantum mechanics calculation was performed by using Gaussian 03 program package. Reverse pharmacophore mapping was used to search for potential molecular target candidates for a given small molecule. The docking study was used for exploring the potential anti-cancer targets of dipyridamole. The two predicted binders with the statistically significant prediction are dihydropyrimidine dehydrogenase (DPD) (PDB Id: 1GTE) and human spindle checkpoint kinase Bub1 (PDB Id: 3E7E). Structure analysis suggests that electrostatic interaction and hydrogen bonding play an important role in their binding process. The strong functional linkage of DIP and 5FU supports our prediction. In conclusion, these results generate a tractable set of anticancer proteins. The exploration of polypharmacology will provide us new opportunities in treating systematic diseases, such as the cancers. The results would generate a tractable set of anticancer target proteins for future experimental validations.
Collapse
Affiliation(s)
- Shu-Min Ge
- School of Life Science and Technology, Changchun University of Science and TechnologyChangchun 130022, China
| | - Dong-Ling Zhan
- College of Food Science and Engineering, Jilin Agricultural UniversityChangchun 130118, China
| | - Shu-Hua Zhang
- School of Life Science and Technology, Changchun University of Science and TechnologyChangchun 130022, China
| | - Li-Qiang Song
- School of Life Science and Technology, Changchun University of Science and TechnologyChangchun 130022, China
| | - Wei-Wei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin UniversityChangchun 130023, China
| |
Collapse
|
33
|
Mattern F, Herrmann D, Heinzmann J, Hadeler KG, Bernal-Ulloa SM, Haaf T, Niemann H. DNA methylation and mRNA expression of developmentally important genes in bovine oocytes collected from donors of different age categories. Mol Reprod Dev 2016; 83:802-814. [PMID: 27567027 DOI: 10.1002/mrd.22692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022]
Abstract
Epigenetic changes are critical for the acquisition of developmental potential by oocytes and embryos, yet these changes may be sensitive to maternal ageing. Here, we investigated the impact of maternal ageing on DNA methylation and mRNA expression in a panel of eight genes that are critically involved in oocyte and embryo development. Bovine oocytes were collected from donors of three different age categories-prepubertal (9-12 months old), mature (3-7 years old), and aged (8-11 years old)-and were analyzed for gene-specific DNA methylation (bTERF2, bREC8, bBCL-XL, bPISD, bBUB1, bDNMT3Lo, bH19, and bSNRPN) and mRNA expression (bTERF2, bBCL-XL, bPISD, and bBUB1). A total of 1,044 alleles with 88,740 CpGs were amplified and sequenced from 362 bovine oocytes. Most of the detected molecules were either fully methylated or completely unmethylated. Only 9 out of 1,044 alleles (<1%) were abnormally methylated (>50% of CpGs with an aberrant methylation status), and seven of the nine abnormally methylated alleles were within only two candidate genes (bDNMT3Lo and bH19). No significant differences were detected with regard to mRNA expression between oocytes from the three groups of donors. These results suggest that genes predominantly important for early embryo development (bH19 and bDNMT3Lo) are less resistant to abnormal methylation than genes critically involved in oocyte development (bTERF2, bBCL-XL, bPISD, bBUB1, and bSNRPN). Establishment of DNA methylation in bovine oocytes seems to be largely resistant to changes caused by maternal ageing, irrespective of whether the genes are critical to achieve developmental competence in oocytes or early embryos. Mol. Reprod. Dev. 83: 802-814, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Felix Mattern
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Doris Herrmann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany
| | - Julia Heinzmann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany
| | | | | | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
34
|
Ferrari S, Gentili C. Maintaining Genome Stability in Defiance of Mitotic DNA Damage. Front Genet 2016; 7:128. [PMID: 27493659 PMCID: PMC4954828 DOI: 10.3389/fgene.2016.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| | - Christian Gentili
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| |
Collapse
|
35
|
Jia L, Li B, Yu H. The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat Commun 2016; 7:10818. [PMID: 26912231 PMCID: PMC4773433 DOI: 10.1038/ncomms10818] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/25/2016] [Indexed: 12/15/2022] Open
Abstract
The spindle checkpoint senses unattached kinetochores and inhibits the Cdc20-bound anaphase-promoting complex or cyclosome (APC/C), to delay anaphase, thereby preventing aneuploidy. A critical checkpoint inhibitor of APC/C(Cdc20) is the mitotic checkpoint complex (MCC). It is unclear whether MCC suffices to inhibit all cellular APC/C. Here we show that human checkpoint kinase Bub1 not only directly phosphorylates Cdc20, but also scaffolds Plk1-mediated phosphorylation of Cdc20. Phosphorylation of Cdc20 by Bub1-Plk1 inhibits APC/C(Cdc20) in vitro and is required for checkpoint signalling in human cells. Bub1-Plk1-dependent Cdc20 phosphorylation is regulated by upstream checkpoint signals and is dispensable for MCC assembly. A phospho-mimicking Cdc20 mutant restores nocodazole-induced mitotic arrest in cells depleted of Mad2 or BubR1. Thus, Bub1-Plk1-mediated phosphorylation of Cdc20 constitutes an APC/C-inhibitory mechanism that is parallel, but not redundant, to MCC formation. Both mechanisms are required to sustain mitotic arrest in response to spindle defects.
Collapse
Affiliation(s)
- Luying Jia
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA
| | - Bing Li
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA
| |
Collapse
|
36
|
Ocaña A, Pérez-Peña J, Díez-González L, Sánchez-Corrales V, Templeton A, Seruga B, Amir E, Pandiella A. Transcriptomic analyses identify association between mitotic kinases, PDZ-binding kinase and BUB1, and clinical outcome in breast cancer. Breast Cancer Res Treat 2016; 156:1-8. [PMID: 26897635 DOI: 10.1007/s10549-016-3720-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/14/2016] [Indexed: 12/26/2022]
Abstract
Protein kinases are important components in oncogenic transformation of breast cancer. Evaluation of upregulated genes that codify for protein kinases could be used as biomarkers to predict clinical outcome. Gene expression and functional analyses using public datasets were performed to identify differential gene expression and functions in basal-like tumors compared with normal breast tissue. Overall survival (OS) associated with upregulated genes was explored using the KM Plotter online tool. The prognostic influence of these genes in luminal tumors and systemically untreated patients was also assessed. Of the 426 transcripts identified in basal-like tumors, 11 genes that coded for components of protein kinases were upregulated with more than a fourfold change. Regulation of cell cycle was an enriched function containing 10 of these 11 identified genes. Among them, expression of four genes, BUB1β, CDC28, NIMA, and PDZ binding kinase, were all associated with improved OS when using at least one probe in the basal-like subtype. Two genes, BUB1β and PDZ binding kinase, showed consistent association with improved OS irrespective of the gene probe used for the analysis. No association was observed for these genes with relapse-free survival. In contrast, both BUB1β and PDZ binding kinase showed worse OS in luminal tumors and in a cohort of systemically untreated patients. BUB1β and PDZ binding kinase are associated with improved OS in basal-like tumors and worse OS in luminal and untreated patients. The association with a better outcome in basal-like tumors could be due to a more favorable response to chemotherapy.
Collapse
Affiliation(s)
- Alberto Ocaña
- Translational Research Unit, Albacete University Hospital, Calle Francisco Javier de Moya, 02006, Albacete, Spain.
| | - Javier Pérez-Peña
- Translational Research Unit, Albacete University Hospital, Calle Francisco Javier de Moya, 02006, Albacete, Spain
| | - Laura Díez-González
- Translational Research Unit, Albacete University Hospital, Calle Francisco Javier de Moya, 02006, Albacete, Spain
| | - Verónica Sánchez-Corrales
- Translational Research Unit, Albacete University Hospital, Calle Francisco Javier de Moya, 02006, Albacete, Spain
| | - Arnoud Templeton
- Department of Medical Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Bostjan Seruga
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Eitan Amir
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | | |
Collapse
|
37
|
Baron AP, von Schubert C, Cubizolles F, Siemeister G, Hitchcock M, Mengel A, Schröder J, Fernández-Montalván A, von Nussbaum F, Mumberg D, Nigg EA. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. eLife 2016; 5. [PMID: 26885717 PMCID: PMC4769170 DOI: 10.7554/elife.12187] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
The kinase Bub1 functions in the spindle assembly checkpoint (SAC) and in chromosome congression, but the role of its catalytic activity remains controversial. Here, we use two novel Bub1 inhibitors, BAY-320 and BAY-524, to demonstrate potent Bub1 kinase inhibition both in vitro and in intact cells. Then, we compared the cellular phenotypes of Bub1 kinase inhibition in HeLa and RPE1 cells with those of protein depletion, indicative of catalytic or scaffolding functions, respectively. Bub1 inhibition affected chromosome association of Shugoshin and the chromosomal passenger complex (CPC), without abolishing global Aurora B function. Consequently, inhibition of Bub1 kinase impaired chromosome arm resolution but exerted only minor effects on mitotic progression or SAC function. Importantly, BAY-320 and BAY-524 treatment sensitized cells to low doses of Paclitaxel, impairing both chromosome segregation and cell proliferation. These findings are relevant to our understanding of Bub1 kinase function and the prospects of targeting Bub1 for therapeutic applications. DOI:http://dx.doi.org/10.7554/eLife.12187.001 The DNA in our cells is packaged into structures called chromosomes. When a cell divides, these chromosomes need to be copied and then correctly separated so that both daughter cells have a full set of genetic information. Errors in separating chromosomes can lead to the death of cells, birth defects or contribute to the development of cancer. Chromosomes are separated by an array of protein fibers called the mitotic spindle. A surveillance mechanism known as the spindle assembly checkpoint prevents the cell from dividing until all the chromosomes have properly attached to the spindle. A protein called Bub1 is a central element of the SAC. However, it was not clear whether Bub1 works primarily as an enzyme or as a scaffolding protein. Baron, von Schubert et al. characterized two new molecules that inhibit Bub1’s enzyme activity and used them to investigate what role the enzyme plays in the spindle assembly checkpoint in human cells. The experiments compared the effects of these inhibitors to the effects of other molecules that block the production of Bub1. Baron, von Schubert et al.’s findings suggest that Bub1 works primarily as a scaffolding protein, but that the enzyme activity is required for optimal performance. Further experiments show that when the molecules that inhibit the Bub1 enzyme are combined with paclitaxel – a widely used therapeutic drug – cancer cells have more difficulties in separating their chromosomes and divide less often. The new inhibitors used by Baron, von Schubert et al. will be useful for future studies of this protein in different situations. Furthermore, these molecules may have the potential to be used as anti-cancer therapies in combination with other drugs. DOI:http://dx.doi.org/10.7554/eLife.12187.002
Collapse
Affiliation(s)
- Anna P Baron
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | | | - Anne Mengel
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | - Jens Schröder
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | | | | | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Abstract
Mitotic kinetochores are signaling network hubs that regulate chromosome movements, attachment error-correction, and the spindle assembly checkpoint. Key switches in these networks are kinases and phosphatases that enable rapid responses to changing conditions. Describing the mechanisms and dynamics of their localized activation and deactivation is therefore instrumental for understanding the spatiotemporal control of chromosome segregation.
Collapse
Affiliation(s)
- Adrian T Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
39
|
Breit C, Bange T, Petrovic A, Weir JR, Müller F, Vogt D, Musacchio A. Role of Intrinsic and Extrinsic Factors in the Regulation of the Mitotic Checkpoint Kinase Bub1. PLoS One 2015; 10:e0144673. [PMID: 26658523 PMCID: PMC4675524 DOI: 10.1371/journal.pone.0144673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022] Open
Abstract
The spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores to ensure accurate sister chromatid segregation during mitosis. The SAC members Bub1 and BubR1 are paralogs that underwent significant functional specializations during evolution. We report an in-depth characterization of the kinase domains of Bub1 and BubR1. BubR1 kinase domain binds nucleotides but is unable to deliver catalytic activity in vitro. Conversely, Bub1 is an active kinase regulated by intra-molecular phosphorylation at the P+1 loop. The crystal structure of the phosphorylated Bub1 kinase domain illustrates a hitherto unknown conformation of the P+1 loop docked into the active site of the Bub1 kinase. Both Bub1 and BubR1 bind Bub3 constitutively. A hydrodynamic characterization of Bub1:Bub3 and BubR1:Bub3 demonstrates both complexes to have 1:1 stoichiometry, with no additional oligomerization. Conversely, Bub1:Bub3 and BubR1:Bub3 combine to form a heterotetramer. Neither BubR1:Bub3 nor Knl1, the kinetochore receptor of Bub1:Bub3, modulate the kinase activity of Bub1 in vitro, suggesting autonomous regulation of the Bub1 kinase domain. We complement our study with an analysis of the Bub1 substrates. Our results contribute to the mechanistic characterization of a crucial cell cycle checkpoint.
Collapse
Affiliation(s)
- Claudia Breit
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - John R. Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Doro Vogt
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141, Essen, Germany
- * E-mail:
| |
Collapse
|
40
|
Zhang G, Lischetti T, Hayward DG, Nilsson J. Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint. Nat Commun 2015; 6:7162. [PMID: 26031201 PMCID: PMC4458899 DOI: 10.1038/ncomms8162] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/10/2015] [Indexed: 12/29/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by delaying anaphase onset in response to unattached kinetochores. Checkpoint signalling requires the kinetochore localization of the Mad1–Mad2 complex that in more complex eukaryotes depends on the Rod–Zwilch–ZW10 (RZZ) complex. The kinetochore protein Zwint has been proposed to be the kinetochore receptor for RZZ, but here we show that Bub1 and not Zwint is required for RZZ recruitment. We find that the middle region of Bub1 encompassing a domain essential for SAC signalling contributes to RZZ localization. In addition, we show that a distinct region in Bub1 mediates kinetochore localization of BubR1 through direct binding, but surprisingly removal of this region increases checkpoint strength. Our work thus uncovers how Bub1 coordinates checkpoint signalling by distinct domains for RZZ and BubR1 recruitment and suggests that Bub1 localizes antagonistic checkpoint activities. The spindle assembly checkpoint (SAC) depends on the recruitment of specific protein complexes to the kinetochore. Here Zhang et al. show that Bub1 recruits the RZZ complex and BubR1 to the kinetochore, and loss of the BubR1 binding sequence enhances checkpoint activity suggesting both SAC activating and silencing roles.
Collapse
Affiliation(s)
- Gang Zhang
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tiziana Lischetti
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Daniel G Hayward
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
41
|
Kim T, Moyle MW, Lara-Gonzalez P, De Groot C, Oegema K, Desai A. Kinetochore-localized BUB-1/BUB-3 complex promotes anaphase onset in C. elegans. J Cell Biol 2015; 209:507-17. [PMID: 25987605 PMCID: PMC4442812 DOI: 10.1083/jcb.201412035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
The conserved Bub1/Bub3 complex is recruited to the kinetochore region of mitotic chromosomes, where it initiates spindle checkpoint signaling and promotes chromosome alignment. Here we show that, in contrast to the expectation for a checkpoint pathway component, the BUB-1/BUB-3 complex promotes timely anaphase onset in Caenorhabditis elegans embryos. This activity of BUB-1/BUB-3 was independent of spindle checkpoint signaling but required kinetochore localization. BUB-1/BUB-3 inhibition equivalently delayed separase activation and other events occurring during mitotic exit. The anaphase promotion function required BUB-1's kinase domain, but not its kinase activity, and this function was independent of the role of BUB-1/BUB-3 in chromosome alignment. These results reveal an unexpected role for the BUB-1/BUB-3 complex in promoting anaphase onset that is distinct from its well-studied functions in checkpoint signaling and chromosome alignment, and suggest a new mechanism contributing to the coordination of the metaphase-to-anaphase transition.
Collapse
Affiliation(s)
- Taekyung Kim
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Mark W Moyle
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Pablo Lara-Gonzalez
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Christian De Groot
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Karen Oegema
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Arshad Desai
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
42
|
Erfle H, Pashayeva K, Harder N, Zhang L, Rohr K, Schadendorf D, Ugurel S, Keese M. Targeting mitosis-regulating genes in cisplatin-sensitive and -resistant melanoma cells: A live-cell RNAi screen displays differential nucleus-derived phenotypes. Biotechnol J 2015; 10:1467-77. [PMID: 25880279 DOI: 10.1002/biot.201400501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/19/2015] [Accepted: 04/13/2015] [Indexed: 01/14/2023]
Abstract
Chemoresistance in malignant melanoma remains an unresolved clinical issue. In the search for novel molecular targets, a live-cell high-content RNAi screen based on gene expression data was performed in cisplatin-sensitive and cisplatin-resistant MeWo melanoma cells, Mel-28 cells and a melanocyte cell line. Cells were exposed to 91 siRNAs and distinct nucleus-derived phenotypes such as cell division, cell death and migration phenotypes were detected by time-lapse microscopy over 60 h. Using this approach, cisplatin-sensitive and cisplatin-resistant melanoma cells were compared by automated image analysis and visual inspection. In cisplatin-sensitive MeWo melanoma cells, 14 genes were identified that showed distinct phenotype abnormalities after exposure to gene-specific siRNAs. In cisplatin-resistant MeWo cells, five genes were detected. Nine genes were detected whose knock-down led to differential nuclear phenotypes in cisplatin-sensitive and -resistant cells. In Mel-28 cells, nine genes were identified which induced nuclear phenotypes including all eight genes which were identified in cisplatin-resistant MeWo cells. An analogous RNAi screen on melanocytes revealed no detectable phenotype abnormalities after RNAi. Pathway analysis showed in cisplatin-sensitive MeWo cells and Mel-28 cells an enrichment of at least three genes in major mitotic pathways. We hereby show that siRNA screening may help to identify tumor-specific genes leading to phenotype abnormalities. These genes may serve as potential therapeutic targets in the treatment of melanoma.
Collapse
Affiliation(s)
- Holger Erfle
- BioQuant, Heidelberg University, Heidelberg, Germany.
| | - K Pashayeva
- BioQuant, Heidelberg University, Heidelberg, Germany.,Clinic for Vascular and Endovascular Surgery, University Hospital, Frankfurt, Germany
| | - N Harder
- BioQuant and IPMB, University of Heidelberg and DKFZ, Biomedical Computer Vision Group, Heidelberg, Germany
| | - L Zhang
- Clinic for Vascular and Endovascular Surgery, University Hospital, Frankfurt, Germany
| | - K Rohr
- BioQuant and IPMB, University of Heidelberg and DKFZ, Biomedical Computer Vision Group, Heidelberg, Germany
| | - D Schadendorf
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | - S Ugurel
- Department of Dermatology, University of Würzburg, Würzburg, Germany
| | - M Keese
- Clinic for Vascular and Endovascular Surgery, University Hospital, Frankfurt, Germany.
| |
Collapse
|
43
|
Thompson R, Shah RB, Liu PH, Gupta YK, Ando K, Aggarwal AK, Sidi S. An Inhibitor of PIDDosome Formation. Mol Cell 2015; 58:767-79. [PMID: 25936804 DOI: 10.1016/j.molcel.2015.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/25/2015] [Accepted: 03/27/2015] [Indexed: 12/31/2022]
Abstract
The PIDDosome-PIDD-RAIDD-caspase-2 complex-is a proapoptotic caspase-activation platform of elusive significance. DNA damage can initiate complex assembly via ATM phosphorylation of the PIDD death domain (DD), which enables RAIDD recruitment to PIDD. In contrast, the mechanisms limiting PIDDosome formation have remained unclear. We identify the mitotic checkpoint factor BubR1 as a direct PIDDosome inhibitor, acting in a noncanonical role independent of Mad2. Following its phosphorylation by ATM at DNA breaks, "primed" PIDD relocates to kinetochores via a direct interaction with BubR1. BubR1 binds the PIDD DD, competes with RAIDD recruitment, and negates PIDDosome-mediated apoptosis after ionizing radiation. The PIDDosome thus sequentially integrates DNA damage and mitotic checkpoint signals to decide cell fate in response to genotoxic stress. We further show that by sequestering PIDD at the kinetochore, BubR1 acts to delay PIDDosome formation until the next cycle, defining a new mechanism by which cells evade apoptosis during mitosis.
Collapse
Affiliation(s)
- Ruth Thompson
- Department of Medicine, Division of Hematology/Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richa B Shah
- Department of Medicine, Division of Hematology/Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter H Liu
- Department of Medicine, Division of Hematology/Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yogesh K Gupta
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kiyohiro Ando
- Department of Medicine, Division of Hematology/Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aneel K Aggarwal
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology/Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
44
|
Kim S, Yu H. Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. ACTA ACUST UNITED AC 2015; 208:181-96. [PMID: 25601404 PMCID: PMC4298689 DOI: 10.1083/jcb.201407074] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During mitosis in human cells, separate mechanisms involving Aurora B and CENP-T promote anchoring of the microtubule- and checkpoint-receptor complex KMN at kinetochores. During mitosis, the spindle checkpoint senses kinetochores not properly attached to spindle microtubules and prevents precocious sister-chromatid separation and aneuploidy. The constitutive centromere-associated network (CCAN) at inner kinetochores anchors the KMN network consisting of Knl1, the Mis12 complex (Mis12C), and the Ndc80 complex (Ndc80C) at outer kinetochores. KMN is a critical kinetochore receptor for both microtubules and checkpoint proteins. Here, we show that nearly complete inactivation of KMN in human cells through multiple strategies produced strong checkpoint defects even when all kinetochores lacked microtubule attachment. These KMN-inactivating strategies reveal multiple KMN assembly mechanisms at human mitotic kinetochores. In one mechanism, the centromeric kinase Aurora B phosphorylates Mis12C and strengthens its binding to the CCAN subunit CENP-C. In another, CENP-T contributes to KMN attachment in a CENP-H-I-K–dependent manner. Our study provides insights into the mechanisms of mitosis-specific assembly of the checkpoint platform KMN at human kinetochores.
Collapse
Affiliation(s)
- Soonjoung Kim
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
45
|
Nyati S, Schinske-Sebolt K, Pitchiaya S, Chekhovskiy K, Chator A, Chaudhry N, Dosch J, Van Dort ME, Varambally S, Kumar-Sinha C, Nyati MK, Ray D, Walter NG, Yu H, Ross BD, Rehemtulla A. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling. Sci Signal 2015; 8:ra1. [PMID: 25564677 DOI: 10.1126/scisignal.2005379] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion.
Collapse
Affiliation(s)
- Shyam Nyati
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sethuramasundaram Pitchiaya
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109, USA. Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katerina Chekhovskiy
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Areeb Chator
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nauman Chaudhry
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Dosch
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcian E Van Dort
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA. Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mukesh Kumar Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109, USA. Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brian Dale Ross
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alnawaz Rehemtulla
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Vleugel M, Hoek T, Tromer E, Sliedrecht T, Groenewold V, Omerzu M, Kops GJPL. Dissecting the roles of human BUB1 in the spindle assembly checkpoint. J Cell Sci 2015; 128:2975-82. [DOI: 10.1242/jcs.169821] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/02/2015] [Indexed: 12/15/2022] Open
Abstract
Mitotic chromosome segregation is initiated by the anaphase promoting complex/cyclosome (APC/C) and its co-activator CDC20. APC/CCDC20 is inhibited by the spindle assembly checkpoint (SAC) when chromosomes have not attached to spindle microtubules. Unattached kinetochores catalyze the formation of a diffusible APC/CCDC20 inhibitor that is composed of BUBR1, BUB3, MAD2 and a second molecule of CDC20. Kinetochore recruitment of these proteins as well as SAC activation rely on the mitotic kinase BUB1, but the molecular mechanism by which BUB1 accomplishes this in human cells is unknown. We show that BUBR1 and BUB3 kinetochore recruitment by BUB1 is dispensable for SAC activation. Unlike its yeast and nematode orthologs, human BUB1 does not associate stably with the MAD2 activator MAD1 and, although required for accelerating loading of MAD1 onto kinetochores, is dispensable for its steady-state levels there. Instead, we identify a 50 amino acid segment harboring the recently reported ABBA motif close to a KEN box as critical for BUB1's role in SAC signaling. The presence of this segment correlates with SAC activity and efficient binding of CDC20 but not MAD1 to kinetochores.
Collapse
Affiliation(s)
- Mathijs Vleugel
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Tim Hoek
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Eelco Tromer
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Tale Sliedrecht
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Vincent Groenewold
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Manja Omerzu
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Geert J. P. L. Kops
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
47
|
Stefely JA, Reidenbach AG, Ulbrich A, Oruganty K, Floyd BJ, Jochem A, Saunders JM, Johnson IE, Minogue CE, Wrobel RL, Barber GE, Lee D, Li S, Kannan N, Coon JJ, Bingman CA, Pagliarini DJ. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis. Mol Cell 2014; 57:83-94. [PMID: 25498144 DOI: 10.1016/j.molcel.2014.11.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
The ancient UbiB protein kinase-like family is involved in isoprenoid lipid biosynthesis and is implicated in human diseases, but demonstration of UbiB kinase activity has remained elusive for unknown reasons. Here, we quantitatively define UbiB-specific sequence motifs and reveal their positions within the crystal structure of a UbiB protein, ADCK3. We find that multiple UbiB-specific features are poised to inhibit protein kinase activity, including an N-terminal domain that occupies the typical substrate binding pocket and a unique A-rich loop that limits ATP binding by establishing an unusual selectivity for ADP. A single alanine-to-glycine mutation of this loop flips this coenzyme selectivity and enables autophosphorylation but inhibits coenzyme Q biosynthesis in vivo, demonstrating functional relevance for this unique feature. Our work provides mechanistic insight into UbiB enzyme activity and establishes a molecular foundation for further investigation of how UbiB family proteins affect diseases and diverse biological pathways.
Collapse
Affiliation(s)
- Jonathan A Stefely
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew G Reidenbach
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arne Ulbrich
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Brendan J Floyd
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adam Jochem
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jaclyn M Saunders
- Mitochondrial Protein Partnership, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabel E Johnson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Catherine E Minogue
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Russell L Wrobel
- Mitochondrial Protein Partnership, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Grant E Barber
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David Lee
- Department of Medicine and UCSD DXMS Proteomics Resource, University of California, San Diego, La Jolla, CA 92023, USA
| | - Sheng Li
- Department of Medicine and UCSD DXMS Proteomics Resource, University of California, San Diego, La Jolla, CA 92023, USA
| | - Natarajan Kannan
- Department of Biochemistry, University of Georgia, Athens, GA 30602, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Mitochondrial Protein Partnership, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Mitochondrial Protein Partnership, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
48
|
Diaz-Martinez LA, Tian W, Li B, Warrington R, Jia L, Brautigam CA, Luo X, Yu H. The Cdc20-binding Phe box of the spindle checkpoint protein BubR1 maintains the mitotic checkpoint complex during mitosis. J Biol Chem 2014; 290:2431-43. [PMID: 25505175 DOI: 10.1074/jbc.m114.616490] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spindle checkpoint ensures accurate chromosome segregation by monitoring kinetochore-microtubule attachment. Unattached or tensionless kinetochores activate the checkpoint and enhance the production of the mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20. MCC is a critical checkpoint inhibitor of the anaphase-promoting complex/cyclosome, a ubiquitin ligase required for anaphase onset. The N-terminal region of BubR1 binds to both Cdc20 and Mad2, thus nucleating MCC formation. The middle region of human BubR1 (BubR1M) also interacts with Cdc20, but the nature and function of this interaction are not understood. Here we identify two critical motifs within BubR1M that contribute to Cdc20 binding and anaphase-promoting complex/cyclosome inhibition: a destruction box (D box) and a phenylalanine-containing motif termed the Phe box. A BubR1 mutant lacking these motifs is defective in MCC maintenance in mitotic human cells but is capable of supporting spindle-checkpoint function. Thus, the BubR1M-Cdc20 interaction indirectly contributes to MCC homeostasis. Its apparent dispensability in the spindle checkpoint might be due to functional duality or redundant, competing mechanisms.
Collapse
Affiliation(s)
| | - Wei Tian
- From the Department of Pharmacology
| | - Bing Li
- From the Department of Pharmacology, Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Ross Warrington
- From the Department of Pharmacology, Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | | | | | | | - Hongtao Yu
- From the Department of Pharmacology, Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| |
Collapse
|
49
|
The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing. Nat Commun 2014; 5:5563. [DOI: 10.1038/ncomms6563] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/13/2014] [Indexed: 11/09/2022] Open
|
50
|
Lin Z, Jia L, Tomchick DR, Luo X, Yu H. Substrate-specific activation of the mitotic kinase Bub1 through intramolecular autophosphorylation and kinetochore targeting. Structure 2014; 22:1616-27. [PMID: 25308863 DOI: 10.1016/j.str.2014.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/13/2022]
Abstract
During mitosis of human cells, the kinase Bub1 orchestrates chromosome segregation through phosphorylating histone H2A and the anaphase-promoting complex/cyclosome activator Cdc20. Bub1-mediated H2A-T120 phosphorylation (H2A-pT120) at kinetochores promotes centromeric sister-chromatid cohesion, whereas Cdc20 phosphorylation by Bub1 contributes to spindle checkpoint signaling. Here, we show that phosphorylation at the P+1 substrate-binding loop of human Bub1 enhances its activity toward H2A but has no effect on its activity toward Cdc20. We determine the crystal structure of phosphorylated Bub1. A comparison between structures of phosphorylated and unphosphorylated Bub1 reveals phosphorylation-triggered reorganization of the P+1 loop. This activating phosphorylation of Bub1 is constitutive during the cell cycle. Enrichment of H2A-pT120 at mitotic kinetochores requires kinetochore targeting of Bub1. The P+1 loop phosphorylation of Bub1 appears to occur through intramolecular autophosphorylation. Our study provides structural and functional insights into substrate-specific regulation of a key mitotic kinase and expands the repertoire of kinase activation mechanisms.
Collapse
Affiliation(s)
- Zhonghui Lin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Luying Jia
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| |
Collapse
|