1
|
Barman P, Chakraborty P, Guha S, Kaja A, Bhaumik R, Bhaumik SR. TAP-MS analysis of FACT interactions and regulation by a ubiquitin ligase, San1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195077. [PMID: 39855624 DOI: 10.1016/j.bbagrm.2025.195077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
An evolutionarily conserved heterodimeric FACT (Facilitates chromatin transcription) regulates transcription, DNA repair, replication and other cellular processes via its interactions with other proteins. FACT is recently found to be regulated via ubiquitylation and 26S proteasomal degradation, alteration of which is associated with aberrant transcription and genome integrity. However, there has not been a systematic study to analyze FACT interactions proteome-wide in the presence and absence of its UPS (Ubiquitin-proteasome system) regulation, which could reveal new FACT interactors with mechanistic and functional implications. Here, we have adopted a proteome-wide approach via TAP (Tandem affinity purification)-mediated pull-down of FACT and its interactors from the soluble and insoluble cellular fractions followed by MS (Mass-spectrometry) analysis. We find distinct interactors of FACT in the soluble and insoluble fractions in addition to a common set in both. While a set of all these interactors overlaps with previously known FACT partners, many are new, which are involved in different cellular processes such as transcription, DNA repair and chromatin regulation. Further, an intrinsically disordered ubiquitin ligase, San1, that ubiquitylates the Spt16 component of FACT for proteasomal degradation to regulate chromatin, transcription and genome integrity is found to influence the interactions of FACT with a set of proteins including epigenetic, transcription and DNA repair factors. Collectively, our results unveil proteome-wide FACT interactions and regulation by a ubiquitin ligase, hence shedding much light on FACT networks with functional and mechanistic implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
2
|
Takahata S, Taguchi A, Takenaka A, Mori M, Chikashige Y, Tsutsumi C, Hiraoka Y, Murakami Y. The HMG-box module in FACT is critical for suppressing epigenetic variegation of heterochromatin in fission yeast. Genes Cells 2024; 29:567-583. [PMID: 38837646 DOI: 10.1111/gtc.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Chromatin condensation state is the key for retrieving genetic information. High-mobility group protein (HMG) proteins exhibit DNA-binding and bending activities, playing an important role in the regulation of chromatin structure. We have shown that nucleosomes tightly packaged into heterochromatin undergo considerable dynamic histone H2A-H2B maintenance via the direct interaction between HP1/Swi6 and facilitate chromatin transcription (FACT), which is composed of the Spt16/Pob3 heterodimer and Nhp6. In this study, we analyzed the role of Nhp6, an HMG box protein, in the FACT at heterochromatin. Pob3 mutant strains showed derepressed heterochromatin-dependent gene silencing, whereas Nhp6 mutant strains did not show significant defects in chromatin regulation or gene expression, suggesting that these two modules play different roles in chromatin regulation. We expressed a protein fusing Nhp6 to the C-terminus of Pob3, which mimics the multicellular FACT component Ssrp1. The chromatin-binding activity of FACT increased with the number of Nhp6 fused to Pob3, and the heterochromatin formation rate was promoted more strongly. Furthermore, we demonstrated that this promotion of heterochromatinization inhibited the heterochromatic variegation caused by epe1+ disruption. Heterochromatic variegation can be observed in a variety of regulatory steps; however, when it is caused by fluctuations in chromatin arrangement, it can be eliminated through the strong recruitment of the FACT complex.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Asahi Taguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Ayaka Takenaka
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Miyuki Mori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chihiro Tsutsumi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Opposing Roles of FACT for Euchromatin and Heterochromatin in Yeast. Biomolecules 2023; 13:biom13020377. [PMID: 36830746 PMCID: PMC9953268 DOI: 10.3390/biom13020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
DNA is stored in the nucleus of a cell in a folded state; however, only the necessary genetic information is extracted from the required group of genes. The key to extracting genetic information is chromatin ambivalence. Depending on the chromosomal region, chromatin is characterized into low-density "euchromatin" and high-density "heterochromatin", with various factors being involved in its regulation. Here, we focus on chromatin regulation and gene expression by the yeast FACT complex, which functions in both euchromatin and heterochromatin. FACT is known as a histone H2A/H2B chaperone and was initially reported as an elongation factor associated with RNA polymerase II. In budding yeast, FACT activates promoter chromatin by interacting with the transcriptional activators SBF/MBF via the regulation of G1/S cell cycle genes. In fission yeast, FACT plays an important role in the formation of higher-order chromatin structures and transcriptional repression by binding to Swi6, an HP1 family protein, at heterochromatin. This FACT property, which refers to the alternate chromatin-regulation depending on the binding partner, is an interesting phenomenon. Further analysis of nucleosome regulation within heterochromatin is expected in future studies.
Collapse
|
4
|
Afonin DA, Geras’kina OV, Loseva TV, Kirpichnikov MP, Studitsky VM, Feofanov AV. Structure and Affinity of Complexes between the DNA-Binding Domain of Swi4 and DNA. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Malinina DK, Sivkina AL, Korovina AN, McCullough LL, Formosa T, Kirpichnikov MP, Studitsky VM, Feofanov AV. Hmo1 Protein Affects the Nucleosome Structure and Supports the Nucleosome Reorganization Activity of Yeast FACT. Cells 2022; 11:cells11192931. [PMID: 36230893 PMCID: PMC9564320 DOI: 10.3390/cells11192931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Yeast Hmo1 is a high mobility group B (HMGB) protein that participates in the transcription of ribosomal protein genes and rDNA, and also stimulates the activities of some ATP-dependent remodelers. Hmo1 binds both DNA and nucleosomes and has been proposed to be a functional yeast analog of mammalian linker histones. We used EMSA and single particle Förster resonance energy transfer (spFRET) microscopy to characterize the effects of Hmo1 on nucleosomes alone and with the histone chaperone FACT. Hmo1 induced a significant increase in the distance between the DNA gyres across the nucleosomal core, and also caused the separation of linker segments. This was opposite to the effect of the linker histone H1, which enhanced the proximity of linkers. Similar to Nhp6, another HMGB factor, Hmo1, was able to support large-scale, ATP-independent, reversible unfolding of nucleosomes by FACT in the spFRET assay and partially support FACT function in vivo. However, unlike Hmo1, Nhp6 alone does not affect nucleosome structure. These results suggest physiological roles for Hmo1 that are distinct from Nhp6 and possibly from other HMGB factors and linker histones, such as H1.
Collapse
Affiliation(s)
- Daria K. Malinina
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
| | | | - Anna N. Korovina
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Laura L. McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Mikhail P. Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Correspondence: (V.M.S.); (A.V.F.)
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: (V.M.S.); (A.V.F.)
| |
Collapse
|
6
|
Isbel L, Grand RS, Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat Rev Genet 2022; 23:728-740. [PMID: 35831531 DOI: 10.1038/s41576-022-00512-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Cell type-specific gene expression relies on transcription factors (TFs) binding DNA sequence motifs embedded in chromatin. Understanding how motifs are accessed in chromatin is crucial to comprehend differential transcriptional responses and the phenotypic impact of sequence variation. Chromatin obstacles to TF binding range from DNA methylation to restriction of DNA access by nucleosomes depending on their position, composition and modification. In vivo and in vitro approaches now enable the study of TF binding in chromatin at unprecedented resolution. Emerging insights suggest that TFs vary in their ability to navigate chromatin states. However, it remains challenging to link binding and transcriptional outcomes to molecular characteristics of TFs or the local chromatin substrate. Here, we discuss our current understanding of how TFs access DNA in chromatin and novel techniques and directions towards a better understanding of this critical step in genome regulation.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Jeronimo C, Robert F. The histone chaperone FACT: a guardian of chromatin structure integrity. Transcription 2022; 13:16-38. [PMID: 35485711 PMCID: PMC9467567 DOI: 10.1080/21541264.2022.2069995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The identification of FACT as a histone chaperone enabling transcription through chromatin in vitro has strongly shaped how its roles are envisioned. However, FACT has been implicated in essentially all aspects of chromatin biology, from transcription to DNA replication, DNA repair, and chromosome segregation. In this review, we focus on recent literature describing the role and mechanisms of FACT during transcription. We highlight the prime importance of FACT in preserving chromatin integrity during transcription and challenge its role as an elongation factor. We also review evidence for FACT's role as a cell-type/gene-specificregulator of gene expression and briefly summarize current efforts at using FACT inhibition as an anti-cancerstrategy.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
8
|
Safaric B, Chacin E, Scherr MJ, Rajappa L, Gebhardt C, Kurat CF, Cordes T, Duderstadt KE. The fork protection complex recruits FACT to reorganize nucleosomes during replication. Nucleic Acids Res 2022; 50:1317-1334. [PMID: 35061899 PMCID: PMC8860610 DOI: 10.1093/nar/gkac005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023] Open
Abstract
Chromosome replication depends on efficient removal of nucleosomes by accessory factors to ensure rapid access to genomic information. Here, we show this process requires recruitment of the nucleosome reorganization activity of the histone chaperone FACT. Using single-molecule FRET, we demonstrate that reorganization of nucleosomal DNA by FACT requires coordinated engagement by the middle and C-terminal domains of Spt16 and Pob3 but does not require the N-terminus of Spt16. Using structure-guided pulldowns, we demonstrate instead that the N-terminal region is critical for recruitment by the fork protection complex subunit Tof1. Using in vitro chromatin replication assays, we confirm the importance of these interactions for robust replication. Our findings support a mechanism in which nucleosomes are removed through the coordinated engagement of multiple FACT domains positioned at the replication fork by the fork protection complex.
Collapse
Affiliation(s)
- Barbara Safaric
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Erika Chacin
- Biomedical Center (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg, Germany
| | - Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Lional Rajappa
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Christoph F Kurat
- Biomedical Center (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.,Physics Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
9
|
Electron microscopy analysis of ATP-independent nucleosome unfolding by FACT. Commun Biol 2022; 5:2. [PMID: 35013515 PMCID: PMC8748794 DOI: 10.1038/s42003-021-02948-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
FACT is a histone chaperone that participates in nucleosome removal and reassembly during transcription and replication. We used electron microscopy to study FACT, FACT:Nhp6 and FACT:Nhp6:nucleosome complexes, and found that all complexes adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both the structure of FACT and the properties of nucleosomes. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form. Sivkina et al. present a biochemical and biophysical characterization of the interaction of S. cerevisiae histone chaperone FACT with the nucleosome core particle. They show that FACT adopts a more open geometry in the presence of Nhp6, and together they unfold nucleosomes to an almost extended conformation, suggesting a mechanism for FACT-facilitated disassembly of nucleosomes.
Collapse
|
10
|
Parnell EJ, Parnell TJ, Stillman DJ. Genetic analysis argues for a coactivator function for the Saccharomyces cerevisiae Tup1 corepressor. Genetics 2021; 219:6329640. [PMID: 34849878 DOI: 10.1093/genetics/iyab120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
The Tup1-Cyc8 corepressor complex of Saccharomyces cerevisiae is recruited to promoters by DNA-binding proteins to repress transcription of genes, including the a-specific mating-type genes. We report here a tup1(S649F) mutant that displays mating irregularities and an α-predominant growth defect. RNA-Seq and ChIP-Seq were used to analyze gene expression and Tup1 occupancy changes in mutant vs wild type in both a and α cells. Increased Tup1(S649F) occupancy tended to occur upstream of upregulated genes, whereas locations with decreased occupancy usually did not show changes in gene expression, suggesting this mutant not only loses corepressor function but also behaves as a coactivator. Based upon studies demonstrating a dual role of Tup1 in both repression and activation, we postulate that the coactivator function of Tup1(S649F) results from diminished interaction with repressor proteins, including α2. We also found that large changes in mating-type-specific gene expression between a and α or between mutant and wild type were not easily explained by the range of Tup1 occupancy levels within their promoters, as predicted by the classic model of a-specific gene repression by Tup1. Most surprisingly, we observed Tup1 occupancy upstream of the a-specific gene MFA2 and the α-specific gene MF(ALPHA)1 in cells in which each gene was expressed rather than repressed. These results, combined with the identification of additional mating-related genes upregulated in the tup1(S649F) α strain, illustrate that the role of Tup1 in distinguishing mating types in yeast appears to be both more comprehensive and more nuanced than previously appreciated.
Collapse
Affiliation(s)
- Emily J Parnell
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Jin G, Zhao R, Zhang J, Cao T, Tang T. SSRP1 Affects Growth and Apoptosis of Gastric Cancer Cells Through AKT Pathway. J Med Biochem 2021; 41:100-107. [PMID: 35291495 PMCID: PMC8882012 DOI: 10.5937/jomb0-33374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/28/2021] [Indexed: 11/02/2022] Open
Abstract
Background: We aimed to figure out the SSRP1's potential influence on the apoptosis and proliferation of gastric cancer (GC) cells and its regulatory mechanism.
Methods: SSRP1 expression in GC cells and tissues was detected via quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The interrelation between clinicopathological characteristics of GC patients and SSRP1 expression was analyzed via χ2 test, and the correlation between SSRP1 expression and overall survival rate was analyzed using Kaplan-Meier survival analysis. After knockdown of SSRP1 in AGS cells, the SSRP1 expression, colony formation ability, cell viability, cell cycle changes, apoptosis rate, and migration and invasion ability were detected through qRT-PCR, colony formation assay, CCK8 assay, flow cytometry and transwell test, respectively. Finally, the effects of down-regulation of SSRP1 on the expressions of phosphorylated-protein kinase B (p-AKT), B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) were explored using Western blotting.
Results: SSRP1 displayed a high expression in GC cells and tissues. SSRP1 expression was closely interrelated to the TNM stage, lymph node metastasis and tumor size. The survival rate of patients was markedly shorter in high expression group than the lower expression group. After the knockdown of SSRP1 in cells, the viability and colony formation ability of AGS cells were inhibited. In addition, cell ration in the G1 phase was increased, while that in the S phase declined, and the cell invasion and migration were obviously weakened. It was found from Western blotting that the knockdown of SSRP1 could evidently suppress the protein levels of Bcl-2 and p-AKT, but promote the protein expression of Bax, indicating that silencing SSRP1 can inhibit the proliferative capacity and increase the number of GC cells through incativating AKT signaling pathway.
Conclusion: SSRP1 rose up in GC tissues and cells. Reduction of SSRP1 can inhibit the proliferative capacity and increase the number of GC cells through inactiving AKT signaling pathway.
Collapse
Affiliation(s)
- Guohua Jin
- First Hospital of Jilin University, Department of Gastroenterology, Changchun, Jilin, China
| | - Ruihong Zhao
- First Hospital of Jilin University, Department of Gastroenterology, Changchun, Jilin, China
| | - Jianguang Zhang
- First Hospital of Jilin University, Department of Gastroenterology, Changchun, Jilin, China
| | - Tingting Cao
- First Hospital of Jilin University, Department of Gastroenterology, Changchun, Jilin, China
| | - Tongyu Tang
- First Hospital of Jilin University, Department of Gastroenterology, Changchun, Jilin, China
| |
Collapse
|
12
|
Takahata S, Chida S, Ohnuma A, Ando M, Asanuma T, Murakami Y. Two secured FACT recruitment mechanisms are essential for heterochromatin maintenance. Cell Rep 2021; 36:109540. [PMID: 34407404 DOI: 10.1016/j.celrep.2021.109540] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/01/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
FACT (facilitate chromatin transcription) is involved in heterochromatic silencing, but its mechanisms and function remain unclear. We reveal that the Spt16 recruitment mechanism operates in two distinct ways in heterochromatin. First, Pob3 mediates Spt16 recruitment onto the heterochromatin through its Spt16 dimerization and tandem PH domains. Without Pob3, Spt16 recruitment is partially reduced, exhibiting a silencing defect and impaired H2A/H2B organization. Second, heterochromatin protein 1 (HP1)/Swi6 mediates Spt16 recruitment onto the heterochromatin by physical interaction of the Swi6 chromo-shadow domain (CSD) and Spt16 peptidase-like domains. Several CSD mutants are tested for Spt16 binding activity, and the charged loop connecting β1 and β2 is critical for Spt16 binding and heterochromatic silencing. Loss of these pathways causes a severe defect in H3K9 methylation and HP1/Swi6 localization in the pericentromeric region, exhibiting transcriptional silencing defects and disordered heterochromatin. Our findings suggest that FACT and HP1/Swi6 work intimately to regulate heterochromatin organization.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Saori Chida
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Aoi Ohnuma
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Motoyoshi Ando
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takahiro Asanuma
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
13
|
Ash1 and Tup1 dependent repression of the Saccharomyces cerevisiae HO promoter requires activator-dependent nucleosome eviction. PLoS Genet 2020; 16:e1009133. [PMID: 33382702 PMCID: PMC7806131 DOI: 10.1371/journal.pgen.1009133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
Transcriptional regulation of the Saccharomyces cerevisiae HO gene is highly complex, requiring a balance of multiple activating and repressing factors to ensure that only a few transcripts are produced in mother cells within a narrow window of the cell cycle. Here, we show that the Ash1 repressor associates with two DNA sequences that are usually concealed within nucleosomes in the HO promoter and recruits the Tup1 corepressor and the Rpd3 histone deacetylase, both of which are required for full repression in daughters. Genome-wide ChIP identified greater than 200 additional sites of co-localization of these factors, primarily within large, intergenic regions from which they could regulate adjacent genes. Most Ash1 binding sites are in nucleosome depleted regions (NDRs), while a small number overlap nucleosomes, similar to HO. We demonstrate that Ash1 binding to the HO promoter does not occur in the absence of the Swi5 transcription factor, which recruits coactivators that evict nucleosomes, including the nucleosomes obscuring the Ash1 binding sites. In the absence of Swi5, artificial nucleosome depletion allowed Ash1 to bind, demonstrating that nucleosomes are inhibitory to Ash1 binding. The location of binding sites within nucleosomes may therefore be a mechanism for limiting repressive activity to periods of nucleosome eviction that are otherwise associated with activation of the promoter. Our results illustrate that activation and repression can be intricately connected, and events set in motion by an activator may also ensure the appropriate level of repression and reset the promoter for the next activation cycle. Nucleosomes inhibit both gene expression and DNA-binding by regulatory factors. Here we examine the role of nucleosomes in regulating the binding of repressive transcription factors to the complex promoter for the yeast HO gene. Ash1 is a sequence-specific DNA-binding protein, and we show that it recruits the Tup1 global repressive factor to the HO promoter. Using a method to determine where Ash1 and Tup1 are bound to DNA throughout the genome, we discovered that Tup1 is also present at most places where Ash1 binds. The majority of these sites are in “Nucleosome Depleted Regions,” or NDRs, where the absence of chromatin makes factor binding easier. We discovered that the HO promoter is an exception, in that the two places where Ash1 binds overlap nucleosomes. Activation of the HO promoter is a complex, multi-step process, and we demonstrated that chromatin factors transiently evict these nucleosomes from the HO promoter during the cell cycle, allowing Ash1 to bind and recruit Tup1. Thus, activators must evict nucleosomes from the promoter to allow the repressive machinery to bind.
Collapse
|
14
|
Takahata S, Asanuma T, Mori M, Murakami Y. Construction and characterization of a zinc-inducible gene expression vector in fission yeast. Yeast 2020; 38:251-261. [PMID: 33245560 DOI: 10.1002/yea.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 11/08/2022] Open
Abstract
Gene expression vectors are useful and important tools that are commonly used in a variety of experiments, including expression of foreign genes, functional analysis of genes of interest and complementation experiments. In this study, a hybrid promoter, combining the adh1+ upstream activating sequence (UAS) of fission yeast and the GAL10 core promoter of budding yeast, was constructed to enable high level expression depending on the presence of zinc in culture medium for fission yeast. When the hybrid promoter was cloned on the multicopy plasmid, it was fully induced and repressed within 10 h in the presence and absence of zinc, respectively. The kinetics of induction and reduction were similar to those of the endogenous adh1+ mRNA. In contrast, native adh1+ promoter lost its tight repression in zinc-depleted condition when it was cloned on the plasmid. Because adh1+ UAS-specific transcription factors have not yet been identified, we identified UAS elements involved in zinc sensing by characterizing this hybrid promoter. We also found that the expression level increased by the TATA box mutation, GATAA, in the presence of zinc.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Takahiro Asanuma
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Miyuki Mori
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Formosa T, Winston F. The role of FACT in managing chromatin: disruption, assembly, or repair? Nucleic Acids Res 2020; 48:11929-11941. [PMID: 33104782 PMCID: PMC7708052 DOI: 10.1093/nar/gkaa912] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription) has long been considered to be a transcription elongation factor whose ability to destabilize nucleosomes promotes RNAPII progression on chromatin templates. However, this is just one function of this histone chaperone, as FACT also functions in DNA replication. While broadly conserved among eukaryotes and essential for viability in many organisms, dependence on FACT varies widely, with some differentiated cells proliferating normally in its absence. It is therefore unclear what the core functions of FACT are, whether they differ in different circumstances, and what makes FACT essential in some situations but not others. Here, we review recent advances and propose a unifying model for FACT activity. By analogy to DNA repair, we propose that the ability of FACT to both destabilize and assemble nucleosomes allows it to monitor and restore nucleosome integrity as part of a system of chromatin repair, in which disruptions in the packaging of DNA are sensed and returned to their normal state. The requirement for FACT then depends on the level of chromatin disruption occurring in the cell, and the cell's ability to tolerate packaging defects. The role of FACT in transcription would then be just one facet of a broader system for maintaining chromatin integrity.
Collapse
Affiliation(s)
- Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Yu Y, Yarrington RM, Stillman DJ. FACT and Ash1 promote long-range and bidirectional nucleosome eviction at the HO promoter. Nucleic Acids Res 2020; 48:10877-10889. [PMID: 33010153 PMCID: PMC7641740 DOI: 10.1093/nar/gkaa819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae HO gene is a model regulatory system with complex transcriptional regulation. Budding yeast divide asymmetrically and HO is expressed only in mother cells where a nucleosome eviction cascade along the promoter during the cell cycle enables activation. HO expression in daughter cells is inhibited by high concentration of Ash1 in daughters. To understand how Ash1 represses transcription, we used a myo4 mutation which boosts Ash1 accumulation in both mothers and daughters and show that Ash1 inhibits promoter recruitment of SWI/SNF and Gcn5. We show Ash1 is also required for the efficient nucleosome repopulation that occurs after eviction, and the strongest effects of Ash1 are seen when Ash1 has been degraded and at promoter locations distant from where Ash1 bound. Additionally, we defined a specific nucleosome/nucleosome-depleted region structure that restricts HO activation to one of two paralogous DNA-binding factors. We also show that nucleosome eviction occurs bidirectionally over a large distance. Significantly, eviction of the more distant nucleosomes is dependent upon the FACT histone chaperone, and FACT is recruited to these regions when eviction is beginning. These last observations, along with ChIP experiments involving the SBF factor, suggest a long-distance loop transiently forms at the HO promoter.
Collapse
Affiliation(s)
- Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Robert M Yarrington
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Jeronimo C, Poitras C, Robert F. Histone Recycling by FACT and Spt6 during Transcription Prevents the Scrambling of Histone Modifications. Cell Rep 2020; 28:1206-1218.e8. [PMID: 31365865 DOI: 10.1016/j.celrep.2019.06.097] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Genomic DNA is framed by additional layers of information, referred to as the epigenome. Epigenomic marks such as DNA methylation, histone modifications, and histone variants are concentrated on specific genomic sites, where they can both instruct and reflect gene expression. How this information is maintained, notably in the face of transcription, is not completely understood. Specifically, the extent to which modified histones themselves are retained through RNA polymerase II passage is unclear. Here, we show that several histone modifications are mislocalized when the transcription-coupled histone chaperones FACT or Spt6 are disrupted in Saccharomyces cerevisiae. In the absence of functional FACT or Spt6, transcription generates nucleosome loss, which is partially compensated for by the increased activity of non-transcription-coupled histone chaperones. The random incorporation of transcription-evicted modified histones scrambles epigenomic information. Our work highlights the importance of local recycling of modified histones by FACT and Spt6 during transcription in the maintenance of the epigenomic landscape.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Christian Poitras
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC, Canada.
| |
Collapse
|
18
|
Yarrington RM, Yu Y, Yan C, Bai L, Stillman DJ. A Role for Mediator Core in Limiting Coactivator Recruitment in Saccharomyces cerevisiae. Genetics 2020; 215:407-420. [PMID: 32327563 PMCID: PMC7268993 DOI: 10.1534/genetics.120.303254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
Mediator is an essential, multisubunit complex that functions as a transcriptional coactivator in yeast and other eukaryotic organisms. Mediator has four conserved modules, Head, Middle, Tail, and Kinase, and has been implicated in nearly all aspects of gene regulation. The Tail module has been shown to recruit the Mediator complex to the enhancer or upstream activating sequence (UAS) regions of genes via interactions with transcription factors, and the Kinase module facilitates the transition of Mediator from the UAS/enhancer to the preinitiation complex via protein phosphorylation. Here, we analyze expression of the Saccharomyces cerevisiaeHO gene using a sin4 Mediator Tail mutation that separates the Tail module from the rest of the complex; the sin4 mutation permits independent recruitment of the Tail module to promoters without the rest of Mediator. Significant increases in recruitment of the SWI/SNF and SAGA coactivators to the HO promoter UAS were observed in a sin4 mutant, along with increased gene activation. These results are consistent with recent studies that have suggested that the Kinase module functions negatively to inhibit activation by the Tail. However, we found that Kinase module mutations did not mimic the effect of a sin4 mutation on HO expression. This suggests that at HO the core Mediator complex (Middle and Head modules) must play a role in limiting Tail binding to the promoter UAS and gene activation. We propose that the core Mediator complex helps modulate Mediator binding to the UAS regions of genes to limit coactivator recruitment and ensure proper regulation of gene transcription.
Collapse
Affiliation(s)
- Robert M Yarrington
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Chao Yan
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lu Bai
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
19
|
Parnell EJ, Stillman DJ. Multiple Negative Regulators Restrict Recruitment of the SWI/SNF Chromatin Remodeler to the HO Promoter in Saccharomyces cerevisiae. Genetics 2019; 212:1181-1204. [PMID: 31167839 PMCID: PMC6707452 DOI: 10.1534/genetics.119.302359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023] Open
Abstract
Activation of the Saccharomyces cerevisiae HO promoter is highly regulated, requiring the ordered recruitment of activators and coactivators and allowing production of only a few transcripts in mother cells within a short cell cycle window. We conducted genetic screens to identify the negative regulators of HO expression necessary to limit HO transcription. Known repressors of HO (Ash1 and Rpd3) were identified, as well as several additional chromatin-associated factors including the Hda1 histone deacetylase, the Isw2 chromatin remodeler, and the corepressor Tup1 We also identified clusters of HO promoter mutations that suggested roles for the Dot6/Tod6 (PAC site) and Ume6 repression pathways. We used ChIP assays with synchronized cells to validate the involvement of these factors and map the association of Ash1, Dot6, and Ume6 with the HO promoter to a brief window in the cell cycle between binding of the initial activating transcription factor and initiation of transcription. We found that Ash1 and Ume6 each recruit the Rpd3 histone deacetylase to HO, and their effects are additive. In contrast, Rpd3 was not recruited significantly to the PAC site, suggesting this site has a distinct mechanism for repression. Increases in HO expression and SWI/SNF recruitment were all additive upon loss of Ash1, Ume6, and PAC site factors, indicating the convergence of independent pathways for repression. Our results demonstrate that multiple protein complexes are important for limiting the spread of SWI/SNF-mediated nucleosome eviction across the HO promoter, suggesting that regulation requires a delicate balance of activities that promote and repress transcription.
Collapse
Affiliation(s)
- Emily J Parnell
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
20
|
McCullough LL, Pham TH, Parnell TJ, Connell Z, Chandrasekharan MB, Stillman DJ, Formosa T. Establishment and Maintenance of Chromatin Architecture Are Promoted Independently of Transcription by the Histone Chaperone FACT and H3-K56 Acetylation in Saccharomyces cerevisiae. Genetics 2019; 211:877-892. [PMID: 30679261 PMCID: PMC6404263 DOI: 10.1534/genetics.118.301853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription/Transactions) is a histone chaperone that can destabilize or assemble nucleosomes. Acetylation of histone H3-K56 weakens a histone-DNA contact that is central to FACT activity, suggesting that this modification could affect FACT functions. We tested this by asking how mutations of H3-K56 and FACT affect nucleosome reorganization activity in vitro, and chromatin integrity and transcript output in vivo Mimics of unacetylated or permanently acetylated H3-K56 had different effects on FACT activity as expected, but the same mutations had surprisingly similar effects on global transcript levels. The results are consistent with emerging models that emphasize FACT's importance in establishing global chromatin architecture prior to transcription, promoting transitions among different states as transcription profiles change, and restoring chromatin integrity after it is disturbed. Optimal FACT activity required the availability of both modified and unmodified states of H3-K56. Perturbing this balance was especially detrimental for maintaining repression of genes with high nucleosome occupancy over their promoters and for blocking antisense transcription at the +1 nucleosome. The results reveal a complex collaboration between H3-K56 modification status and multiple FACT functions, and support roles for nucleosome reorganization by FACT before, during, and after transcription.
Collapse
Affiliation(s)
- Laura L McCullough
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Trang H Pham
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Timothy J Parnell
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Zaily Connell
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Tim Formosa
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
21
|
Shen Z, Formosa T, Tantin D. FACT Inhibition Blocks Induction But Not Maintenance of Pluripotency. Stem Cells Dev 2018; 27:1693-1701. [PMID: 30319048 PMCID: PMC6302925 DOI: 10.1089/scd.2018.0150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/11/2018] [Indexed: 01/23/2023] Open
Abstract
The histone chaperone facilitates chromatin transactions (FACT) is associated with nuclear processes, including DNA transcription, replication, and repair. We previously showed that FACT is transiently recruited to pluripotency-associated target genes by newly bound Oct4. In this study, we tested the effects of FACT depletion by knockout or chemical inhibition on the induction and maintenance of pluripotency. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated deletion of the FACT subunit Spt16 did not affect the viability or proliferation of fibroblasts but blocked their ability to form induced pluripotent stem cells. Similarly, a small molecule inhibitor of FACT blocked the induction of pluripotency at an early step in reprogramming, without affecting the viability, proliferation, undifferentiated state, or the expression of core pluripotency genes. Notably, trypsinization and passage of pluripotent cells transiently reintroduced a requirement for FACT. Although FACT has been considered to be an essential transcription elongation factor, these results contribute to the emerging view that it instead promotes transitions between stable chromatin states, including during reprogramming to pluripotency.
Collapse
Affiliation(s)
- Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
22
|
Chang HW, Valieva ME, Safina A, Chereji RV, Wang J, Kulaeva OI, Morozov AV, Kirpichnikov MP, Feofanov AV, Gurova KV, Studitsky VM. Mechanism of FACT removal from transcribed genes by anticancer drugs curaxins. SCIENCE ADVANCES 2018; 4:eaav2131. [PMID: 30417101 PMCID: PMC6221510 DOI: 10.1126/sciadv.aav2131] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/10/2018] [Indexed: 05/21/2023]
Abstract
Human FACT (facilitates chromatin transcription) is a multifunctional protein complex that has histone chaperone activity and facilitates nucleosome survival and transcription through chromatin. Anticancer drugs curaxins induce FACT trapping on chromatin of cancer cells (c-trapping), but the mechanism of c-trapping is not fully understood. Here, we show that in cancer cells, FACT is highly enriched within the bodies of actively transcribed genes. Curaxin-dependent c-trapping results in redistribution of FACT from the transcribed chromatin regions to other genomic loci. Using a combination of biochemical and biophysical approaches, we have demonstrated that FACT is bound to and unfolds nucleosomes in the presence of curaxins. This tight binding to the nucleosome results in inhibition of FACT-dependent transcription in vitro in the presence of both curaxins and competitor chromatin, suggesting a mechanism of FACT trapping on bulk nucleosomes (n-trapping).
Collapse
Affiliation(s)
- Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria E. Valieva
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Răzvan V. Chereji
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianmin Wang
- Department of Bioinformatics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | - Alexandre V. Morozov
- Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Mikhail P. Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Katerina V. Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Vasily M. Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
23
|
Systematic Study of Nucleosome-Displacing Factors in Budding Yeast. Mol Cell 2018; 71:294-305.e4. [PMID: 30017582 DOI: 10.1016/j.molcel.2018.06.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/04/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
Nucleosomes present a barrier for the binding of most transcription factors (TFs). However, special TFs known as nucleosome-displacing factors (NDFs) can access embedded sites and cause the depletion of the local nucleosomes as well as repositioning of the neighboring nucleosomes. Here, we developed a novel high-throughput method in yeast to identify NDFs among 104 TFs and systematically characterized the impact of orientation, affinity, location, and copy number of their binding motifs on the nucleosome occupancy. Using this assay, we identified 29 NDF motifs and divided the nuclear TFs into three groups with strong, weak, and no nucleosome-displacing activities. Further studies revealed that tight DNA binding is the key property that underlies NDF activity, and the NDFs may partially rely on the DNA replication to compete with nucleosome. Overall, our study presents a framework to functionally characterize NDFs and elucidate the mechanism of nucleosome invasion.
Collapse
|
24
|
Acetylation-Dependent Recruitment of the FACT Complex and Its Role in Regulating Pol II Occupancy Genome-Wide in Saccharomyces cerevisiae. Genetics 2018; 209:743-756. [PMID: 29695490 DOI: 10.1534/genetics.118.300943] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Histone chaperones, chromatin remodelers, and histone modifying complexes play a critical role in alleviating the nucleosomal barrier for DNA-dependent processes. Here, we have examined the role of two highly conserved yeast (Saccharomyces cerevisiae) histone chaperones, facilitates chromatin transcription (FACT) and Spt6, in regulating transcription. We show that the H3 tail contributes to the recruitment of FACT to coding sequences in a manner dependent on acetylation. We found that deleting a H3 histone acetyltransferase Gcn5 or mutating lysines on the H3 tail impairs FACT recruitment at ADH1 and ARG1 genes. However, deleting the H4 tail or mutating the H4 lysines failed to dampen FACT occupancy in coding regions. Additionally, we show that FACT depletion reduces RNA polymerase II (Pol II) occupancy genome-wide. Spt6 depletion leads to a reduction in Pol II occupancy toward the 3'-end, in a manner dependent on the gene length. Severe transcription and histone-eviction defects were also observed in a strain that was impaired for Spt6 recruitment (spt6Δ202) and depleted of FACT. Importantly, the severity of the defect strongly correlated with wild-type Pol II occupancies at these genes, indicating critical roles for Spt6 and Spt16 in promoting high-level transcription. Collectively, our results show that both FACT and Spt6 are important for transcription globally and may participate during different stages of transcription.
Collapse
|
25
|
Yan J, Chen SAA, Local A, Liu T, Qiu Y, Dorighi KM, Preissl S, Rivera CM, Wang C, Ye Z, Ge K, Hu M, Wysocka J, Ren B. Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res 2018; 28:204-220. [PMID: 29313530 PMCID: PMC5799818 DOI: 10.1038/cr.2018.1] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/05/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
Long-range chromatin interactions between enhancers and promoters are essential for transcription of many developmentally controlled genes in mammals and other metazoans. Currently, the exact mechanisms that connect distal enhancers to their specific target promoters remain to be fully elucidated. Here, we show that the enhancer-specific histone H3 lysine 4 monomethylation (H3K4me1) and the histone methyltransferases MLL3 and MLL4 (MLL3/4) play an active role in this process. We demonstrate that in differentiating mouse embryonic stem cells, MLL3/4-dependent deposition of H3K4me1 at enhancers correlates with increased levels of chromatin interactions, whereas loss of this histone modification leads to reduced levels of chromatin interactions and defects in gene activation during differentiation. H3K4me1 facilitates recruitment of the Cohesin complex, a known regulator of chromatin organization, to chromatin in vitro and in vivo, providing a potential mechanism for MLL3/4 to promote chromatin interactions between enhancers and promoters. Taken together, our results support a role for MLL3/4-dependent H3K4me1 in orchestrating long-range chromatin interactions at enhancers in mammalian cells.
Collapse
Affiliation(s)
- Jian Yan
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Shi-An A Chen
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Andrea Local
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Current address: Aptose Biosciences Inc., 3550 General Atomics Ct, San Diego, CA 92122, USA
| | - Tristin Liu
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Kristel M Dorighi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sebastian Preissl
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Chloe M Rivera
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Chaochen Wang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, Institute of Genomic Medicine, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Liao J, Tao X, Ding Q, Liu J, Yang X, Yuan FE, Yang JA, Liu B, Xiang GA, Chen Q. SSRP1 silencing inhibits the proliferation and malignancy of human glioma cells via the MAPK signaling pathway. Oncol Rep 2017; 38:2667-2676. [PMID: 29048646 PMCID: PMC5780019 DOI: 10.3892/or.2017.5982] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022] Open
Abstract
Structure-specific recognition protein 1 (SSRP1) has been considered as a potential biomarker, since aberrant high expression of SSRP1 has been detected in numerous malignant tumors. However, the correlation between the expression level of SSRP1 and glioma remains unclear. The present study attempted to investigate the role of SSRP1 in the pathogenesis of glioma. In the present study, our data revealed that SSRP1 overexpression was detected in glioma tissues at both the mRNA and protein levels using quantitative real-time RT-PCR and immunohistochemical analysis. We also demonstrated that the upregulated expression of SSRP1 was correlated with the World Health Organization (WHO) grade of glioma. The knockdown of SSRP1 by siRNA not only resulted in the inhibition of cell proliferation, but also significantly inhibited glioma cell migration and invasion. Mechanistic analyses revealed that SSRP1 depletion suppressed the activity of the phosphorylation of the MAPK signaling pathway. In conclusion, the present study indicated that SSRP1 regulated the proliferation and metastasis of glioma cells via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jianming Liao
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiang Tao
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qianshan Ding
- Department of Gastroenterology, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Junhui Liu
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xue Yang
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fan-En Yuan
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ji-An Yang
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Baohui Liu
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guo-An Xiang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The Third Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong 510317, P.R. China
| | - Qianxue Chen
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
27
|
Church M, Smith KC, Alhussain MM, Pennings S, Fleming AB. Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene. Nucleic Acids Res 2017; 45:4413-4430. [PMID: 28115623 PMCID: PMC5416777 DOI: 10.1093/nar/gkx028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/19/2017] [Indexed: 01/12/2023] Open
Abstract
The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription.
Collapse
Affiliation(s)
- Michael Church
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Kim C Smith
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Mohamed M Alhussain
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Sari Pennings
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Alastair B Fleming
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
28
|
Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nat Struct Mol Biol 2016; 23:1111-1116. [PMID: 27820806 DOI: 10.1038/nsmb.3321] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
DNA accessibility to regulatory proteins is substantially influenced by nucleosome structure and dynamics. The facilitates chromatin transcription (FACT) complex increases the accessibility of nucleosomal DNA, but the mechanism and extent of its nucleosome reorganization activity are unknown. Here we determined the effects of FACT from the yeast Saccharomyces cerevisiae on single nucleosomes by using single-particle Förster resonance energy transfer (spFRET) microscopy. FACT binding results in dramatic ATP-independent, symmetrical and reversible DNA uncoiling that affects at least 70% of the DNA within a nucleosome, occurs without apparent loss of histones and proceeds via an 'all-or-none' mechanism. A mutated version of FACT is defective in uncoiling, and a histone mutation that suppresses phenotypes caused by this FACT mutation in vivo restores the uncoiling activity in vitro. Thus, FACT-dependent nucleosome unfolding modulates the accessibility of nucleosomal DNA, and this activity is an important function of FACT in vivo.
Collapse
|
29
|
Abstract
The yeast HO endonuclease is expressed in late G1 in haploid mother cells to initiate mating-type interconversion. Cells can be arrested in G1 by nutrient deprivation or by pheromone exposure, but cells that resume cycling after nutrient deprivation or cyclin-dependent kinase (CDK) inactivation express HO in the first cell cycle, whereas HO is not expressed until the second cycle after release from pheromone arrest. Here, we show that transcription of a long noncoding RNA (lncRNA) mediates this differential response. The SBF and Mediator factors remain bound to the inactive promoter during arrest due to CDK inactivation, and these bound factors allow the cell to remember a transcriptional decision made before arrest. If the presence of mating pheromone indicates that this decision is no longer appropriate, a lncRNA originating at -2700 upstream of the HO gene is induced, and the transcription machinery displaces promoter-bound SBF, preventing HO transcription in the subsequent cell cycle. Further, we find that the displaced SBF is blocked from rebinding due to incorporation of its recognition sites within nucleosomes. Expressing the pHO-lncRNA in trans is ineffective, indicating that transcription in cis is required. Factor displacement during lncRNA transcription could be a general mechanism for regulating memory of previous events at promoters.
Collapse
|
30
|
Tsunaka Y, Fujiwara Y, Oyama T, Hirose S, Morikawa K. Integrated molecular mechanism directing nucleosome reorganization by human FACT. Genes Dev 2016; 30:673-86. [PMID: 26966247 PMCID: PMC4803053 DOI: 10.1101/gad.274183.115] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/05/2016] [Indexed: 11/24/2022]
Abstract
Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Tsunaka et al. studied human FACT–histone interactions that present precise views of nucleosome reorganization, conducted by the FACT-SPT16 Mid domain and its adjacent acidic AID segment. Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone.
Collapse
Affiliation(s)
- Yasuo Tsunaka
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto 606-8501, Japan; International Institute for Advanced Studies, Kizugawa-shi, Kyoto 619-0225, Japan
| | - Yoshie Fujiwara
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuji Oyama
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kosuke Morikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto 606-8501, Japan; International Institute for Advanced Studies, Kizugawa-shi, Kyoto 619-0225, Japan
| |
Collapse
|
31
|
Bondarenko MT, Maluchenko NV, Valieva ME, Gerasimova NS, Kulaeva OI, Georgiev PG, Studitsky VM. Structure and function of histone chaperone FACT. Mol Biol 2015. [DOI: 10.1134/s0026893315060023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Nucleosomes Are Essential for Proper Regulation of a Multigated Promoter in Saccharomyces cerevisiae. Genetics 2015; 202:551-63. [PMID: 26627840 DOI: 10.1534/genetics.115.183715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022] Open
Abstract
Nucleosome-depleted regions (NDRs) are present immediately adjacent to the transcription start site in most eukaryotic promoters. Here we show that NDRs in the upstream promoter region can profoundly affect gene regulation. Chromatin at the yeast HO promoter is highly repressive and numerous coactivators are required for expression. We modified the HO promoter with segments from the well-studied CLN2 NDR, creating chimeric promoters differing in nucleosome occupancy but with binding sites for the same activator, SBF. Nucleosome depletion resulted in substantial increases in both factor binding and gene expression and allowed activation from a much longer distance, probably by allowing recruited coactivators to act further downstream. Nucleosome depletion also affected sequential activation of the HO promoter; HO activation typically requires the ordered recruitment of activators first to URS1, second to the left-half of URS2 (URS2-L), and finally to the right-half of URS2 (URS2-R), with each region representing distinct gates that must be unlocked to achieve activation. The absence of nucleosomes at URS2-L resulted in promoters no longer requiring both the URS1 and URS2-L gates, as either gate alone is now sufficient to promote binding of the SBF factor to URS2-R. Furthermore, nucleosome depletion at URS2 altered the timing of HO expression and bypassed the regulation that restricts expression to mother cells. Our results reveal insight into how nucleosomes can create a requirement for ordered recruitment of factors to facilitate complex transcriptional regulation.
Collapse
|
33
|
Qiu H, Chereji RV, Hu C, Cole HA, Rawal Y, Clark DJ, Hinnebusch AG. Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation. Genome Res 2015; 26:211-25. [PMID: 26602697 PMCID: PMC4728374 DOI: 10.1101/gr.196337.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022]
Abstract
Chaperones, nucleosome remodeling complexes, and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these cofactors function ubiquitously, as well as the impact of nucleosome eviction on transcription genome-wide, is poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple cofactors to address these issues for about 200 genes belonging to the Gcn4 transcriptome, of which about 70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. Examining four target genes in a panel of mutants indicated that SWI/SNF, Gcn5, the Hsp70 cochaperone Ydj1, and chromatin-associated factor Yta7 are required downstream from Gcn4 binding, whereas Asf1/Rtt109, Nap1, RSC, and H2AZ are dispensable for robust H3 eviction in otherwise wild-type cells. Using ChIP-seq to interrogate all 70 exemplar genes in single, double, and triple mutants implicated Gcn5, Snf2, and Ydj1 in H3 eviction at most, but not all, Gcn4 target promoters, with Gcn5 generally playing the greatest role and Ydj1 the least. Remarkably, these three cofactors cooperate similarly in H3 eviction at virtually all yeast promoters. Defective H3 eviction in cofactor mutants was coupled with reduced Pol II occupancies for the Gcn4 transcriptome and the most highly expressed uninduced genes, but the relative Pol II levels at most genes were unaffected or even elevated. These findings indicate that nucleosome eviction is crucial for robust transcription of highly expressed genes but that other steps in gene activation are more rate-limiting for most other yeast genes.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Răzvan V Chereji
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Cuihua Hu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hope A Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yashpal Rawal
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David J Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
34
|
Zhou W, Zhu Y, Dong A, Shen WH. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:78-95. [PMID: 25781491 DOI: 10.1111/tpj.12830] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 05/06/2023]
Abstract
Nucleosomal core histones (H2A, H2B, H3 and H4) must be assembled, replaced or exchanged to preserve or modify chromatin organization and function according to cellular needs. Histone chaperones escort histones, and play key functions during nucleosome assembly/disassembly and in nucleosome structure configuration. Because of their location at the periphery of nucleosome, histone H2A-H2B dimers are remarkably dynamic. Here we focus on plant histone H2A/H2B chaperones, particularly members of the NUCLEOSOME ASSEMBLY PROTEIN-1 (NAP1) and FACILITATES CHROMATIN TRANSCRIPTION (FACT) families, discussing their molecular features, properties, regulation and function. Covalent histone modifications (e.g. ubiquitination, phosphorylation, methylation, acetylation) and H2A variants (H2A.Z, H2A.X and H2A.W) are also discussed in view of their crucial importance in modulating nucleosome organization and function. We further discuss roles of NAP1 and FACT in chromatin-based processes, such as transcription, DNA replication and repair. Specific functions of NAP1 and FACT are evident when their roles are considered with respect to regulation of plant growth and development and in plant responses to environmental stresses. Future major challenges remain in order to define in more detail the overlapping and specific roles of various members of the NAP1 family as well as differences and similarities between NAP1 and FACT family members, and to identify and characterize their partners as well as new families of chaperones to understand histone variant incorporation and chromatin target specificity.
Collapse
Affiliation(s)
- Wangbin Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
35
|
Erkina TY, Erkine A. ASF1 and the SWI/SNF complex interact functionally during nucleosome displacement, while FACT is required for nucleosome reassembly at yeast heat shock gene promoters during sustained stress. Cell Stress Chaperones 2015; 20:355-69. [PMID: 25416387 PMCID: PMC4326380 DOI: 10.1007/s12192-014-0556-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/14/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022] Open
Abstract
Histone chaperones are an integral part of the transcription regulatory machinery. We investigated the involvement of histone chaperones and their functional interactions with ATP-dependent chromatin remodeling complexes in the regulation of yeast heat shock genes. Strong functional interaction between the histone chaperone ASF1 and the ATP-dependent chromatin remodeling complex SWI/SNF is exhibited in synergistic diminishment of nucleosome displacement during heat shock in the ΔASF1/ΔSNF2 strain in comparison to individual ASF1 or SNF2 inactivation. A similar but less pronounced effect was observed for ISW1/ASF1 inactivation but not for ASF1/STH1 (RSC complex) combinatorial inactivation. The depletion of Spt16, which is a major subunit of the FACT histone chaperone complex, leads to a severe growth defect phenotype associated with unusual thermotolerance. The acquired thermotolerance in the Spt16-depleted strain is associated with a defect in the reassembly of nucleosomes at the promoters of heat shock genes during sustained heat stress, leading to increased recruitment of the transcriptional activator HSF and RNA polymerase II. The defect in nucleosome assembly associated with Spt16 depletion also leads to an increased tolerance to stress due to an increased concentration of NaCl.
Collapse
Affiliation(s)
- Tamara Y. Erkina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Alexandre Erkine
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| |
Collapse
|
36
|
Replisome function during replicative stress is modulated by histone h3 lysine 56 acetylation through Ctf4. Genetics 2015; 199:1047-63. [PMID: 25697176 DOI: 10.1534/genetics.114.173856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45-Mcm2-7-GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress.
Collapse
|
37
|
Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol 2015; 35:1014-25. [PMID: 25582194 DOI: 10.1128/mcb.01105-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanisms whereby the crucial pluripotency transcription factor Oct4 regulates target gene expression are incompletely understood. Using an assay system based on partially differentiated embryonic stem cells, we show that Oct4 opposes the accumulation of local H3K9me2 and subsequent Dnmt3a-mediated DNA methylation. Upon binding DNA, Oct4 recruits the histone lysine demethylase Jmjd1c. Chromatin immunoprecipitation (ChIP) time course experiments identify a stepwise Oct4 mechanism involving Jmjd1c recruitment and H3K9me2 demethylation, transient FACT (facilitates chromatin transactions) complex recruitment, and nucleosome depletion. Genome-wide and targeted ChIP confirms binding of newly synthesized Oct4, together with Jmjd1c and FACT, to the Pou5f1 enhancer and a small number of other Oct4 targets, including the Nanog promoter. Histone demethylation is required for both FACT recruitment and H3 depletion. Jmjd1c is required to induce endogenous Oct4 expression and fully reprogram fibroblasts to pluripotency, indicating that the assay system identifies functional Oct4 cofactors. These findings indicate that Oct4 sequentially recruits activities that catalyze histone demethylation and depletion.
Collapse
|
38
|
Spatiotemporal cascade of transcription factor binding required for promoter activation. Mol Cell Biol 2014; 35:688-98. [PMID: 25512608 DOI: 10.1128/mcb.01285-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Promoters often contain multiple binding sites for a single factor. The yeast HO gene contains nine highly conserved binding sites for the SCB (Swi4/6-dependent cell cycle box) binding factor (SBF) complex (composed of Swi4 and Swi6) in the 700-bp upstream regulatory sequence 2 (URS2) promoter region. Here, we show that the distal and proximal SBF sites in URS2 function differently. Chromatin immunoprecipitation (ChIP) experiments show that SBF binds preferentially to the left side of URS2 (URS2-L), despite equivalent binding to the left-half and right-half SBF sites in vitro. SBF binding at URS2-L sites depends on prior chromatin remodeling events at the upstream URS1 region. These signals from URS1 influence chromatin changes at URS2 but only at sites within a defined distance. SBF bound at URS2-L, however, is unable to activate transcription but instead facilitates SBF binding to sites in the right half (URS2-R), which are required for transcriptional activation. Factor binding at HO, therefore, follows a temporal cascade, with SBF bound at URS2-L serving to relay a signal from URS1 to the SBF sites in URS2-R that ultimately activate gene expression. Taken together, we describe a novel property of a transcription factor that can have two distinct roles in gene activation, depending on its location within a promoter.
Collapse
|
39
|
Deyter GMR, Biggins S. The FACT complex interacts with the E3 ubiquitin ligase Psh1 to prevent ectopic localization of CENP-A. Genes Dev 2014; 28:1815-26. [PMID: 25128498 PMCID: PMC4197964 DOI: 10.1101/gad.243113.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centromere identity and its epigenetic maintenance require the incorporation of the histone H3 variant CENP-A at centromeres. CENP-A mislocalization may disrupt chromatin-based processes and chromosome segregation. Here, Deyter and Biggins identify a role for the conserved chromatin-modifying complex FACT in preventing CENP-ACse4 mislocalization to euchromatin by mediating its proteolysis. The budding yeast Spt16 subunit of the FACT complex binds to Psh1, an E3 ubiquitin ligase that targets CENP-ACse4 for degradation. A Psh1 mutant that cannot associate with FACT has a reduced interaction with CENP-ACse4 in vivo. Centromere identity and its epigenetic maintenance require the incorporation of a histone H3 variant called CENP-A at centromeres. CENP-A mislocalization to ectopic sites may disrupt chromatin-based processes and chromosome segregation, so it is important to uncover the mechanisms by which this variant is exclusively localized to centromeres. Here, we identify a role for the conserved chromatin-modifying complex FACT (facilitates chromatin transcription/transactions) in preventing budding yeast CENP-ACse4 mislocalization to euchromatin by mediating its proteolysis. The Spt16 subunit of the FACT complex binds to Psh1 (Pob3/Spt16/histone), an E3 ubiquitin ligase that targets CENP-ACse4 for degradation. The interaction between Psh1 and Spt16 is critical for both CENP-ACse4 ubiquitylation and its exclusion from euchromatin. We found that Psh1 cannot efficiently ubiquitylate CENP-ACse4 nucleosomes in vitro, suggesting that additional factors must facilitate CENP-ACse4 removal from chromatin in vivo. Consistent with this, a Psh1 mutant that cannot associate with FACT has a reduced interaction with CENP-ACse4 in vivo. Together, our data identify a previously unknown mechanism to maintain centromere identity and genomic stability through the FACT-mediated degradation of ectopically localized CENP-ACse4.
Collapse
Affiliation(s)
- Gary M R Deyter
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
40
|
Genome-wide mapping of yeast histone chaperone anti-silencing function 1 reveals its role in condensin binding with chromatin. PLoS One 2014; 9:e108652. [PMID: 25264624 PMCID: PMC4181348 DOI: 10.1371/journal.pone.0108652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
Genome-wide participation and importance of the histone chaperone Asf1 (Anti-Silencing Function 1) in diverse DNA transactions like replication, repair, heterochromatic silencing and transcription are well documented. Yet its genome-wide targets have not been reported. Using ChIP-seq method, we found that yeast Asf1 associates with 590 unique targets including centromeres, telomeres and condensin-binding sites. It is found selectively on highly transcribed regions, which include replication fork pause sites. Asf1 preferentially associates with the genes transcribed by RNA polymerase (pol) III where its presence affects RNA production and replication-independent histone exchange. On pol II-transcribed genes, a negative correlation is found between Asf1 and nucleosome occupancy. It is not enriched on most of the reported sites of histone exchange or on the genes, which are misregulated in the asf1Δ cells. Interestingly, chromosome-wide distributions of Asf1 and one of the condensin subunits, Brn1 show a nearly identical pattern. Moreover, Brn1 shows reduced occupancy at various condensin-binding sites in asf1Δ cells. These results along with high association of Asf1 with heterochromatic centromeres and telomeres ascribe novel roles to Asf1 in condensin loading and chromatin dynamics.
Collapse
|
41
|
Abstract
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
Collapse
|
42
|
Pamblanco M, Oliete-Calvo P, García-Oliver E, Luz Valero M, Sanchez del Pino MM, Rodríguez-Navarro S. Unveiling novel interactions of histone chaperone Asf1 linked to TREX-2 factors Sus1 and Thp1. Nucleus 2014; 5:247-59. [PMID: 24824343 DOI: 10.4161/nucl.29155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anti-silencing function 1 (Asf1) is a conserved key eukaryotic histone H3/H4 chaperone that participates in a variety of DNA and chromatin-related processes. These include the assembly and disassembly of histones H3 and H4 from chromatin during replication, transcription, and DNA repair. In addition, Asf1 is required for H3K56 acetylation activity dependent on histone acetyltransferase Rtt109. Thus, Asf1 impacts on many aspects of DNA metabolism. To gain insights into the functional links of Asf1 with other cellular machineries, we employed mass spectrometry coupled to tandem affinity purification (TAP) to investigate novel physical interactions of Asf1. Under different TAP-MS analysis conditions, we describe a new repertoire of Asf1 physical interactions and novel Asf1 post-translational modifications as ubiquitination, methylation and acetylation that open up new ways to regulate Asf1 functions. Asf1 co-purifies with several subunits of the TREX-2, SAGA complexes, and with nucleoporins Nup2, Nup60, and Nup57, which are all involved in transcription coupled to mRNA export in eukaryotes. Reciprocally, Thp1 and Sus1 interact with Asf1. Albeit mRNA export and GAL1 transcription are not affected in asf1Δ a strong genetic interaction exists between ASF1 and SUS1. Notably, supporting a functional link between Asf1 and TREX-2, both Sus1 and Thp1 affect the levels of Asf1-dependent histone H3K56 acetylation and histone H3 and H4 incorporation onto chromatin. Additionally, we provide evidence for a role of Asf1 in histone H2B ubiquitination. This work proposes a functional link between Asf1 and TREX-2 components in histone metabolism at the vicinity of the nuclear pore complex.
Collapse
Affiliation(s)
- Mercè Pamblanco
- Departament de Bioquímica i Biologia Molecular; Universitat de València; Burjassot, Spain
| | - Paula Oliete-Calvo
- Gene Expression and RNA Metabolism Laboratory; Centro de Investigación Príncipe Felipe (CIPF); València, Spain
| | - Encar García-Oliver
- Gene Expression and RNA Metabolism Laboratory; Centro de Investigación Príncipe Felipe (CIPF); València, Spain
| | - M Luz Valero
- Secció de Proteòmica; Servei Central de Suport a la Investigació Experimental (SCSIE); Universitat de València; Burjassot, Spain
| | | | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory; Centro de Investigación Príncipe Felipe (CIPF); València, Spain
| |
Collapse
|
43
|
Im JS, Keaton M, Lee KY, Kumar P, Park J, Dutta A. ATR checkpoint kinase and CRL1βTRCP collaborate to degrade ASF1a and thus repress genes overlapping with clusters of stalled replication forks. Genes Dev 2014; 28:875-87. [PMID: 24700029 PMCID: PMC4003279 DOI: 10.1101/gad.239194.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many chemotherapeutic agents, such as doxorubicin (DOX), interfere with DNA replication. Here, Dutta and colleagues show that DOX treatment produces clusters of stalled replication forks and transcriptional repression of neighboring genes. An ATR-dependent checkpoint pathway that down-regulates histone chaperone ASF1a is shown to repress genes overlapping with stalled replication forks. Furthermore, ASF1a-depleted cancer cells are more sensitive to DOX, suggesting that the loss of this histone chaperone, as seen in several cancers, could be a personalized tumor marker for sensitivity to DOX. Many agents used for chemotherapy, such as doxorubicin, interfere with DNA replication, but the effect of this interference on transcription is largely unknown. Here we show that doxorubicin induces the firing of dense clusters of neoreplication origins that lead to clusters of stalled replication forks in gene-rich parts of the genome, particularly on expressed genes. Genes that overlap with these clusters of stalled forks are actively dechromatinized, unwound, and repressed by an ATR-dependent checkpoint pathway. The ATR checkpoint pathway causes a histone chaperone normally associated with the replication fork, ASF1a, to degrade through a CRL1βTRCP-dependent ubiquitination/proteasome pathway, leading to the localized dechromatinization and gene repression. Therefore, a globally active checkpoint pathway interacts with local clusters of stalled forks to specifically repress genes in the vicinity of the stalled forks, providing a new mechanism of action of chemotherapy drugs like doxorubicin. Finally, ASF1a-depleted cancer cells are more sensitive to doxorubicin, suggesting that the 7%–10% of prostate adenocarcinomas and adenoid cystic carcinomas reported to have homozygous deletion or significant underexpression of ASF1a should be tested for high sensitivity to doxorubicin.
Collapse
Affiliation(s)
- Jun-Sub Im
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
44
|
Voth WP, Takahata S, Nishikawa JL, Metcalfe BM, Näär AM, Stillman DJ. A role for FACT in repopulation of nucleosomes at inducible genes. PLoS One 2014; 9:e84092. [PMID: 24392107 PMCID: PMC3879260 DOI: 10.1371/journal.pone.0084092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/15/2013] [Indexed: 01/22/2023] Open
Abstract
Xenobiotic drugs induce Pleiotropic Drug Resistance (PDR) genes via the orthologous Pdr1/Pdr3 transcription activators. We previously identified the Mediator transcription co-activator complex as a key target of Pdr1 orthologs and demonstrated that Pdr1 interacts directly with the Gal11/Med15 subunit of the Mediator complex. Based on an interaction between Pdr1 and the FACT complex, we show that strains with spt16 or pob3 mutations are sensitive to xenobiotic drugs and display diminished PDR gene induction. Although FACT acts during the activation of some genes by assisting in the nucleosomes eviction at promoters, PDR promoters already contain nucleosome-depleted regions (NDRs) before induction. To determine the function of FACT at PDR genes, we examined the kinetics of RNA accumulation and changes in nucleosome occupancy following exposure to a xenobiotic drug in wild type and FACT mutant yeast strains. In the presence of normal FACT, PDR genes are transcribed within 5 minutes of xenobiotic stimulation and transcription returns to basal levels by 30–40 min. Nucleosomes are constitutively depleted in the promoter regions, are lost from the open reading frames during transcription, and the ORFs are wholly repopulated with nucleosomes as transcription ceases. While FACT mutations cause minor delays in activation of PDR genes, much more pronounced and significant defects in nucleosome repopulation in the ORFs are observed in FACT mutants upon transcription termination. FACT therefore has a major role in nucleosome redeposition following cessation of transcription at the PDR genes, the opposite of its better-known function in nucleosome disassembly.
Collapse
Affiliation(s)
- Warren P. Voth
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Shinya Takahata
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Joy L. Nishikawa
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin M. Metcalfe
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Anders M. Näär
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David J. Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
45
|
Snf1/AMPK promotes SBF and MBF-dependent transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3254-3264. [DOI: 10.1016/j.bbamcr.2013.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/11/2023]
|
46
|
|
47
|
Stillman DJ. Dancing the cell cycle two-step: regulation of yeast G1-cell-cycle genes by chromatin structure. Trends Biochem Sci 2013; 38:467-75. [PMID: 23870664 DOI: 10.1016/j.tibs.2013.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 01/02/2023]
Abstract
The chromatin structure at a promoter can define how a gene is regulated. Studies of two yeast genes expressed in the G1 phase of the cell cycle, HO and CLN2, have provided important paradigms for transcriptional regulation. Although the SBF (Swi4/Swi6 box factor) transcription factor activates both genes, the chromatin landscapes that regulate SBF binding are different. Specifically, the CLN2 promoter is constitutively available for SBF binding, whereas HO has a complex two-step promoter in which chromatin changes in one region allow SBF to bind at a downstream location. These studies reveal the role of chromatin in defining the regulatory properties of promoters.
Collapse
Affiliation(s)
- David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
48
|
Abstract
Eukaryotic gene regulation usually involves sequence-specific transcription factors and sequence-nonspecific cofactors. A large effort has been made to understand how these factors affect the average gene expression level among a population. However, little is known about how they regulate gene expression in individual cells. In this work, we address this question by mutating multiple factors in the regulatory pathway of the yeast HO promoter (HOpr) and probing the corresponding promoter activity in single cells using time-lapse fluorescence microscopy. We show that the HOpr fires in an "on/off" fashion in WT cells as well as in different genetic backgrounds. Many chromatin-related cofactors that affect the average level of HO expression do not actually affect the firing amplitude of the HOpr; instead, they affect the firing frequency among individual cell cycles. With certain mutations, the bimodal expression exhibits short-term epigenetic memory across the mitotic boundary. This memory is propagated in "cis" and reflects enhanced activator binding after a previous "on" cycle. We present evidence that the memory results from slow turnover of the histone acetylation marks.
Collapse
|
49
|
The FACT histone chaperone guides histone H4 into its nucleosomal conformation in Saccharomyces cerevisiae. Genetics 2013; 195:101-13. [PMID: 23833181 DOI: 10.1534/genetics.113.153080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone Facilitates Chromatin Transactions (FACT), causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote reorganization of nucleosomes into a more open form, but neither the pob3-Q308K mutation nor the compensating histone mutations affect this activity. Instead, purified mutant FACT complexes fail to release from nucleosomes efficiently, and the histone mutations correct this flaw. We confirm that pob3-T252E also suppresses pob3-Q308K and show that combining two suppressor mutations can be detrimental, further demonstrating the importance of balance between association and dissociation for efficient FACT:nucleosome interactions. To explain our results, we propose that histone H4 can adopt multiple conformations, most of which are incompatible with nucleosome assembly. FACT guides H4 to adopt appropriate conformations, and this activity can be enhanced or diminished by mutations in Pob3 or histones. FACT can therefore destabilize nucleosomes by favoring the reorganized state, but it can also promote assembly by tethering histones and DNA together and maintaining them in conformations that promote canonical nucleosome formation.
Collapse
|
50
|
Venkatesh S, Workman JL, Smolle M. UpSETing chromatin during non-coding RNA production. Epigenetics Chromatin 2013; 6:16. [PMID: 23738864 PMCID: PMC3680234 DOI: 10.1186/1756-8935-6-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/10/2013] [Indexed: 01/01/2023] Open
Abstract
The packaging of eukaryotic DNA into nucleosomal arrays permits cells to tightly regulate and fine-tune gene expression. The ordered disassembly and reassembly of these nucleosomes allows RNA polymerase II (RNAPII) conditional access to the underlying DNA sequences. Disruption of nucleosome reassembly following RNAPII passage results in spurious transcription initiation events, leading to the production of non-coding RNA (ncRNA). We review the molecular mechanisms involved in the suppression of these cryptic initiation events and discuss the role played by ncRNAs in regulating gene expression.
Collapse
Affiliation(s)
- Swaminathan Venkatesh
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|