1
|
Akoto E, Doss EM, Claypool KP, Owutey SL, Richards KA, Lehman KM, Daraghmi MM, Turk SM, Indovina CJ, Avaala JA, Evans MD, Scott AR, Schneider HO, Rogers EM, True JD, Smaldino PJ, Rubenstein EM. The kinesin Kar3 is required for endoplasmic reticulum-associated degradation. Mol Biol Cell 2025; 36:br9. [PMID: 39841550 PMCID: PMC11974954 DOI: 10.1091/mbc.e24-10-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Degradation of aberrant, excess, and regulatory proteins at the endoplasmic reticulum (ER) is a conserved feature of eukaryotic cells, disruption of which contributes to disease. While remarkable progress has been made in recent years, mechanisms and genetic requirements for ER-associated degradation (ERAD) remain incompletely understood. We recently conducted a screen for genes required for turnover of a model ER translocon-associated substrate of the Hrd1 ubiquitin ligase in Saccharomyces cerevisiae. This screen revealed loss of Kar3 impedes degradation of Deg1*-Sec62, which persistently and aberrantly engages the translocon. Kar3 is a microtubule-associated kinesin 14 family member that impacts multiple aspects of microtubule dynamics during cell division and karyogamy. We investigated involvement of Kar3 and its cofactors in ERAD. Loss of Kar3 hindered ERAD mediated by three ubiquitin ligases but did not impair turnover of a soluble nuclear protein. Further, KAR3 deletion caused hypersensitivity to conditions associated with proteotoxic stress. Kar3's cytoplasmic cofactor Vik1 was also required for efficient degradation of Deg1*-Sec62. Our results reveal a profound and underappreciated role for microtubule-associated proteins in ERAD.
Collapse
Affiliation(s)
- Emmanuel Akoto
- Department of Biology, Ball State University, Muncie, IN 47306
| | - Ellen M. Doss
- Department of Biology, Ball State University, Muncie, IN 47306
| | | | | | | | - Katie M. Lehman
- Department of Biology, Ball State University, Muncie, IN 47306
| | | | | | | | - James A. Avaala
- Department of Biology, Ball State University, Muncie, IN 47306
| | | | | | | | - Evan M. Rogers
- Department of Biology, Ball State University, Muncie, IN 47306
| | - Jason D. True
- Department of Biology, Ball State University, Muncie, IN 47306
| | | | | |
Collapse
|
2
|
Lei C, Li X, Li W, Chen Z, Liu S, Cheng B, Hu Y, Song Q, Qiu Y, Zhou Y, Meng X, Yu H, Zhou W, Chen X, Li J. Chemical Glycoproteomic Profiling in Rice Seedlings Reveals N-glycosylation in the ERAD-L Machinery. Mol Cell Proteomics 2025; 24:100883. [PMID: 39577566 PMCID: PMC11869521 DOI: 10.1016/j.mcpro.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
As a ubiquitous and essential posttranslational modification occurring in both plants and animals, protein N-linked glycosylation regulates various important biological processes. Unlike the well-studied animal N-glycoproteomes, the landscape of rice N-glycoproteome remains largely unexplored. Here, by developing a chemical glycoproteomic strategy based on metabolic glycan labeling, we report a comprehensive profiling of the N-glycoproteome in rice seedlings. The rice seedlings are incubated with N-azidoacetylgalactosamine-a monosaccharide analog containing a bioorthogonal functional group-to metabolically label N-glycans, followed by conjugation with an affinity probe via click chemistry for the enrichment of the N-glycoproteins. Subsequent mass spectrometry analyses identify a total of 403 N-glycosylation sites and 673 N-glycosylated proteins, which are involved in various important biological processes. In particular, the core components of the endoplasmic reticulum-associated protein degradation machinery are N-glycosylated, and the N-glycosylation is important for the endoplasmic reticulum-associated protein degradation-L function. This work not only provides an invaluable resource for studying rice N-glycosylation but also demonstrates the applicability of metabolic glycan labeling in glycoproteomic profiling for crop species.
Collapse
Affiliation(s)
- Cong Lei
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Yazhouwan National Laboratory, Sanya, China
| | - Xilong Li
- Yazhouwan National Laboratory, Sanya, China.
| | - Wenjia Li
- Yazhouwan National Laboratory, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zihan Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Simiao Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Yili Hu
- Yazhouwan National Laboratory, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qitao Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yahong Qiu
- Yazhouwan National Laboratory, Sanya, China
| | - Yilan Zhou
- Yazhouwan National Laboratory, Sanya, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Yu
- Yazhouwan National Laboratory, Sanya, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China.
| | - Jiayang Li
- Yazhouwan National Laboratory, Sanya, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Shukla N, Neal ML, Farré JC, Mast FD, Truong L, Simon T, Miller LR, Aitchison JD, Subramani S. TOR and heat shock response pathways regulate peroxisome biogenesis during proteotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630809. [PMID: 40093121 PMCID: PMC11908190 DOI: 10.1101/2024.12.31.630809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Peroxisomes are versatile organelles mediating energy homeostasis and redox balance. While peroxisome dysfunction is linked to numerous diseases, the molecular mechanisms and signaling pathways regulating peroxisomes during cellular stress remain elusive. Using yeast, we show that perturbations disrupting protein homeostasis including loss of ER or cytosolic chaperone function, impairments in ER protein translocation, blocking ER N-glycosylation, or reductive stress, cause peroxisome proliferation. This proliferation is driven by increased de novo biogenesis from the ER as well as increased fission of pre-existing peroxisomes, rather than impaired pexophagy. Notably, peroxisome biogenesis is essential for cellular recovery from proteotoxic stress. Through comprehensive testing of major signaling pathways, we determine this response to be mediated by activation of the heat shock response and inhibition of Target of Rapamycin (TOR) signaling. Finally, the effects of proteotoxic stress and TOR inhibition on peroxisomes are also captured in human fibroblasts. Overall, our findings reveal a critical and conserved role of peroxisomes in cellular response to proteotoxic stress.
Collapse
Affiliation(s)
- Nandini Shukla
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jean-Claude Farré
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Linh Truong
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Theresa Simon
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Leslie R Miller
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suresh Subramani
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Hooda Y, Sente A, Judy RM, Smalinskaitė L, Peak-Chew SY, Naydenova K, Malinauskas T, Hardwick SW, Chirgadze DY, Aricescu AR, Hegde RS. Mechanism of NACHO-mediated assembly of pentameric ligand-gated ion channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620708. [PMID: 39553992 PMCID: PMC11565801 DOI: 10.1101/2024.10.28.620708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are cell surface receptors of crucial importance for animal physiology1-4. This diverse protein family mediates the ionotropic signals triggered by major neurotransmitters and includes γ-aminobutyric acid receptors (GABAARs) and acetylcholine receptors (nAChRs). Receptor function is fine-tuned by a myriad of endogenous and pharmacological modulators3. A functional pLGIC is built from five homologous, sometimes identical, subunits, each containing a β-scaffold extracellular domain (ECD), a four-helix transmembrane domain (TMD) and intracellular loops of variable length. Although considerable progress has been made in understanding pLGICs in structural and functional terms, the molecular mechanisms that enable their assembly at the endoplasmic reticulum (ER)5 in a vast range of potential subunit configurations6 remain unknown. Here, we identified candidate pLGICs assembly factors selectively associated with an unassembled GABAAR subunit. Focusing on one of the candidates, we determined the cryo-EM structure of an assembly intermediate containing two α1 subunits of GABAAR each bound to an ER-resident membrane protein NACHO. The structure showed how NACHO shields the principal (+) transmembrane interface of α1 subunits containing an immature extracellular conformation. Crosslinking and structure-prediction revealed an adjacent surface on NACHO for β2 subunit interactions to guide stepwise oligimerisation. Mutations of either subunit-interacting surface on NACHO also impaired the formation of homopentameric α7 nAChRs, pointing to a generic framework for pLGIC assembly. Our work provides the foundation for understanding the regulatory principles underlying pLGIC structural diversity.
Collapse
Affiliation(s)
- Yogesh Hooda
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Equal contribution
| | - Andrija Sente
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Equal contribution
| | - Ryan M. Judy
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Equal contribution
| | - Luka Smalinskaitė
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | | - Tomas Malinauskas
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Steven W. Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - A. Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | |
Collapse
|
5
|
Müller L, Hoppe T. UPS-dependent strategies of protein quality control degradation. Trends Biochem Sci 2024; 49:859-874. [PMID: 38945729 DOI: 10.1016/j.tibs.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
The degradation of damaged proteins is critical for tissue integrity and organismal health because damaged proteins have a high propensity to form aggregates. E3 ubiquitin ligases are key regulators of protein quality control (PQC) and mediate the selective degradation of damaged proteins, a process termed 'PQC degradation' (PQCD). The degradation signals (degrons) that trigger PQCD are based on hydrophobic sites that are normally buried within the native protein structure. However, an open question is how PQCD-specialized E3 ligases distinguish between transiently misfolded proteins, which can be efficiently refolded, and permanently damaged proteins, which must be degraded. While significant progress has been made in characterizing degradation determinants, understanding the key regulatory signals of cellular and organismal PQCD pathways remains a challenge.
Collapse
Affiliation(s)
- Leonie Müller
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
6
|
Brockmöller S, Seeger T, Worek F, Rothmiller S. Cell-Sonar, a Novel Method for Intracellular Tracking of Secretory Pathways. Cells 2024; 13:1449. [PMID: 39273021 PMCID: PMC11394445 DOI: 10.3390/cells13171449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Intracellular tracking is commonly used in trafficking research. Until today, the respective techniques have remained complex, and complicated, mostly transgenic target protein changes are necessary, often requiring expensive equipment and expert knowledge. METHODS We present a novel method, which we term "cell-sonar", that enables the user to track expression changes of specific protein markers that serve as points of interaction. Our study provides comparable analyses of expression changes of these marker proteins by in-cell Western analyses in two otherwise isogenic cell lines that only differ in the overexpression of the tracked target protein. Using the overexpressed human adult muscle-type nicotinic acetylcholine receptor as an example, we demonstrate that cell-sonar can cover multiple intracellular compartments such as the endoplasmic reticulum, the pathway between it and the Golgi apparatus, and the endocytic pathway. RESULTS We provide evidence for receptor maturation in the Golgi and storage in recycling endosomes, rather than the fate of increased insertion into the plasma membrane. Additionally, we demonstrate with the implementation of nicotine that the receptor's destiny is exasperated up to secondary degradation. CONCLUSIONS Cell-sonar is an affordable, easy-to-implement, and cheap method that can be adapted to a broad variety of proteins and cellular pathways of interest to researchers.
Collapse
Affiliation(s)
- Sabrina Brockmöller
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Bavaria, Germany
| | | | | | | |
Collapse
|
7
|
Owutey SL, Procuniar KA, Akoto E, Davis JC, Vachon RM, O'Malley LF, Schneider HO, Smaldino PJ, True JD, Kalinski AL, Rubenstein EM. Endoplasmic reticulum and inner nuclear membrane ubiquitin-conjugating enzymes Ubc6 and Ubc7 confer resistance to hygromycin B in Saccharomyces cerevisiae. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001276. [PMID: 39139584 PMCID: PMC11320122 DOI: 10.17912/micropub.biology.001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Aberrant endoplasmic reticulum (ER) and inner nuclear membrane (INM) proteins are destroyed through ER-associated degradation (ERAD) and INM-associated degradation (INMAD). We previously showed the Hrd1, Doa10, and Asi ERAD and INMAD ubiquitin ligases (E3s) in Saccharomyces cerevisiae confer resistance to hygromycin B, which distorts the ribosome decoding center. Here, we assessed the requirement of Ubc6 and Ubc7, the primary ERAD and INMAD ubiquitin-conjugating enzymes (E2s) for hygromycin B resistance. Loss of either E2 sensitized cells to hygromycin B, with UBC7 deletion having a greater impact, consistent with characterized roles for Ubc6 and Ubc7 in ER and INM protein quality control.
Collapse
Affiliation(s)
| | | | | | - Jacob C Davis
- Department of Biology, Ball State University
- Department of Anesthesiology, University of North Carolina
| | | | | | - Hayden O Schneider
- Department of Biology, Ball State University
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center
| | | | | | | | | |
Collapse
|
8
|
Guerriero CJ, Brodsky JL. The HERCulean task of recognizing, ubiquitinating, and shielding misfolded integral membrane proteins. J Cell Biol 2024; 223:e202405160. [PMID: 38836811 PMCID: PMC11153772 DOI: 10.1083/jcb.202405160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
During ER-associated decay, unfolded membrane-resident proteins are targeted for removal and degradation by ubiquitin ligases whose identities and precise operations remain unclear. In this issue, Guerriero and Brodsky discuss new results from Kamada et al. (https://doi.org/10.1083/jcb.202308003) showing the clearance of misfolded CFTR by the E3 ligase HERC3.
Collapse
Affiliation(s)
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Wu H, Smalinskaitė L, Hegde RS. EMC rectifies the topology of multipass membrane proteins. Nat Struct Mol Biol 2024; 31:32-41. [PMID: 37957425 PMCID: PMC10803268 DOI: 10.1038/s41594-023-01120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 11/15/2023]
Abstract
Most eukaryotic multipass membrane proteins are inserted into the membrane of the endoplasmic reticulum. Their transmembrane domains (TMDs) are thought to be inserted co-translationally as they emerge from a membrane-bound ribosome. Here we find that TMDs near the carboxyl terminus of mammalian multipass proteins are inserted post-translationally by the endoplasmic reticulum membrane protein complex (EMC). Site-specific crosslinking shows that the EMC's cytosol-facing hydrophilic vestibule is adjacent to a pre-translocated C-terminal tail. EMC-mediated insertion is mostly agnostic to TMD hydrophobicity, favored for short uncharged C-tails and stimulated by a preceding unassembled TMD bundle. Thus, multipass membrane proteins can be released by the ribosome-translocon complex in an incompletely inserted state, requiring a separate EMC-mediated post-translational insertion step to rectify their topology, complete biogenesis and evade quality control. This sequential co-translational and post-translational mechanism may apply to ~250 diverse multipass proteins, including subunits of the pentameric ion channel family that are crucial for neurotransmission.
Collapse
Affiliation(s)
- Haoxi Wu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
10
|
Flagg MP, Lam B, Lam DK, Le TM, Kao A, Slaiwa YI, Hampton RY. Exploring the "misfolding problem" by systematic discovery and analysis of functional-but-degraded proteins. Mol Biol Cell 2023; 34:ar125. [PMID: 37729018 PMCID: PMC10848938 DOI: 10.1091/mbc.e23-06-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
In both health and disease, the ubiquitin-proteasome system (UPS) degrades point mutants that retain partial function but have decreased stability compared with their wild-type counterparts. This class of UPS substrate includes routine translational errors and numerous human disease alleles, such as the most common cause of cystic fibrosis, ΔF508-CFTR. Yet, there is no systematic way to discover novel examples of these "minimally misfolded" substrates. To address that shortcoming, we designed a genetic screen to isolate functional-but-degraded point mutants, and we used the screen to study soluble, monomeric proteins with known structures. These simple parent proteins yielded diverse substrates, allowing us to investigate the structural features, cytotoxicity, and small-molecule regulation of minimal misfolding. Our screen can support numerous lines of inquiry, and it provides broad access to a class of poorly understood but biomedically critical quality-control substrates.
Collapse
Affiliation(s)
- Matthew P. Flagg
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Breanna Lam
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Darren K. Lam
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Tiffany M. Le
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Andy Kao
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Yousif I. Slaiwa
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Randolph Y. Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
11
|
Peterson BG, Hwang J, Russ JE, Schroeder JW, Freddolino PL, Baldridge RD. Deep mutational scanning highlights a role for cytosolic regions in Hrd1 function. Cell Rep 2023; 42:113451. [PMID: 37980570 PMCID: PMC10751623 DOI: 10.1016/j.celrep.2023.113451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023] Open
Abstract
Misfolded endoplasmic reticulum (ER) proteins are degraded through a process called ER-associated degradation (ERAD). Soluble, lumenal ERAD targets are recognized, retrotranslocated across the ER membrane, ubiquitinated, extracted from the membrane, and degraded by the proteasome using an ERAD pathway containing a ubiquitin ligase called Hrd1. To determine how Hrd1 mediates these processes, we developed a deep mutational scanning approach to identify residues involved in Hrd1 function, including those exclusively required for lumenal degradation. We identify several regions required for different Hrd1 functions. Most surprisingly, we find two cytosolic regions of Hrd1 required for lumenal ERAD substrate degradation. Using in vivo and in vitro approaches, we define roles for disordered regions between structural elements that are required for Hrd1 autoubiquitination and substrate interaction. Our results demonstrate that disordered cytosolic regions promote substrate retrotranslocation by controlling Hrd1 activation and establishing directionality of retrotranslocation for lumenal substrate across the ER membrane.
Collapse
Affiliation(s)
- Brian G Peterson
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jennifer E Russ
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jeremy W Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - P Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 2023; 24:777-796. [PMID: 37528230 DOI: 10.1038/s41580-023-00633-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.
Collapse
Affiliation(s)
- John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Ernst Jarosch
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Vu BN, Vu TV, Yoo JY, Nguyen NT, Ko KS, Kim JY, Lee KO. CRISPR-Cas-mediated unfolded protein response control for enhancing plant stress resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1271368. [PMID: 37908833 PMCID: PMC10613997 DOI: 10.3389/fpls.2023.1271368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Plants consistently encounter environmental stresses that negatively affect their growth and development. To mitigate these challenges, plants have developed a range of adaptive strategies, including the unfolded protein response (UPR), which enables them to manage endoplasmic reticulum (ER) stress resulting from various adverse conditions. The CRISPR-Cas system has emerged as a powerful tool for plant biotechnology, with the potential to improve plant tolerance and resistance to biotic and abiotic stresses, as well as enhance crop productivity and quality by targeting specific genes, including those related to the UPR. This review highlights recent advancements in UPR signaling pathways and CRISPR-Cas technology, with a particular focus on the use of CRISPR-Cas in studying plant UPR. We also explore prospective applications of CRISPR-Cas in engineering UPR-related genes for crop improvement. The integration of CRISPR-Cas technology into plant biotechnology holds the promise to revolutionize agriculture by producing crops with enhanced resistance to environmental stresses, increased productivity, and improved quality traits.
Collapse
Affiliation(s)
- Bich Ngoc Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Tien Van Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Ngan Thi Nguyen
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio Inc., Jinju, Republic of Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
14
|
Doss EM, Moore JM, Harman BH, Doud EH, Rubenstein EM, Bernstein DA. Characterization of endoplasmic reticulum-associated degradation in the human fungal pathogen Candida albicans. PeerJ 2023; 11:e15897. [PMID: 37645016 PMCID: PMC10461541 DOI: 10.7717/peerj.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Background Candida albicans is the most prevalent human fungal pathogen. In immunocompromised individuals, C. albicans can cause serious systemic disease, and patients infected with drug-resistant isolates have few treatment options. The ubiquitin-proteasome system has not been thoroughly characterized in C. albicans. Research from other organisms has shown ubiquitination is important for protein quality control and regulated protein degradation at the endoplasmic reticulum (ER) via ER-associated protein degradation (ERAD). Methods Here we perform the first characterization, to our knowledge, of ERAD in a human fungal pathogen. We generated functional knockouts of C. albicans genes encoding three proteins predicted to play roles in ERAD, the ubiquitin ligases Hrd1 and Doa10 and the ubiquitin-conjugating enzyme Ubc7. We assessed the fitness of each mutant in the presence of proteotoxic stress, and we used quantitative tandem mass tag mass spectrometry to characterize proteomic alterations in yeast lacking each gene. Results Consistent with a role in protein quality control, yeast lacking proteins thought to contribute to ERAD displayed hypersensitivity to proteotoxic stress. Furthermore, each mutant displayed distinct proteomic profiles, revealing potential physiological ERAD substrates, co-factors, and compensatory stress response factors. Among candidate ERAD substrates are enzymes contributing to ergosterol synthesis, a known therapeutic vulnerability of C. albicans. Together, our results provide the first description of ERAD function in C. albicans, and, to our knowledge, any pathogenic fungus.
Collapse
Affiliation(s)
- Ellen M. Doss
- Department of Biology, Ball State University, Muncie, Indiana, United States
- Mode of Action and Resistance Management Center of Expertise, Corteva Agriscience, Indianapolis, Indiana, United States
| | - Joshua M. Moore
- Department of Biology, Ball State University, Muncie, Indiana, United States
| | - Bryce H. Harman
- Department of Biology, Ball State University, Muncie, Indiana, United States
| | - Emma H. Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Eric M. Rubenstein
- Department of Biology, Ball State University, Muncie, Indiana, United States
| | | |
Collapse
|
15
|
Turk SM, Indovina CJ, Miller JM, Overton DL, Runnebohm AM, Orchard CJ, Tragesser-Tiña ME, Gosser SK, Doss EM, Richards KA, Irelan CB, Daraghmi MM, Bailey CG, Niekamp JM, Claypool KP, Engle SM, Buchanan BW, Woodruff KA, Olesen JB, Smaldino PJ, Rubenstein EM. Lipid biosynthesis perturbation impairs endoplasmic reticulum-associated degradation. J Biol Chem 2023; 299:104939. [PMID: 37331602 PMCID: PMC10372827 DOI: 10.1016/j.jbc.2023.104939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023] Open
Abstract
The relationship between lipid homeostasis and protein homeostasis (proteostasis) is complex and remains incompletely understood. We conducted a screen for genes required for efficient degradation of Deg1-Sec62, a model aberrant translocon-associated substrate of the endoplasmic reticulum (ER) ubiquitin ligase Hrd1, in Saccharomyces cerevisiae. This screen revealed that INO4 is required for efficient Deg1-Sec62 degradation. INO4 encodes one subunit of the Ino2/Ino4 heterodimeric transcription factor, which regulates expression of genes required for lipid biosynthesis. Deg1-Sec62 degradation was also impaired by mutation of genes encoding several enzymes mediating phospholipid and sterol biosynthesis. The degradation defect in ino4Δ yeast was rescued by supplementation with metabolites whose synthesis and uptake are mediated by Ino2/Ino4 targets. Stabilization of a panel of substrates of the Hrd1 and Doa10 ER ubiquitin ligases by INO4 deletion indicates ER protein quality control is generally sensitive to perturbed lipid homeostasis. Loss of INO4 sensitized yeast to proteotoxic stress, suggesting a broad requirement for lipid homeostasis in maintaining proteostasis. A better understanding of the dynamic relationship between lipid homeostasis and proteostasis may lead to improved understanding and treatment of several human diseases associated with altered lipid biosynthesis.
Collapse
Affiliation(s)
- Samantha M Turk
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | - Jacob M Miller
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | | | - Cade J Orchard
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | | | - Ellen M Doss
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Kyle A Richards
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | | | - Connor G Bailey
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Julia M Niekamp
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | - Sarah M Engle
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Bryce W Buchanan
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | - James B Olesen
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | | |
Collapse
|
16
|
Peterson BG, Hwang J, Russ JE, Schroeder J, Freddolino PL, Baldridge RD. Deep mutational scanning highlights a new role for cytosolic regions in Hrd1 function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535444. [PMID: 37066402 PMCID: PMC10103981 DOI: 10.1101/2023.04.03.535444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Misfolded endoplasmic reticulum proteins are degraded through a process called endoplasmic reticulum associated degradation (ERAD). Soluble, lumenal ERAD targets are recognized, retrotranslocated across the ER membrane, ubiquitinated, extracted from the membrane, and degraded by the proteasome using an ERAD pathway containing a ubiquitin ligase called Hrd1. To determine how Hrd1 mediates these processes, we developed a deep mutational scanning approach to identify residues involved in Hrd1 function, including those exclusively required for lumenal degradation. We identified several regions required for different Hrd1 functions. Most surprisingly, we found two cytosolic regions of Hrd1 required for lumenal ERAD substrate degradation. Using in vivo and in vitro approaches, we defined roles for disordered regions between structural elements that were required for Hrd1's ability to autoubiquitinate and interact with substrate. Our results demonstrate that disordered cytosolic regions promote substrate retrotranslocation by controlling Hrd1 activation and establishing directionality of retrotranslocation for lumenal substrate across the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- Brian G. Peterson
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jennifer E. Russ
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School
| | - Ryan D. Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Bhaduri S, Aguayo A, Ohno Y, Proietto M, Jung J, Wang I, Kandel R, Singh N, Ibrahim I, Fulzele A, Bennett EJ, Kihara A, Neal SE. An ERAD-independent role for rhomboid pseudoprotease Dfm1 in mediating sphingolipid homeostasis. EMBO J 2023; 42:e112275. [PMID: 36350249 PMCID: PMC9929635 DOI: 10.15252/embj.2022112275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Nearly one-third of nascent proteins are initially targeted to the endoplasmic reticulum (ER), where they are correctly folded and assembled before being delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) removes these client proteins from the ER membrane to the cytosol in a process known as retrotranslocation. Our previous work demonstrated that rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated membrane integral ERAD substrates. Herein, we found that Dfm1 associates with the SPOTS complex, which is composed of serine palmitoyltransferase (SPT) enzymes and accessory components that are critical for catalyzing the first rate-limiting step of the sphingolipid biosynthesis pathway. Furthermore, Dfm1 employs an ERAD-independent role for facilitating the ER export and endosome- and Golgi-associated degradation (EGAD) of Orm2, which is a major antagonist of SPT activity. Given that the accumulation of human Orm2 homologs, ORMDLs, is associated with various pathologies, our study serves as a molecular foothold for understanding how dysregulation of sphingolipid metabolism leads to various diseases.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Analine Aguayo
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Marco Proietto
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Jasmine Jung
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Isabel Wang
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Rachel Kandel
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Narinderbir Singh
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Ikran Ibrahim
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Amit Fulzele
- Present address:
Institute of Molecular BiologyMainzGermany
| | - Eric J Bennett
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Sonya E Neal
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
18
|
Kandel R, Jung J, Syau D, Kuo T, Songster L, Horn C, Chapman C, Aguayo A, Duttke S, Benner C, Neal SE. Yeast derlin Dfm1 employs a chaperone-like function to resolve misfolded membrane protein stress. PLoS Biol 2023; 21:e3001950. [PMID: 36689475 PMCID: PMC9894555 DOI: 10.1371/journal.pbio.3001950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/02/2023] [Accepted: 12/07/2022] [Indexed: 01/24/2023] Open
Abstract
Protein aggregates are a common feature of diseased and aged cells. Membrane proteins comprise a quarter of the proteome, and yet, it is not well understood how aggregation of membrane proteins is regulated and what effects these aggregates can have on cellular health. We have determined in yeast that the derlin Dfm1 has a chaperone-like activity that influences misfolded membrane protein aggregation. We establish that this function of Dfm1 does not require recruitment of the ATPase Cdc48 and it is distinct from Dfm1's previously identified function in dislocating misfolded membrane proteins from the endoplasmic reticulum (ER) to the cytosol for degradation. Additionally, we assess the cellular impacts of misfolded membrane proteins in the absence of Dfm1 and determine that misfolded membrane proteins are toxic to cells in the absence of Dfm1 and cause disruptions to proteasomal and ubiquitin homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Jasmine Jung
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Della Syau
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Tiffany Kuo
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Livia Songster
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Casey Horn
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Claire Chapman
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Analine Aguayo
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Sascha Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Christopher Benner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Sonya E. Neal
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
19
|
Krshnan L, van de Weijer ML, Carvalho P. Endoplasmic Reticulum-Associated Protein Degradation. Cold Spring Harb Perspect Biol 2022; 14:a041247. [PMID: 35940909 PMCID: PMC9732900 DOI: 10.1101/cshperspect.a041247] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Misfolded, potentially toxic proteins in the lumen and membrane of the endoplasmic reticulum (ER) are eliminated by proteasomes in the cytosol through ER-associated degradation (ERAD). The ERAD process involves the recognition of substrates in the lumen and membrane of the ER, their translocation into the cytosol, ubiquitination, and delivery to the proteasome for degradation. These ERAD steps are performed by membrane-embedded ubiquitin-ligase complexes of different specificity that together cover a wide range of substrates. Besides misfolded proteins, ERAD further contributes to quality control by targeting unassembled and mislocalized proteins. ERAD also targets a restricted set of folded proteins to influence critical ER functions such as sterol biosynthesis, calcium homeostasis, or ER contacts with other organelles. This review describes the ubiquitin-ligase complexes and the principles guiding protein degradation by ERAD.
Collapse
Affiliation(s)
- Logesvaran Krshnan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
20
|
Mehrtash AB, Hochstrasser M. Elements of the ERAD ubiquitin ligase Doa10 regulating sequential poly-ubiquitylation of its targets. iScience 2022; 25:105351. [PMID: 36325070 PMCID: PMC9619350 DOI: 10.1016/j.isci.2022.105351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
In ER-associated degradation (ERAD), misfolded ER proteins are degraded by the proteasome after undergoing ubiquitylation. Yeast Doa10 (human MARCHF6/TEB4) is a membrane-embedded E3 ubiquitin ligase that functions with E2s Ubc6 and Ubc7. Ubc6 attaches a single ubiquitin to substrates, which is extended by Ubc7 to form a polyubiquitin chain. We show the conserved C-terminal element (CTE) of Doa10 promotes E3-mediated Ubc6 activity. Doa10 substrates undergoing an alternative ubiquitylation mechanism are still degraded in CTE-mutant cells. Structure prediction by AlphaFold2 suggests the CTE binds near the catalytic RING-CH domain, implying a direct role in substrate ubiquitylation, and we confirm this interaction using intragenic suppression. Truncation analysis defines a minimal E2-binding region of Doa10; structural predictions suggest that Doa10 forms a retrotranslocation channel and that E2s bind within the cofactor-binding region defined here. These results provide mechanistic insight into how Doa10, and potentially other ligases, interact with their cofactors and mediate ERAD. The conserved Doa10 C-terminus promotes E3-mediated activity of Ubc6 The minimal E2-binding region of Doa10 includes TMs 1–9 The N- and C-terminus of Doa10 interact, likely forming an ERAD protein channel
Collapse
Affiliation(s)
- Adrian B. Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520 CT, USA
| | - Mark Hochstrasser
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520 CT, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
- Corresponding author
| |
Collapse
|
21
|
Bloemeke N, Meighen‐Berger K, Hitzenberger M, Bach NC, Parr M, Coelho JPL, Frishman D, Zacharias M, Sieber SA, Feige MJ. Intramembrane client recognition potentiates the chaperone functions of calnexin. EMBO J 2022; 41:e110959. [PMID: 36314723 PMCID: PMC9753464 DOI: 10.15252/embj.2022110959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
One-third of the human proteome is comprised of membrane proteins, which are particularly vulnerable to misfolding and often require folding assistance by molecular chaperones. Calnexin (CNX), which engages client proteins via its sugar-binding lectin domain, is one of the most abundant ER chaperones, and plays an important role in membrane protein biogenesis. Based on mass spectrometric analyses, we here show that calnexin interacts with a large number of nonglycosylated membrane proteins, indicative of additional nonlectin binding modes. We find that calnexin preferentially bind misfolded membrane proteins and that it uses its single transmembrane domain (TMD) for client recognition. Combining experimental and computational approaches, we systematically dissect signatures for intramembrane client recognition by calnexin, and identify sequence motifs within the calnexin TMD region that mediate client binding. Building on this, we show that intramembrane client binding potentiates the chaperone functions of calnexin. Together, these data reveal a widespread role of calnexin client recognition in the lipid bilayer, which synergizes with its established lectin-based substrate binding. Molecular chaperones thus can combine different interaction modes to support the biogenesis of the diverse eukaryotic membrane proteome.
Collapse
Affiliation(s)
- Nicolas Bloemeke
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Kevin Meighen‐Berger
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Manuel Hitzenberger
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Nina C Bach
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Marina Parr
- Department of Bioinformatics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Joao PL Coelho
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Dmitrij Frishman
- Department of Bioinformatics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Martin Zacharias
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Stephan A Sieber
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Matthias J Feige
- Department of Bioscience, Center for Functional Protein Assemblies (CPA), TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| |
Collapse
|
22
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
23
|
Yu Z, Li H, Zhu J, Wang H, Jin X. The roles of E3 ligases in Hepatocellular carcinoma. Am J Cancer Res 2022; 12:1179-1214. [PMID: 35411231 PMCID: PMC8984888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023] Open
Abstract
Hepatocarcinogenesis is a complex multistep biological process involving genetic and epigenetic alterations that are accompanied by activation of oncoproteins and inactivation of tumor suppressors, which in turn results in Hepatocellular carcinoma (HCC), one of the common tumors with high morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) is the key to protein degradation and regulation of physiological and pathological processes, and E3 ligases are key enzymes in the UPS that contain a variety of subfamily proteins involved in the regulation of some common signal pathways in HCC. There is growing evidence that many structural or functional dysfunctions of E3 are engaged in the development and progression of HCC. Herein, we review recent research advances in HCC-associated E3 ligases, describe their structure, classification, functional roles, and discuss some mechanisms of the abnormal activation or inactivation of the HCC-associated signal pathway due to the binding of E3 to known substrates. In addition, given the success of proteasome inhibitors in the treatment of malignant cancers, we characterize the current knowledge and future prospects for targeted therapies against aberrant E3 in HCC.
Collapse
Affiliation(s)
- Zongdong Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Jie Zhu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Haibiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| |
Collapse
|
24
|
Hegde RS, Keenan RJ. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol 2022; 23:107-124. [PMID: 34556847 DOI: 10.1038/s41580-021-00413-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Gordon Center for Integrative Science, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Nakatsukasa K, Wigge S, Takano Y, Kawarasaki T, Kamura T, Brodsky JL. A positive genetic selection for transmembrane domain mutations in HRD1 underscores the importance of Hrd1 complex integrity during ERAD. Curr Genet 2022; 68:227-242. [PMID: 35041076 PMCID: PMC9036396 DOI: 10.1007/s00294-022-01227-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for ubiquitination and degradation by the proteasome. During this process, known as ER-associated degradation (ERAD), the ER-embedded Hrd1 ubiquitin ligase plays a central role in recognizing, ubiquitinating, and retrotranslocating scores of lumenal and integral membrane proteins. To better define the mechanisms underlying Hrd1 function in Saccharomyces cerevisiae, several model substrates have been developed. One substrate is Sec61-2, a temperature sensitive allele of the Sec61 translocation channel. Cells expressing Sec61-2 grow at 25 °C because the protein is stable, but sec61-2 yeast are inviable at 38 °C because the mutated protein is degraded in a Hrd1-dependent manner. Therefore, deleting HRD1 stabilizes Sec61-2 and hence sec61-2hrd1∆ double mutants are viable at 38 °C. This unique phenotype allowed us to perform a non-biased screen for loss-of-function alleles in HRD1. Based on its importance in mediating substrate retrotranslocation, the screen was also developed to focus on mutations in sequences encoding Hrd1's transmembrane-rich domain. Ultimately, a group of recessive mutations was identified in HRD1, including an ensemble of destabilizing mutations that resulted in the delivery of Hrd1 to the ERAD pathway. A more stable mutant resided in a buried transmembrane domain, yet the Hrd1 complex was disrupted in yeast expressing this mutant. Together, these data confirm the importance of Hrd1 complex integrity during ERAD, suggest that allosteric interactions between transmembrane domains regulate Hrd1 complex formation, and provide the field with new tools to define the dynamic interactions between ERAD components during substrate retrotranslocation.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan.
| | - Sylvia Wigge
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA, 15260, USA
| | - Yuki Takano
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Tomoyuki Kawarasaki
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
26
|
SLC26A9 is selected for endoplasmic reticulum associated degradation (ERAD) via Hsp70-dependent targeting of the soluble STAS domain. Biochem J 2021; 478:4203-4220. [PMID: 34821356 PMCID: PMC8826537 DOI: 10.1042/bcj20210644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
SLC26A9, a member of the solute carrier protein family, transports chloride ions across various epithelia. SLC26A9 also associates with other ion channels and transporters linked to human health, and in some cases these heterotypic interactions are essential to support the biogenesis of both proteins. Therefore, understanding how this complex membrane protein is initially folded might provide new therapeutic strategies to overcome deficits in the function of SLC26A9 partners, one of which is associated with Cystic Fibrosis. To this end, we developed a novel yeast expression system for SLC26A9. This facile system has been used extensively with other ion channels and transporters to screen for factors that oversee protein folding checkpoints. As commonly observed for other channels and transporters, we first noted that a substantial fraction of SLC26A9 is targeted for endoplasmic reticulum associated degradation (ERAD), which destroys folding-compromised proteins in the early secretory pathway. We next discovered that ERAD selection requires the Hsp70 chaperone, which can play a vital role in ERAD substrate selection. We then created SLC26A9 mutants and found that the transmembrane-rich domain of SLC26A9 was quite stable, whereas the soluble cytosolic STAS domain was responsible for Hsp70-dependent ERAD. To support data obtained in the yeast model, we were able to recapitulate Hsp70-facilitated ERAD of the STAS domain in human tissue culture cells. These results indicate that a critical barrier to nascent membrane protein folding can reside within a specific soluble domain, one that is monitored by components associated with the ERAD machinery.
Collapse
|
27
|
Smith CE, Tsai YC, Liang YH, Khago D, Mariano J, Li J, Tarasov SG, Gergel E, Tsai B, Villaneuva M, Clapp ME, Magidson V, Chari R, Byrd RA, Ji X, Weissman AM. A structurally conserved site in AUP1 binds the E2 enzyme UBE2G2 and is essential for ER-associated degradation. PLoS Biol 2021; 19:e3001474. [PMID: 34879065 PMCID: PMC8699718 DOI: 10.1371/journal.pbio.3001474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 12/23/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway of fundamental importance to cellular homeostasis. Although multiple ERAD pathways exist for targeting topologically distinct substrates, all pathways require substrate ubiquitination. Here, we characterize a key role for the UBE2G2 Binding Region (G2BR) of the ERAD accessory protein ancient ubiquitous protein 1 (AUP1) in ERAD pathways. This 27-amino acid (aa) region of AUP1 binds with high specificity and low nanomolar affinity to the backside of the ERAD ubiquitin-conjugating enzyme (E2) UBE2G2. The structure of the AUP1 G2BR (G2BRAUP1) in complex with UBE2G2 reveals an interface that includes a network of salt bridges, hydrogen bonds, and hydrophobic interactions essential for AUP1 function in cells. The G2BRAUP1 shares significant structural conservation with the G2BR found in the E3 ubiquitin ligase gp78 and in vitro can similarly allosterically activate ubiquitination in conjunction with ERAD E3s. In cells, AUP1 is uniquely required to maintain normal levels of UBE2G2; this is due to G2BRAUP1 binding to the E2 and preventing its rapid degradation. In addition, the G2BRAUP1 is required for both ER membrane recruitment of UBE2G2 and for its activation at the ER membrane. Thus, by binding to the backside of a critical ERAD E2, G2BRAUP1 plays multiple critical roles in ERAD.
Collapse
Affiliation(s)
- Christopher E. Smith
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Yu-He Liang
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Domarin Khago
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Jennifer Mariano
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Jess Li
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Sergey G. Tarasov
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Emma Gergel
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Borong Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Matthew Villaneuva
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Michelle E. Clapp
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - R. Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Xinhua Ji
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| |
Collapse
|
28
|
Nejatfard A, Wauer N, Bhaduri S, Conn A, Gourkanti S, Singh N, Kuo T, Kandel R, Amaro RE, Neal SE. Derlin rhomboid pseudoproteases employ substrate engagement and lipid distortion to enable the retrotranslocation of ERAD membrane substrates. Cell Rep 2021; 37:109840. [PMID: 34686332 PMCID: PMC8641752 DOI: 10.1016/j.celrep.2021.109840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 01/13/2023] Open
Abstract
Nearly one-third of proteins are initially targeted to the endoplasmic reticulum (ER) membrane, where they are correctly folded and then delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) moves these clients from the ER membrane to the cytosol, a process known as retrotranslocation. Our recent work in Saccharomyces cerevisiae reveals a derlin rhomboid pseudoprotease, Dfm1, is involved in the retrotranslocation of ubiquitinated ERAD membrane substrates. In this study, we identify conserved residues of Dfm1 that are critical for retrotranslocation. We find several retrotranslocation-deficient Loop 1 mutants that display impaired binding to membrane substrates. Furthermore, Dfm1 possesses lipid thinning function to facilitate in the removal of ER membrane substrates, and this feature is conserved in its human homolog, Derlin-1, further implicating that derlin-mediated retrotranslocation is a well-conserved process.
Collapse
Affiliation(s)
- Anahita Nejatfard
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Wauer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Satarupa Bhaduri
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Adam Conn
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Saroj Gourkanti
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Narinderbir Singh
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tiffany Kuo
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel Kandel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sonya E Neal
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Zhang D, Hou Z, Aldrich KE, Lockwood L, Odom AL, Liby KT. A Novel Nrf2 Pathway Inhibitor Sensitizes Keap1-Mutant Lung Cancer Cells to Chemotherapy. Mol Cancer Ther 2021; 20:1692-1701. [PMID: 34158350 PMCID: PMC9936621 DOI: 10.1158/1535-7163.mct-21-0210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
The nuclear factor erythroid-2-related factor 2 (Nrf2)-Keap1-ARE pathway, a master regulator of oxidative stress, has emerged as a promising target for cancer therapy. Mutations in NFE2L2, KEAP1, and related genes have been found in many human cancers, especially lung cancer. These mutations lead to constitutive activation of the Nrf2 pathway, which promotes proliferation of cancer cells and their resistance to chemotherapies. Small molecules that inhibit the Nrf2 pathway are needed to arrest tumor growth and overcome chemoresistance in Nrf2-addicted cancers. Here, we identified a novel small molecule, MSU38225, which can suppress Nrf2 pathway activity. MSU38225 downregulates Nrf2 transcriptional activity and decreases the expression of Nrf2 downstream targets, including NQO1, GCLC, GCLM, AKR1C2, and UGT1A6. MSU38225 strikingly decreases the protein level of Nrf2, which can be blocked by the proteasome inhibitor MG132. Ubiquitination of Nrf2 is enhanced following treatment with MSU38225. By inhibiting production of antioxidants, MSU38225 increases the level of reactive oxygen species (ROS) when cells are stimulated with tert-butyl hydroperoxide (tBHP). MSU38225 also inhibits the growth of human lung cancer cells in both two-dimensional cell culture and soft agar. Cancer cells addicted to Nrf2 are more susceptible to MSU38225 for suppression of cell proliferation. MSU38225 also sensitizes human lung cancer cells to chemotherapies both in vitro and in vivo Our results suggest that MSU38225 is a novel Nrf2 pathway inhibitor that could potentially serve as an adjuvant therapy to enhance the response to chemotherapies in patients with lung cancer.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | - Zhilin Hou
- Department of Chemistry, Michigan State University, East Lansing, MI
| | - Kelly E. Aldrich
- Department of Chemistry, Michigan State University, East Lansing, MI
| | - Lizbeth Lockwood
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | - Aaron L. Odom
- Department of Chemistry, Michigan State University, East Lansing, MI
| | - Karen T. Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| |
Collapse
|
30
|
The Targeting of Native Proteins to the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway: An Expanding Repertoire of Regulated Substrates. Biomolecules 2021; 11:biom11081185. [PMID: 34439852 PMCID: PMC8393694 DOI: 10.3390/biom11081185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
All proteins are subject to quality control processes during or soon after their synthesis, and these cellular quality control pathways play critical roles in maintaining homeostasis in the cell and in organism health. Protein quality control is particularly vital for those polypeptides that enter the endoplasmic reticulum (ER). Approximately one-quarter to one-third of all proteins synthesized in eukaryotic cells access the ER because they are destined for transport to the extracellular space, because they represent integral membrane proteins, or because they reside within one of the many compartments of the secretory pathway. However, proteins that mature inefficiently are subject to ER-associated degradation (ERAD), a multi-step pathway involving the chaperone-mediated selection, ubiquitination, and extraction (or “retrotranslocation”) of protein substrates from the ER. Ultimately, these substrates are degraded by the cytosolic proteasome. Interestingly, there is an increasing number of native enzymes and metabolite and solute transporters that are also targeted for ERAD. While some of these proteins may transiently misfold, the ERAD pathway also provides a route to rapidly and quantitatively downregulate the levels and thus the activities of a variety of proteins that mature or reside in the ER.
Collapse
|
31
|
Cao T, Peng B, Zhou X, Cai J, Tang Y, Luo J, Xie H, Zhang J, Liu S. Integrated signaling system under endoplasmic reticulum stress in eukaryotic microorganisms. Appl Microbiol Biotechnol 2021; 105:4805-4818. [PMID: 34106312 DOI: 10.1007/s00253-021-11380-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle, which is crucial for correct folding and assembly of secretory and transmembrane proteins. Perturbations of ER function can cause ER stress. ER stress can activate the unfolded protein response (UPR) to cope with the accumulation of misfolded proteins and protein toxicity. UPR is a coordination system that regulates transcription and translation, leading to the recovery of ER homeostasis or cell death. However, cells have an integrated signaling system to cope with ER stress, which helps cells to restore and balance their ER function. The main components of this system are ER-associated degradation (ERAD), autophagy, hypoxia signaling, and mitochondrial biogenesis. If the balance cannot be restored, the imbalance will lead to cell death or apoptosis, or even to a series of diseases. In this review, a series of activities to restore the homeostasis of cells during ER stress are discussed. KEY POINTS: • Endoplasmic reticulum (ER) plays a key role in the biological process of cells. • Perturbations of ER function can cause ER stress, including the ER overload response (EOR), sterol-regulated cascade reaction, and the UPR. • Cells have an integrated signaling system (ERAD, autophagy, hypoxia signaling, and mitochondrial biogenesis) to cope with the adverse impact caused by ER stress.
Collapse
Affiliation(s)
- Ting Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Binfeng Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Jialun Cai
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Jie Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Haitao Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China.
| |
Collapse
|
32
|
Lemberg MK, Strisovsky K. Maintenance of organellar protein homeostasis by ER-associated degradation and related mechanisms. Mol Cell 2021; 81:2507-2519. [PMID: 34107306 DOI: 10.1016/j.molcel.2021.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Protein homeostasis mechanisms are fundamentally important to match cellular needs and to counteract stress conditions. A fundamental challenge is to understand how defective proteins are recognized and extracted from cellular organelles to be degraded in the cytoplasm. The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway is the best-understood organellar protein quality control system. Here, we review new insights into the mechanism of recognition and retrotranslocation of client proteins in ERAD. In addition to the membrane-integral ERAD E3 ubiquitin ligases, we highlight one protein family that is remarkably often involved in various aspects of membrane protein quality control and protein dislocation: the rhomboid superfamily, which includes derlins and intramembrane serine proteases. Rhomboid-like proteins have been found to control protein homeostasis in the ER, but also in other eukaryotic organelles and in bacteria, pointing toward conserved principles of membrane protein quality control across organelles and evolution.
Collapse
Affiliation(s)
- Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia.
| |
Collapse
|
33
|
Arines FM, Hamlin AJ, Yang X, Liu YYJ, Li M. A selective transmembrane recognition mechanism by a membrane-anchored ubiquitin ligase adaptor. J Cell Biol 2021; 220:211632. [PMID: 33351099 PMCID: PMC7759299 DOI: 10.1083/jcb.202001116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
While it is well-known that E3 ubiquitin ligases can selectively ubiquitinate membrane proteins in response to specific environmental cues, the underlying mechanisms for the selectivity are poorly understood. In particular, the role of transmembrane regions, if any, in target recognition remains an open question. Here, we describe how Ssh4, a yeast E3 ligase adaptor, recognizes the PQ-loop lysine transporter Ypq1 only after lysine starvation. We show evidence of an interaction between two transmembrane helices of Ypq1 (TM5 and TM7) and the single transmembrane helix of Ssh4. This interaction is regulated by the conserved PQ motif. Strikingly, recent structural studies of the PQ-loop family have suggested that TM5 and TM7 undergo major conformational changes during substrate transport, implying that transport-associated conformational changes may determine the selectivity. These findings thus provide critical information concerning the regulatory mechanism through which transmembrane domains can be specifically recognized in response to changing environmental conditions.
Collapse
Affiliation(s)
- Felichi Mae Arines
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Aaron Jeremy Hamlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Yun-Yu Jennifer Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
34
|
Flagg MP, Wangeline MA, Holland SR, Duttke SH, Benner C, Neal S, Hampton RY. Inner-nuclear-membrane-associated degradation employs Dfm1-independent retrotranslocation and alleviates misfolded transmembrane-protein toxicity. Mol Biol Cell 2021; 32:521-537. [PMID: 33566711 PMCID: PMC8101470 DOI: 10.1091/mbc.e20-11-0720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 11/11/2022] Open
Abstract
Before their delivery to and degradation by the 26S proteasome, misfolded transmembrane proteins of the endoplasmic reticulum (ER) and inner-nuclear membrane (INM) must be extracted from lipid bilayers. This extraction process, known as retrotranslocation, requires both quality-control E3 ubiquitin ligases and dislocation factors that diminish the energetic cost of dislodging the transmembrane segments of a protein. Recently, we showed that retrotranslocation of all ER transmembrane proteins requires the Dfm1 rhomboid pseudoprotease. However, we did not investigate whether Dfm1 also mediated retrotranslocation of transmembrane substrates in the INM, which is contiguous with the ER but functionally separated from it by nucleoporins. Here, we show that canonical retrotranslocation occurs during INM-associated degradation (INMAD) but proceeds independently of Dfm1. Despite this independence, ER-associated degradation (ERAD)-M and INMAD cooperate to mitigate proteotoxicity. We show a novel misfolded-transmembrane-protein toxicity that elicits genetic suppression, demonstrating the cell's ability to tolerate a toxic burden of misfolded transmembrane proteins without functional INMAD or ERAD-M. This strikingly contrasted the suppression of the dfm1Δ null, which leads to the resumption of ERAD-M through HRD-complex remodeling. Thus, we conclude that INM retrotranslocation proceeds through a novel, private channel that can be studied by virtue of its role in alleviating membrane-associated proteotoxicity.
Collapse
Affiliation(s)
- Matthew P. Flagg
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Margaret A. Wangeline
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Sarah R. Holland
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Sascha H. Duttke
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Sonya Neal
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Randolph Y. Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
35
|
Potential Physiological Relevance of ERAD to the Biosynthesis of GPI-Anchored Proteins in Yeast. Int J Mol Sci 2021; 22:ijms22031061. [PMID: 33494405 PMCID: PMC7865462 DOI: 10.3390/ijms22031061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
Misfolded and/or unassembled secretory and membrane proteins in the endoplasmic reticulum (ER) may be retro-translocated into the cytoplasm, where they undergo ER-associated degradation, or ERAD. The mechanisms by which misfolded proteins are recognized and degraded through this pathway have been studied extensively; however, our understanding of the physiological role of ERAD remains limited. This review describes the biosynthesis and quality control of glycosylphosphatidylinositol (GPI)-anchored proteins and briefly summarizes the relevance of ERAD to these processes. While recent studies suggest that ERAD functions as a fail-safe mechanism for the degradation of misfolded GPI-anchored proteins, several pieces of evidence suggest an intimate interaction between ERAD and the biosynthesis of GPI-anchored proteins.
Collapse
|
36
|
Abstract
Elimination of membrane proteins often requires recognition of their transmembrane domains (TMDs) in the lipid bilayer. In this issue, Arines et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202001116) show that in Saccharomyces cerevisiae, the vacuole-associated Rsp5 ubiquitin ligase uses a TMD in substrate adaptor Ssh4 to recognize membrane helices in Ypq1, which targets this lysine transporter for lysosomal degradation during lysine starvation.
Collapse
Affiliation(s)
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
37
|
Singh A, Vashistha N, Heck J, Tang X, Wipf P, Brodsky JL, Hampton RY. Direct involvement of Hsp70 ATP hydrolysis in Ubr1-dependent quality control. Mol Biol Cell 2020; 31:2669-2686. [PMID: 32966159 PMCID: PMC7927186 DOI: 10.1091/mbc.e20-08-0541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chaperones can mediate both protein folding and degradation. This process is referred to as protein triage, which demands study to reveal mechanisms of quality control for both basic scientific and translational purposes. In yeast, many misfolded proteins undergo chaperone-dependent ubiquitination by the action of the E3 ligases Ubr1 and San1, allowing detailed study of protein triage. In cells, both HSP70 and HSP90 mediated substrate ubiquitination, and the canonical ATP cycle was required for HSP70’s role: we have found that ATP hydrolysis by HSP70, the nucleotide exchange activity of Sse1, and the action of J-proteins are all needed for Ubr1-mediated quality control. To discern whether chaperones were directly involved in Ubr1-mediated ubiquitination, we developed a bead-based assay with covalently immobilized but releasable misfolded protein to obviate possible chaperone effects on substrate physical state or transport. In this in vitro assay, only HSP70 was required, along with its ATPase cycle and relevant cochaperones, for Ubr1-mediated ubiquitination. The requirement for the HSP70 ATP cycle in ubiquitination suggests a possible model of triage in which efficiently folded proteins are spared, while slow-folding or nonfolding proteins are iteratively tagged with ubiquitin for subsequent degradation.
Collapse
Affiliation(s)
- Amanjot Singh
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Nidhi Vashistha
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Jarrod Heck
- Adaptive Biotechnologies Corp., Seattle, WA 98102
| | - Xin Tang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Randolph Y Hampton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| |
Collapse
|
38
|
Chitwood PJ, Hegde RS. An intramembrane chaperone complex facilitates membrane protein biogenesis. Nature 2020; 584:630-634. [PMID: 32814900 DOI: 10.1038/s41586-020-2624-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
Integral membrane proteins are encoded by approximately 25% of all protein-coding genes1. In eukaryotes, the majority of membrane proteins are inserted, modified and folded at the endoplasmic reticulum (ER)2. Research over the past several decades has determined how membrane proteins are targeted to the ER and how individual transmembrane domains (TMDs) are inserted into the lipid bilayer3. By contrast, very little is known about how multi-spanning membrane proteins with several TMDs are assembled within the membrane. During the assembly of TMDs, interactions between polar or charged amino acids typically stabilize the final folded configuration4-8. TMDs with hydrophilic amino acids are likely to be chaperoned during the co-translational biogenesis of membrane proteins; however, ER-resident intramembrane chaperones are poorly defined. Here we identify the PAT complex, an abundant obligate heterodimer of the widely conserved ER-resident membrane proteins CCDC47 and Asterix. The PAT complex engages nascent TMDs that contain unshielded hydrophilic side chains within the lipid bilayer, and it disengages concomitant with substrate folding. Cells that lack either subunit of the PAT complex show reduced biogenesis of numerous multi-spanning membrane proteins. Thus, the PAT complex is an intramembrane chaperone that protects TMDs during assembly to minimize misfolding of multi-spanning membrane proteins and maintain cellular protein homeostasis.
Collapse
|
39
|
Tang W, Jiang H, Aron O, Wang M, Wang X, Chen J, Lin B, Chen X, Zheng Q, Gao X, He D, Wang A, Wang Z. Endoplasmic reticulum-associated degradation mediated by MoHrd1 and MoDer1 is pivotal for appressorium development and pathogenicity of Magnaporthe oryzae. Environ Microbiol 2020; 22:4953-4973. [PMID: 32410295 DOI: 10.1111/1462-2920.15069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Most secretory proteins are folded and modified in the endoplasmic reticulum (ER); however, protein folding is error-prone, resulting in toxic protein aggregation and cause ER stress. Irreversibly misfolded proteins are subjected to ER-associated degradation (ERAD), modified by ubiquitination, and degraded by the 26S proteasome. The yeast ERAD ubiquitin ligase Hrd1p and multispanning membrane protein Der1p are involved in ubiquitination and transportation of the folding-defective proteins. Here, we performed functional characterization of MoHrd1 and MoDer1 and revealed that both of them are localized to the ER and are pivotal for ERAD substrate degradation and the ER stress response. MoHrd1 and MoDer1 are involved in hyphal growth, asexual reproduction, infection-related morphogenesis, protein secretion and pathogenicity of M. oryzae. Importantly, MoHrd1 and MoDer1 mediated conidial autophagic cell death and subsequent septin ring assembly at the appressorium pore, leading to abnormal appressorium development and loss of pathogenicity. In addition, deletion of MoHrd1 and MoDer1 activated the basal unfolded protein response (UPR) and autophagy, suggesting that crosstalk between ERAD and two other closely related mechanisms in ER quality control system (UPR and autophagy) governs the ER stress response. Our study indicates the importance of ERAD function in fungal development and pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haolang Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Osakina Aron
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueyu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiangfeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Birong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuehang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaojia Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dou He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
40
|
|
41
|
Knopf JD, Landscheidt N, Pegg CL, Schulz BL, Kühnle N, Chao CW, Huck S, Lemberg MK. Intramembrane protease RHBDL4 cleaves oligosaccharyltransferase subunits to target them for ER-associated degradation. J Cell Sci 2020; 133:jcs243790. [PMID: 32005703 DOI: 10.1242/jcs.243790] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 08/31/2023] Open
Abstract
The endoplasmic reticulum (ER)-resident intramembrane rhomboid protease RHBDL4 generates metastable protein fragments and together with the ER-associated degradation (ERAD) machinery provides a clearance mechanism for aberrant and surplus proteins. However, the endogenous substrate spectrum and with that the role of RHBDL4 in physiological ERAD is mainly unknown. Here, we use a substrate trapping approach in combination with quantitative proteomics to identify physiological RHBDL4 substrates. This revealed oligosaccharyltransferase (OST) complex subunits such as the catalytic active subunit STT3A as substrates for the RHBDL4-dependent ERAD pathway. RHBDL4-catalysed cleavage inactivates OST subunits by triggering dislocation into the cytoplasm and subsequent proteasomal degradation. RHBDL4 thereby controls the abundance and activity of OST, suggesting a novel link between the ERAD machinery and glycosylation tuning.
Collapse
Affiliation(s)
- Julia D Knopf
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nina Landscheidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nathalie Kühnle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Chao-Wei Chao
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Simon Huck
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Llanos-González E, Henares-Chavarino ÁA, Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, Sancho-Bielsa FJ, Alcain FJ, Peinado JR, Rabanal-Ruíz Y, Durán-Prado M. Interplay Between Mitochondrial Oxidative Disorders and Proteostasis in Alzheimer's Disease. Front Neurosci 2020; 13:1444. [PMID: 32063825 PMCID: PMC7000623 DOI: 10.3389/fnins.2019.01444] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Although the basis of Alzheimer’s disease (AD) etiology remains unknown, oxidative stress (OS) has been recognized as a prodromal factor associated to its progression. OS refers to an imbalance between oxidant and antioxidant systems, which usually consist in an overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which overwhelms the intrinsic antioxidant defenses. Due to this increased production of ROS and RNS, several biological functions such as glucose metabolism or synaptic activity are impaired. In AD, growing evidence links the ROS-mediated damages with molecular targets including mitochondrial dynamics and function, protein quality control system, and autophagic pathways, affecting the proteostasis balance. In this scenario, OS should be considered as not only a major feature in the pathophysiology of AD but also a potential target to combat the progression of the disease. In this review, we will discuss the role of OS in mitochondrial dysfunction, protein quality control systems, and autophagy associated to AD and suggest innovative therapeutic strategies based on a better understanding of the role of OS and proteostasis.
Collapse
Affiliation(s)
- Emilio Llanos-González
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | | | - Cristina María Pedrero-Prieto
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia García-Carpintero
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco Javier Sancho-Bielsa
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco Javier Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan Ramón Peinado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yoana Rabanal-Ruíz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Mario Durán-Prado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
43
|
Buchanan BW, Mehrtash AB, Broshar CL, Runnebohm AM, Snow BJ, Scanameo LN, Hochstrasser M, Rubenstein EM. Endoplasmic reticulum stress differentially inhibits endoplasmic reticulum and inner nuclear membrane protein quality control degradation pathways. J Biol Chem 2019; 294:19814-19830. [PMID: 31723032 DOI: 10.1074/jbc.ra119.010295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/04/2019] [Indexed: 12/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress occurs when the abundance of unfolded proteins in the ER exceeds the capacity of the folding machinery. Despite the expanding cadre of characterized cellular adaptations to ER stress, knowledge of the effects of ER stress on cellular physiology remains incomplete. We investigated the impact of ER stress on ER and inner nuclear membrane protein quality control mechanisms in Saccharomyces cerevisiae. We analyzed the turnover of substrates of four ubiquitin ligases (Doa10, Rkr1/Ltn1, Hrd1, and the Asi complex) and the metalloprotease Ste24 in induced models of ER stress. ER stress did not substantially impact Doa10 or Rkr1 substrates. However, Hrd1-mediated destruction of a protein that aberrantly engages the translocon (Deg1-Sec62) and substrates with luminal degradation signals was markedly impaired by ER stress; by contrast, Hrd1-dependent degradation of proteins with intramembrane degrons was largely unperturbed by ER stress. ER stress impaired the degradation of one of two Asi substrates analyzed and caused a translocon-clogging Ste24 substrate to accumulate in a form consistent with persistent translocon occupation. Degradation of Deg1-Sec62 in the absence of stress and stabilization during ER stress were independent of four ER stress-sensing pathways. Our results indicate ER stress differentially impacts degradation of protein quality control substrates, including those mediated by the same ubiquitin ligase. These observations suggest the existence of additional regulatory mechanisms dictating substrate selection during ER stress.
Collapse
Affiliation(s)
- Bryce W Buchanan
- Department of Biology, Ball State University, Muncie, Indiana 47306
| | - Adrian B Mehrtash
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | | | | | - Brian J Snow
- Department of Biology, Ball State University, Muncie, Indiana 47306
| | - Laura N Scanameo
- Department of Biology, Ball State University, Muncie, Indiana 47306
| | - Mark Hochstrasser
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | | |
Collapse
|
44
|
Soler DC, Manikandan M, Gopal SR, Sloan AE, McCormick TS, Stepanyan R. An uncharacterized region within the N-terminus of mouse TMC1 precludes trafficking to plasma membrane in a heterologous cell line. Sci Rep 2019; 9:15263. [PMID: 31649296 PMCID: PMC6813322 DOI: 10.1038/s41598-019-51336-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Mechanotransduction by hair cell stereocilia lies at the heart of sound detection in vertebrates. Considerable effort has been put forth to identify proteins that comprise the hair cell mechanotransduction apparatus. TMC1, a member of the transmembrane channel-like (TMC) family, was identified as a core protein of the mechanotransduction complex in hair cells. However, the inability of TMC1 to traffic through the endoplasmic reticulum in heterologous cellular systems has hindered efforts to characterize its function and fully identify its role in mechanotransduction. We developed a novel approach that allowed for the detection of uncharacterized protein regions, which preclude trafficking to the plasma membrane (PM) in heterologous cells. Tagging N-terminal fragments of TMC1 with Aquaporin 3 (AQP3) and GFP fusion reporter, which intrinsically label PM in HEK293 cells, indicated that residues at the edges of amino acid sequence 138–168 invoke intracellular localization and/or degradation. This signal is able to preclude surface localization of PM protein AQP3 in HEK293 cells. Substitutions of the residues by alanine or serine corroborated that the information determining the intracellular retention is present within amino acid sequence 138–168 of TMC1 N-terminus. This novel signal may preclude the proper trafficking of TMC1 to the PM in heterologous cells.
Collapse
Affiliation(s)
- D C Soler
- The Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA. .,Brain Tumor and Neuro-Oncology Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - M Manikandan
- Department of Otolaryngology - HNS, Case Western Reserve University, Cleveland, OH, USA
| | - S R Gopal
- Department of Otolaryngology - HNS, Case Western Reserve University, Cleveland, OH, USA
| | - A E Sloan
- The Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Brain Tumor and Neuro-Oncology Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - T S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA.,Murdough Family Center for Psoriasis, Case Western Reserve University, Cleveland, OH, USA
| | - R Stepanyan
- Department of Otolaryngology - HNS, Case Western Reserve University, Cleveland, OH, USA. .,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
45
|
Abstract
One-fourth of eukaryotic genes code for integral membrane proteins, nearly all of which are inserted and assembled at the endoplasmic reticulum (ER). The defining feature of membrane proteins is one or more transmembrane domains (TMDs). During membrane protein biogenesis, TMDs are selectively recognized, shielded, and chaperoned into the lipid bilayer, where they often assemble with other TMDs. If maturation fails, exposed TMDs serve as a cue for engagement of degradation pathways. Thus, TMD-recognition factors in the cytosol and ER are essential for membrane protein biogenesis and quality control. Here, we discuss the growing assortment of cytosolic and membrane-embedded TMD-recognition factors, the pathways within which they operate, and mechanistic principles of recognition.
Collapse
|
46
|
Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol 2019; 218:3171-3187. [PMID: 31537714 PMCID: PMC6781448 DOI: 10.1083/jcb.201906047] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
47
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
48
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
49
|
Abstract
Elimination of misfolded proteins by endoplasmic reticulum (ER)-associated protein degradation (ERAD) ensures that proteins proceeding through the secretory pathway are correctly folded and processed, which is critical to minimize ER stress. All ERAD pathways include a protein translocation process termed retrotranslocation, in which ubiquitinated misfolded substrates are extracted from the ER and degraded by the cytosolic 26S proteasome. Despite being integral to ERAD, the retrotranslocation process has been largely obscure. Recently, an explosion of discoveries has provided key mechanistic insights into this novel route of protein transport. These advances were facilitated by the development of in vitro and in vivo assays that utilize components from the yeast Saccharomyces cerevisiae. The assays permit detailed study of the distinct steps in ERAD-linked retrotranslocation, including ubiquitination of selected ERAD substrates, substrate removal from the ER, maintenance of cytosolic substrate solubility in the cytosol, and substrate degradation. Here we provide detailed protocols for these assays that pertain to work on retrotranslocation of integral membrane proteins (ERAD-M substrates), with the expectation that these approaches can be adapted for many related biochemical processes.
Collapse
Affiliation(s)
- Sonya Neal
- Division of Biological Sciences, The Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, United States.
| | - Sascha H Duttke
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Randolph Y Hampton
- Division of Biological Sciences, The Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
50
|
Menzies SA, Volkmar N, van den Boomen DJH, Timms RT, Dickson AS, Nathan JA, Lehner PJ. The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1. eLife 2018; 7:e40009. [PMID: 30543180 PMCID: PMC6292692 DOI: 10.7554/elife.40009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
Mammalian HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the cholesterol biosynthetic pathway and the therapeutic target of statins, is post-transcriptionally regulated by sterol-accelerated degradation. Under cholesterol-replete conditions, HMGCR is ubiquitinated and degraded, but the identity of the E3 ubiquitin ligase(s) responsible for mammalian HMGCR turnover remains controversial. Using systematic, unbiased CRISPR/Cas9 genome-wide screens with a sterol-sensitive endogenous HMGCR reporter, we comprehensively map the E3 ligase landscape required for sterol-accelerated HMGCR degradation. We find that RNF145 and gp78 independently co-ordinate HMGCR ubiquitination and degradation. RNF145, a sterol-responsive ER-resident E3 ligase, is unstable but accumulates following sterol depletion. Sterol addition triggers RNF145 recruitment to HMGCR via Insigs, promoting HMGCR ubiquitination and proteasome-mediated degradation. In the absence of both RNF145 and gp78, Hrd1, a third UBE2G2-dependent E3 ligase, partially regulates HMGCR activity. Our findings reveal a critical role for the sterol-responsive RNF145 in HMGCR regulation and elucidate the complexity of sterol-accelerated HMGCR degradation. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Sam A Menzies
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - Norbert Volkmar
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | | | - Richard T Timms
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - Anna S Dickson
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - James A Nathan
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - Paul J Lehner
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| |
Collapse
|